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Abstract

Objective: This paper aims to address the challenges in abstract screening within Systematic Reviews (SR)

by leveraging the zero-shot capabilities of large language models (LLMs).

Methods: We employ LLM to prioritise candidate studies by aligning abstracts with the selection criteria

outlined in an SR protocol. Abstract screening was transformed into a novel question-answering (QA)

framework, treating each selection criterion as a question addressed by LLM. The framework involves breaking

down the selection criteria into multiple questions, properly prompting LLM to answer each question, scoring

and re-ranking each answer, and combining the responses to make nuanced inclusion or exclusion decisions.

Results: Large-scale validation was performed on the benchmark of CLEF eHealth 2019 Task 2: Technology-

Assisted Reviews in Empirical Medicine. Focusing on GPT-3.5 as a case study, the proposed QA framework

consistently exhibited a clear advantage over traditional information retrieval approaches and bespoke BERT-

family models that were fine-tuned for prioritising candidate studies (i.e., from the BERT to PubMedBERT)

across 31 datasets of four categories of SRs, underscoring their high potential in facilitating abstract screening.

Conclusion: Investigation justified the indispensable value of leveraging selection criteria to improve the

performance of automated abstract screening. LLMs demonstrated proficiency in prioritising candidate

studies for abstract screening using the proposed QA framework. Significant performance improvements

were obtained by re-ranking answers using the semantic alignment between abstracts and selection criteria.

This further highlighted the pertinence of utilizing selection criteria to enhance abstract screening.

Key words: Automated Systematic Review, Abstract Screening, Large Language Model, Question Answering, Zero-

Shot Re-Ranking

Introduction

A Systematic Review (SR) in medical research is the highest form of knowledge synthesis of all available medical evidence from relevant

publications on a specific topic. SR follows a principled pipeline, including candidate study retrieval, primary study selection, quality

assessment, data extraction, data synthesis, meta-analysis, and reporting [1]. Because of its thoroughness and reliability, SR underpins

evidence-based medicine [2]. It shapes medical research and practice by informing researchers of the state-of-the-art knowledge and

knowledge gaps as well as health practitioners and policymakers of the best clinical practice [3].

SR also faces tremendous challenges at each step. For instance, it is time-consuming, expensive and resource-intensive to select

primary studies, a.k.a. abstract screening, due to the massive volume of retrieved candidate studies, often at tens of thousands [4, 5]. It is
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further worsened by involving multiple human annotators, which is required to reduce bias and disparities [6]. This compound complexity

calls for innovative solutions to automate or semi-automate abstract screening [1] to minimize the time delays and costs of this manual

screening task [7], which is the focus of the current paper. Figure 1 shows an example of abstract screening, where the abstract of an

included study is matched against the selection criteria defined in the SR protocol.

Machine learning has been the focus of research in automating abstract screening [1, 7, 8]. Firstly, a small set of studies is selected for

human annotation, and then a classifier is trained. Typically, active learning is adopted to improve the classifier iteratively. Obviously,

the quality of the initial annotations plays an important role. However, choosing initial annotations is a problem of zero-shot setting

and has not been explored at all. Another disadvantage is that this approach is not generalisable, and each SR topic requires training a

bespoke classifier from scratch.

An alternative perspective was to treat abstract screening as a ranking problem a.k.a. reference prioritisation [7], incorporating

approaches from the information retrieval (IR) community [9, 10, 11, 12, 13, 14, 15, 16]. One advantage of this approach is that it can

utilise additional information about an SR converted into queries to enhance screening performance. Such information could be review

title [9, 10], original Boolean queries (for candidate study retrieval) [17], research objectives [18, 16], or a set of seed studies [15, 19].

Another advantage is the possibility of training a cross-topic ranker to generalise to diverse SR topics.

The above analysis motivated us to explore the emerging capabilities of Large Language Models (LLMs), particularly GPT-3.5,

to facilitate abstract screening. LLMs, with their robust zero-shot capabilities [20], offer the potential to act as AI-based reviewers,

streamlining the abstract screening process by either replacing at least one human reviewer or suggesting an initial set of abstracts for

human verification and classifier training, both significantly reducing the workload for human reviewers .

In addition, we witness a severe lack of study about using selection criteria in automated abstract screening. Indeed, the selection

criteria set up the grounds for human reviewers’ decision-making. Unfortunately, only a few studies initiated similar attempts [21, 22, 23],

but neither the effectiveness of their methods nor the comprehensiveness of their experiments could provide convincing conclusions about

the feasibility of LLMs in this task. The current paper presents a pioneering LLM-based framework for facilitating automated abstract

screening to fill this gap.

Our contributions can be summarised in three folds. (1) We proposed the first comprehensive LLM-assisted question-answering

framework to facilitate automated abstract screening in a zero-shot setting. (2) We developed the first generalisable approach to utilising

selection criteria to enhance abstract screening efficiency. (3) Our study marks the first comprehensive exploration of leveraging LLMs

for reference prioritisation in abstract screening, utilizing a well-known benchmark dataset to showcase the method’s high potential.

Background Study

Automation in Abstract Screening

Efforts to automate systematic reviews using machine learning have surged recently. Kitchenham and Charters’ presented a good survey

of such attempts in software engineering [24]. In evidence-based medicine, Cohen et al. was the seminal work of abstract screening

using machine learning [25], while Marshall and Wallace advocated active learning techniques for abstract screening [26]. Examples

like RobotReviewer [27, 28] and TrialStreamer [29] showcased the power of integrating AI into the review process, with RobotReviewer

claiming to reach accuracy comparable to human reviewers. Despite the progress, challenges persist, including labour-intensive labelling
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Fig. 1: Illustration of LLM-assisted automated abstract screening.

and the risk of overlooking relevant studies [30]. Acknowledging the limitation of full automation, tools like Rayyan and Abstracker

leverage natural language processing (NLP) algorithms to partially automate article screening [31].

Machine Learning for Abstract Screening

The biggest challenge is handling large document volumes, particularly in non-randomized controlled trials lacking database filters [32].

For instance, EPPI-Centre reviews often screen over 20,000 documents, necessitating more efficient approaches [33]. Efforts include

refining search queries, balancing precision and recall, and leveraging resource-efficient recall-maximizing models with NLP [34].

The initial approach involves training a classifier to make explicit include/exclude decisions [25, 34, 35, 36, 37, 38, 39]. Many classifiers

using this approach inherently generate a confidence score indicating the likelihood of inclusion or exclusion (similar to the ranking in

the second approach). Generally, this approach requires a labelled dataset for training, hindering the assessment of work reduction until

after manual screening. Research within this paradigm primarily focuses on enhancing feature extraction methods [25, 37] and refining

classifiers [38]. Van Dinter et al. [8] analyzed 41 studies in medicine and software engineering, revealing Support Vector Machines and

Bayesian Networks as standard models and Bag of Words and TF-IDF as prevalent natural language processing techniques. Despite

advancements, a dearth of deep neural network models explicitly designed for the systematic review screening phase is noted. The most

prominent challenges include handling extreme data imbalance favouring (at least close to) total recall of relevant studies.

Ranking Approaches to Abstract Screening

The second approach entails utilizing a ranking or prioritisation system [9, 10, 11, 12, 13, 14, 15, 16, 33, 40]. This approach might

necessitate manual screening by a reviewer until a specified criterion is met. This approach can also reduce the number of items needed

to be screened when a cut-off criterion is properly established [33, 40, 41]. In addition to reducing the number needed to screen, other

benefits of this approach include enhancing reviewers’ understanding of inclusion criteria early in the process, starting full-text retrieval

sooner, and potentially speeding up the screening process as confidence in relevance grows [7]. This prioritisation approach also aids

review updates, enabling quicker assimilation of current developments. Various studies reported benefits from prioritisation for workflow

improvement, emphasizing efficiency beyond reducing title and abstract screening workload [42, 43].
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Active learning in Abstract Screening

It’s crucial to note that the last approach, active learning, aligns with both strategies above [34, 33, 44]. This involves an iterative

process to enhance machine predictions by interacting with reviewers. The machine learns from an initial set of include/exclude decisions

human reviewers provide. Reviewers then judge a few new samples, and the machine adapts its decision rule based on this feedback.

This iterative process continues until a specified stopping criterion is met. While the classifier makes final decisions for unscreened items,

human screeners retain control over the training process and the point at which manual screening concludes. Wallace et al. implement

active learning-based article screening using Support Vector Machines [34]. Notable tools include Abstrackr [36] and ASReview [45].

Various active learning strategies existed [7]. For instance, Marshall and Wallace [26] proposed a variant based on certainty, continuously

training the classifier on manually screened articles and reordering unseen articles based on predicted relevance.

Large Language Models for Abstract Screening

Recent advancements in LLMs, notably demonstrated by ChatGPT (GPT-3.5 or 4.0), have brought about a revolutionary paradigm

shift across disciplines [46, 47]. LLMs have shown impressive generalisability across diverse domains and strong zero-/few-shot reasoning

capabilities [46, 48]. Leveraging LLMs holds promise for SRs, which, however, remains underexplored [7, 8]. This gap underscores the

need for a comprehensive investigation into LLMs’ potential in automating SRs, e.g., abstract screening in the current paper.

There are some initial attempts to evaluate ChatGPTs in automated SR, such as automating search queries [49]. Alshami et al.

[50] leveraged ChatGPT to automate the SR pipeline, yet their methodology diverges from conventional abstract screening practices,

rendering it distinct from traditional approaches. The application of ChatGPT in abstract screening has been scarcely explored. Only

two studies tried to address it [51, 52]. However, these studies failed to achieve a high recall rate (preferably total or close to total recall,

say 95% in most studies), a critical factor for practical applicability. In addition, these studies performed limited empirical studies on a

small number of in-house datasets that were neither public nor common in the research community, making it even harder to do reliable

effectiveness evaluation. In contrast, our paper introduces a novel approach by applying LLMs like GPT-3.5 for reference prioritisation

across a substantially larger and well-recognised benchmark [53], significantly enhancing the method’s applicability and effectiveness in

systematic reviews.

Materials and Methods

Overview

Our framework utilizes LLMs’ remarkable zero-shot learning ability to assess if a candidate study’s abstract aligns with the SR protocol’s

selection criteria. These criteria outline aspects of the selected studies. Figure 1 illustrates the idea using an example. The inclusion criteria

contain four parts (in different colours). Each can be answered by matching the relevant information in the abstract (in corresponding

colours). For instance, the selection criterion “We included qualitative studies” is answered by the text evidence “We conducted a

qualitative study” (both in red). Theoretically, all inclusion criteria should be met for the study to be included in the SR.

The current paper frames automated abstract screening as a question-answering (QA) task and proposes to use LLMs like GPT-3.5

to solve it. LLMs have showcased impressive question-answering abilities across diverse domains and tasks, including encoding clinical

knowledge and achieving success in medical licensing exams [54, 55, 56, 57]. Initially, we experimented with condensing the entire selection

criteria into a single, comprehensive question, as depicted in Figure 2a. This method quickly showed its limitations, as LLMs are notably
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more adept at addressing well-defined, focused questions. Recognizing the critical need for high recall—95% or higher—to preserve the

comprehensive integrity of the SR, we shifted our strategy to treating each selection criterion as a question to be addressed using LLMs.

For example, the four selection criteria in Figure 1 are converted into questions Q1 to Q4 (by the LM-based Query Generator component

in Figure 1). Subsequent prompts are directed to LLMs to get individual answers (from the LM-based Question Answerer), which are

then combined into the final decision (through the Answer Scorer and Ensembler). Note that, in this example, Q5 is basically a useless,

redundant question because we hard-coded GPT-3.5 to generate five questions (also refer to the “Question Generation” section).

Figure 2b formally defines our proposed QA framework for abstract screening. The following subsections will detail each component.

We begin with a Question Generator to convert the selection criteria into a set of questions. Question generation is done by LLM.

Optionally, question analysis may be done to analyse the logic between questions for the purpose of correctly combining question

answers. See the “Quality of Question Generation” for details. Subsequently, each question is addressed by a trained Question Answerer

to determine if the corresponding selection criterion is met. Question answering is also done by LLM. Each question answer is converted

into a numeric score, and question-level re-ranking will be applied to improve answer scores. While the current paper tried some primitive

but effective ways for answer re-ranking, the framework is flexible enough to plug in more advanced re-ranking methods. Finally, the

Decision Engine ensembles the answers to all questions (by aggregating answer scores), followed by an optional criteria-level re-ranking

step to calibrate the final score for decision-making.

(a) Naive approach for LLM-based automated abstract screening using

selection criteria

(b) An aspect-based approach for LLM-assisted automated abstract screening using selection criteria

Fig. 2: Methodological framework for LLM-assisted automation screening.

Question Generation

A substantial body of research exists on automated question generation from natural language text [58]. These methods often rely on

manually crafted rules or a trained model, typically a fine-tuned pre-trained language model. While these question generation models have

demonstrated utility in domain-specific tasks, such as generating questions about product descriptions for matching purchase inquiries
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(a) Prompt for question generation

(b) Prompt for question answering: GPT 3.5, Gemini, and Claude

(c) Prompt for question answering: LLaMA

Fig. 3: Prompt design for LLM-assisted automated abstract screening

[59] or creating questions about academic materials to assess learning outcomes [60], generalizing them to the vast diversity of SR topics

presents challenges. Therefore, we entrust the question generation task to LLMs, here GPT-3.5.
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Prompt Design. Our prompt development process adhered to OpenAI’s guidelines [61]. We went further and established a persona

for the LLM, instructing it: “‘You are a researcher screening titles and abstracts of scientific papers for the systematic review.” (Fig.

3a). This persona was crucial in ensuring the LLM’s responses were accurately contextualised so that they properly aligned with the

task objective. Delimiters were used to separate different sections of the prompt, enhancing clarity and coherence. A naive approach to

question generation is to prompt the LLM to generate questions from the selection criteria paragraph. However, the early evaluation

revealed that this uncontrolled method often generated redundant, duplicate or sometimes trivial questions. To enhance the quality of

generated questions, we constrained GPT-3.5 to produce no more than K questions. Based on an analysis of the lengths of selection

criteria in our datasets, K = 5 proved sufficient for most SRs. This explicitly instructed the LLM to avoid redundancy. Figure 3a depicts

the utilized prompt, and an example is shown in Figure 1. Appendix A in the online supplementary material contains all the questions

generated from the corresponding selection criteria for all SRs in the benchmark we evaluated. Each sentence in the selection criteria

often aligns with a distinct criterion. In rare cases with more than 5 sentences, GPT-3.5 intelligently combined two sentences into one

question. In addition to diversity, we also found better quality of the questions (See the “Quality of Question Generation” section for

the quantitative evaluation).

Question Answering

The Question Answerer evaluates the relevance of each abstract to every selection criterion, formulated as Yes/No questions. Initial

tests showed that LLMs generally explain their answers. To quantify these explanations, we incorporated sentiment analysis to score the

responses (see the “Answer Scoring” section). We instructed LLMs (Figure 3b) to reply either a “Positive”, “Negative”, or “Neutral”

answer:

• Positive: The abstract explicitly addresses the question, offering information that aligns with the criteria posed by the question.

• Neutral: The information in the abstract is inadequate or too ambiguous for LLMs to derive a confirmatory answer.

• Negative: A clear NO answer to the question, indicating irrelevance to the specified criteria.

Prompt Design. The same prompt was used by most LLMs (Figure 3b). It was meticulously designed using three randomly

selected topics from the Intervention training set of the TAR2019 benchmark. This approach prevented information leakage during

prompt development, ensuring methodological integrity. The same persona was used for both question generation and answering. The

only exception happened with LLaMA. We found LLaMA was unable to output the answers (and explanations) in a consistent style

for post-processing. Thus, we tested a number of output formatting rules to (i) “force” LLaMA to answer only what is needed to be

answered, and (ii) to “guide” LLaMA to format its answers (and explanations) in an easy-to-process JSON format, as Figure 3c shows.

Answer Scoring

LLMs often generate an explanation for their answer. We converted answers into numeric representations using BART as a zero-shot

sentiment scorer [62]. The problem definition is formlated as follows. Suppose the set of candidate studies are D = {di}|Nd=1. The system

review protocol defines a set of selection criteria (questions) Q = {Qk}|Kk=1. Given each candidate study di, the set of answers are

Ai = {Ai,k}|Kk=1. Given a candidate study di and each question answer Ai,k, we defined two methods, namely the Hard Answer and

Soft Answer, to assign the answer score, denoted as score(di, Ai,k), using BART, which reflects the likelihood of an abstract meeting a

selection criterion.
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• Hard Answer: In the Hard Answer method, BART classifies LLMs’ responses into three distinct categories: Positive, Neutral, and

Negative, and accordingly, we assign a fixed score 1, 0.5, and 0 to each category, denoted by score(di, Ai,k). Thus,

score(di, Ai,k) =



1.0 if BART assigns a Positive sentiment to Ai,k

0.5 if BART assigns a Neutral sentiment to Ai,k

0.0 if BART assigns a Negative sentiment to Ai,k

. (1)

• Soft Answer: In the Soft Answer method, each answer is scored by the probability of its sentiment being positive, which is calculated

by BART. Thus,

score(di, Ai,k) = ProbBART(Positive|Ai,k). (2)

Question-level Re-ranking

To enhance screening further, one significant contribution of the current paper involves re-ranking candidate studies based on how well

abstracts are semantically aligned with the selection criteria. For each Yes/No question, the cosine similarity between the question

(selection criterion) and the abstract is computed based on their text embeddings encoded by an LLM [63], and averaged with the

original answer score, producing K re-ranked scores, defined by

score∗(di, Ai,k) =
1

2
(score(di, Ai,k) + cos(di, Qk)), (3)

where cos(di, Qk) is the cosine similarity between (the abstract of) a candidate study di and one selection criterion question Qk.

Decision Engine

Ensemble

Given a candidate study di, the answer scores for each selection criterion are “averaged” as the score for the candidate study, denoted

by score(di):

score(di) =
1

K

K∑
k=1

score∗(di, Ai,k). (4)

Criteria-level Re-ranking

criteria-level re-ranking is done by averaging the score for candidate study di with the cosine similarity between its abstract and the

selection criteria Q. Note that here, we use the original selection criteria paragraph in the review protocol for calculation instead of the

questions generated from it. Thus, the re-ranked score for di, denoted by score∗(di), is calculated by

score∗(di) =
1

2
(score(di) + cos(di, Q)), (5)

where cos(di, Q) is the cosine similarity between the candidate study and the complete selection criteria. Candidate studies are prioritised

in descending order of this final score score∗(di).
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Experimental Setup

Dataset and Evaluation Metrics

This study utilized the widely-used benchmark for evaluation: CLEF eHealth 2019 Task 2: Technology-Assisted Reviews in Empirical

Medicine (TAR2019) [53]. This benchmark provides valuable insights into the prevailing scientific consensus on various topics, making it

a suitable resource for evaluating re-ranking methodologies in systematic reviews [64]. We employed the TAR2019 test set comprising 31

SRs grouped into four topic categories: 20 about clinical intervention trials (Intervention), eight about diagnostic technology assessment

(DTA), 2 for qualitative studies (Qualitative), and 1 for Prognosis. Appendix B in the online supplementary material contains detailed

statistics of the SRs in each category. We refrained from using the training set provided by TAR2019, aiming to highlight the effectiveness

of our zero-shot methodology that eliminates the need for prior training [65, 23]. Selection criteria for each SR are included in TAR2019.

Seven evaluation metrics were employed, including the rank position of the last relevant document (L Rel), Mean Average Precision

(MAP), Recall at k% (R@k%, k = 5, 10, 20, 30), and Work Saved Over Sampling (WSS) at a r% recall level (WSS@r%, r = 95,

100). Notably, WSS@r% measures the screening workload saved by halting the examination process once r% of relevant documents are

identified, compared to screening the entire document set [25]. For each SR, we calculated the performance metrics. They were averaged

over all the SRs in each category.

Baseline Models

We compared our methods against a number of zero-short baselines, including Sheffield University’s submission [17] to TAR2019 and the

six BERT-based ranking models by Wang et al. [23]. To comprehensively assess performance, we implemented two IR baselines of our

own. One is cosine similarity between selection criteria and abstract based on GPT embeddings [63], named GPT Cos Sim Criteria. The

other is the classical IR approach BM25 [66], using selection criteria as a query to rank candidate studies. The baselines are summarised

below:

• sheffield-baseline: The zero-shot IR baseline submitted by the University of Sheffield to TAR2019.

• QLM: Another IR baseline in the Query Likelihood Model. See Wang et al. [23] for details.

• BERT/BERT-M/BioBERT/BlueBERT/PubMedBERT: Use BERT-family models as neural rankers, including BERT [67], BERT-M (BERT

fine-tuned on the MS MARCO machine reading comprehension dataset) [68], and BERT models tailed to biomedical domains, such

as BioBERT [69], BlueBERT [70] and PubMedBERT [71].

Large Language Models

While we focus on GPT-3.5 (more precisely “gpt-3.5-turbo-16K”) as a case study to demonstrate the effectiveness of the proposed

framework, three additional successful mainstream LLMs were also employed on the more challenging DTA subset on which GPT-

3.5 underperformed: LLaMA 2 (“llama-2-70b-chat-hf”), Gemini (“gemini-pro”), and Claude 3 (“claude-3-haiku-20240307”). The other

rationale for choosing these LLMs for question answering was model “comparability”. LLaMA 2 was seen as a comparable LLM to

GPT-3.5. While both Gemini and Claude are closed-source LLMs, making direct comparison difficult, we used API cost as a proxy for

their capabilities in answering selection criterion questions and decided to test “gemini-pro” and “claude-3-haiku-20240307”. Besides,

Claude is a more recent leading proprietary LLM, so we also expect to see a positive impact on the quality of question answering. For
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Dataset Models L Rel MAP R@5% R@10% R@20% R@30% R@50% WSS@95% WSS@100%

Intervention

Review Title 927 0.344 0.441 0.596 0.758 0.836 0.929 0.560 0.519

Search Query 1248 0.200 0.241 0.424 0.602 0.725 0.889 0.449 0.416

Selection Criteria 920 0.315 0.401 0.544 0.722 0.797 0.797 0.522 0.499

DTA

Review Title 1379 0.170 0.283 0.497 0.678 0.807 0.926 0.525 0.446

Search Query 1593 0.203 0.228 0.412 0.658 0.781 0.909 0.473 0.417

Selection Criteria 1154 0.271 0.477 0.628 0.782 0.851 0.851 0.600 0.513

Qualitative

Review Title 1992 0.113 0.200 0.278 0.609 0.650 0.950 0.506 0.406

Search Query 2221 0.046 0.105 0.173 0.255 0.591 0.923 0.369 0.329

Selection Criteria 2256 0.082 0.173 0.478 0.559 0.618 0.618 0.303 0.289

Prognosis

Review Title 2983 0.136 0.147 0.258 0.495 0.668 0.837 0.247 0.106

Search Query 3017 0.200 0.237 0.400 0.605 0.768 0.900 0.311 0.096

Selection Criteria 3160 0.178 0.200 0.305 0.495 0.647 0.832 0.239 0.053

Table 1. The results of using three types of queries to match abstracts of candidate studies: selection criteria, review titles, and search queries.

all models, we used a temperature setting of 0.2. In rare cases when LLMs failed to give answers to all the questions after a number

of tries, we prompted LLMs to answer each question one by one. For answer re-ranking, becasue LLaMA and Claude do not provide

their own text embedding models, we focused on GPT embedding (“text-embedding-ada-002”) in our main results (the “Effectiveness

of the Question-Answering Framework” section), and also covered Gemini embedding (“text-embedding-004”) in LLM comparisons (see

the “Comparing Large Language Models” section).

Results and Discussions

Effectiveness of Using Selection Criteria

Our first experiments aimed to evaluate the effectiveness of selection criteria for abstract screening. For comparison, we also used review

title and search queries, both included in the TAR2019 benchmark, for prioritising candidate studies in a similar way. As the “Large

Language Models” section explains, GPT embedding was used in this experiment.

The initial results in Table 1 demonstrate that selection criteria contain indispensable information for abstract screening. For example,

on the Intervention and DTA datasets, the top 5% ranked results covered 40.1% and 47.7% included studies, respectively, while the top

30% covered 79.7% and 85.1% included studies, respectively. This means selection criteria help to push a significant number of included

studies to the front of the ranking lists, demonstrating its potential for prioritising candidate studies. The WSS@95% values mean that

at most 52.2% and 60% manual screening time can be saved to achieve a 95% recall of included studies. On Qualitative datasets, R@10%

was 47.8%, still very high, but the WSS values were not as good as on Intervention and DTA. R@k% started to stagnate when k grew

(e.g., beyond 30%).

It is also observed that selection criteria significantly outperformed search query on the Intervention and DTA datasets, according to

most performance metrics except R@50%. Overall, review title seems to be most valuable for screening candidate studies, so it is also

part of our prompt design (Figure 3). Search Query was less effective. Indeed, the impreciseness of search queries resulted in a large

number of studies being screened. The only exception was Prognosis, but the fact that the Prognosis category contains just one SR does

not allow us to overturn the afore-made overall statements.

Acknowledging such contextual variability inherent in the initial results is crucial. The nature of the dataset appeared to play a

substantial role in the effectiveness of selection criteria. For instance, datasets with more specific interventions or defined methodologies,
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Dataset Papers Models L Rel MAP R@5% R@10% R@20% R@50% WSS@95% WSS@100%

Prognosis

Sheffield [17] Sheffield-baseline 2990 0.126 0.146 0.255 0.448 — 0.247 0.112

Ours

GPT Cos Sim Criteria 3160 0.178 0.200 0.305 0.495 0.832 0.239 0.053

BM25 3337 0.074 0.089 0.132 0.279 0.605 0.020 0.000

GPT QA Soft Both ReRank 2373 0.430 0.400 0.653 0.800 0.984 0.543 0.289

GPT QA Hard Both ReRank 2333 0.429 0.400 0.642 0.789 0.984 0.555 0.301

Qualitative

Sheffield [17] Sheffield-baseline 3031 0.051 0.265 0.451 0.619 — 0.135 0.082

Ours

GPT Cos Sim Criteria 2256 0.082 0.173 0.478 0.559 0.682 0.303 0.289

BM25 2704 0.037 0.078 0.146 0.191 0.623 0.135 0.135

GPT QA Soft Both ReRank 1682 0.159 0.505 0.600 0.673 0.978 0.576 0.507

GPT QA Hard Both ReRank 1684 0.157 0.514 0.600 0.678 0.978 0.601 0.507

DTA

Sheffield [17] Sheffield-baseline 2250 0.175 0.220 0.336 0.525 — 0.451 0.338

Wang et al. [23]

BM25 2723 0.119 0.213 0.329 0.528 — 0.314 0.208

QLM 2318 0.122 0.216 0.327 0.534 — 0.347 0.248

BERT 2514 0.092 0.132 0.238 0.391 — 0.258 0.210

BERT-M 3234 0.096 0.079 0.198 0.379 — 0.263 0.123

BioBERT 3264 0.081 0.129 0.229 0.337 — 0.137 0.095

BlueBERT 3771 0.069 0.026 0.053 0.105 — 0.023 0.016

PubMedBERT 3330 0.104 0.123 0.214 0.312 — 0.202 0.098

Ours

GPT Cos Sim Criteria 1154 0.271 0.477 0.628 0.782 0.941 0.600 0.513

BM25 2461 0.164 0.334 0.472 0.654 0.858 0.351 0.233

GPT QA Soft Both ReRank 1136 0.315 0.438 0.593 0.766 0.941 0.556 0.506

GPT QA Hard Both ReRank 1176 0.322 0.450 0.595 0.791 0.938 0.536 0.491

Intervention

Sheffield [17] Sheffield-baseline 1276 0.245 0.220 0.334 0.507 — 0.470 0.386

Wang et al. [23]

BM25 1716 0.211 0.305 0.399 0.554 — 0.351 0.296

QLM 1724 0.212 0.279 0.385 0.511 — 0.340 0.294

BERT 1399 0.160 0.210 0.328 0.504 — 0.362 0.333

BERT-M 1836 0.177 0.195 0.355 0.527 — 0.323 0.266

BioBERT 1833 0.146 0.135 0.198 0.307 — 0.159 0.163

BlueBERT 2057 0.046 0.028 0.051 0.107 — 0.008 0.036

PubMedBERT 1974 0.078 0.050 0.091 0.275 — 0.121 0.094

Ours

GPT Cos Sim Criteria 920 0.315 0.401 0.544 0.722 0.920 0.552 0.499

BM25 1545 0.146 0.191 0.300 0.497 0.837 0.270 0.238

GPT QA Soft Both ReRank 801 0.450 0.526 0.697 0.816 0.959 0.600 0.526

GPT QA Hard Both ReRank 825 0.447 0.527 0.697 0.808 0.962 0.592 0.519

Table 2. Overview and comparisons of model performances on four systematic review categories. Note that the baselines did not report R@50%.

like DTA, may inherently align more closely with selection criteria, enhancing the performance of this query type in prioritisation. In

conclusion, the above evidence advocates for the integration of selection criteria in abstract screening automation tools.

Effectiveness of the Question-Answering Framework

In this subsection, we summarise the main findings based on experiments using GPT-3.5 for both question answering and answer re-

ranking. Table 2 compares our QA-based approaches (i.e., the GPT QA Soft Both ReRank and GPT QA Hard Both ReRank two rows) against

other zero-shot baselines. “Both ReRank” means both re-raking methods were used. The GPT Cos Sim Criteria rows are copied from

Table 1. Consistent with the baselines, we reported the average performances of each metric for each SR topic category. Appendix C

contains the results for each individual SR. On four topic categories, our approaches outperformed almost all baselines across a multitude

of metrics. Specifically, our approaches scored substantially better in L Rel (the lower, the better) and MAP (the higher, the better),

indicating the potential for pruning irrelevant studies more efficiently (low L Rel) and accurately (high MAP ). Moreover, WSS@95%

and WSS@100% both significantly outperformed the baselines, except Cosine Similarity Criteria on DTA, indicating the potential

for saving more work from human reviewers who seek a total or close-to-total recall of included studies.

The recall values at various percentages (R@5%, R@10%, R@20%) were particularly encouraging. Notably, R@5% shows that the

top-5% ranked results covered more than 40% (40%-52.7%) of included studies (e.g., by GPT QA Hard Both ReRank 52.7% on Intervention,

45% on DTA, 51.4% on Qualitative and 40% on Prognosis). When increased to top-10%, roughly 60-70% of included studies were

returned (e.g., 69.7%, 59.5%, 60% and 64.2%, respectively). This result is of great significance. On the one hand, human reviewers could
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obtain 60% of included studies by verifying only 10% of candidate studies, five times saving compared to random sampling. This allows

for creating a large-enough annotated dataset more efficiently to train a robust classifier for automated screening [25]. On the

other hand, R@50% achieved 95% recall on average. This roughly means that the 50% candidate studies ranked in the second half can

be safely discarded, which essentially means treating LLM as the second reviewer or be delegated to automated screening, both

resulting in a roughly 50% saving in the manual annotation. Future work is needed to validate the proposal of using LLM as the second

reviewer on more SRs of a wider range of topics.

In summary, our QA-based approach exhibited a clear advantage over traditional models and bespoke BERT-family models that were

fine-tuned for ranking tasks (i.e., the BERT to PubMedBERT rows in Table 2). They showed not only a higher precision in identifying

relevant studies but also a substantial increase in efficiency, demonstrated by lower L Rel and higher WSS values. This indicates

that the proposed approach has the potential to significantly improve efficiency and reduce costs for systematic reviews by alleviating

much of the manual annotation burden from human reviewers. In addition, answer re-ranking proved to be a key success factor. This

encourages advocacy for the integration of explanatory narratives into LLMs’ responses for future iterations. As per literature

[72, 73], revealing the model’s reasoning could not only bolster transparency but also build user trust, which is pivotal for the adoption

of automated abstract screening tools. Enabling the model to provide rationales for its answers encourages a constructive feedback

loop, where user responses can inform continuous model refinement. Such an iterative process is essential for fostering a collaborative

user-model relationship, ultimately enhancing the technology’s robustness and acceptability.

Ablation Studies

Recall from Figure 2b that there are several components in our proposed framework: Question generation, question answering, question-

level re-ranking and criteria-level re-ranking. Table 2 shows the results of GPT QA Soft/Hard Both ReRank, which uses all these components.

This subsection investigates the impact of each component through a quasi-ablation study. We removed one or both re-ranking

components, removed the question answering and question generation components, and compared the performances of the resulting

methods. Thus, in addition to GPT QA Soft/Hard Both ReRank, we tested the following variants.

• GPT QA Soft/Hard Question ReRank: Criteria-level re-ranking component was removed. Mathematically, this is equivalent to removing

cos(di, Qk) from Eq. (3).

• GPT QA Soft/Hard Criteria ReRank: Question-level re-ranking component was removed. Mathematically, this is equivalent to removing

cos(di, Q) from Eq. (5).

• GPT QA Soft/Hard: Both question-level and criteria-level re-ranking components were removed.

• GPT Cos Sim Both: Questions were generated, but the question-answering component was removed. Both the question-level and

criteria-level cosine similarities were used in scoring candidate studies. Mathematically, this means removing score(di, Ai,k) from Eq.

(3).

• GPT Cos Sim Question: In addition to question answering, the criteria-level re-ranking component was also removed. This is equivalent

to removing both cos(di, Q) from Eq. (5) and score(di, Ai,k) from Eq. (3).

• GPT Cos Sim Criteria: The question generation component was removed, thus no questions were generated. Implicitly, the question-

answering and question-level re-ranking components disappeared too. This means retreating to match each candidate study against

the selection criteria. Mathematically, this is equivalent to removing (score(di) from Eq. (5).
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Models
MAP WSS@95%

Prognosis Qualitative DTA Intervention Average Prognosis Qualitative DTA Intervention Average

GPT Cos Sim Criteria 0.178 0.082 0.271 0.315 0.286 0.239 0.303 0.600 0.552 0.536

GPT Cos Sim Question 0.188 0.074 0.233 0.261 0.239 0.269 0.283 0.554 0.456 0.464

GPT Cos Sim Both 0.191 0.084 0.261 0.309 0.278 0.252 0.310 0.602 0.544 0.534

GPT QA Soft 0.350 0.157 0.255 0.411 0.352 0.434 0.599 0.408 0.486 0.471

GPT QA Hard 0.315 0.110 0.228 0.356 0.306 0.417 0.650 0.364 0.466 0.450

GPT QA Soft Criteria ReRank 0.417 0.159 0.301 0.440 0.385 0.523 0.595 0.473 0.534 0.522

GPT QA Hard Criteria ReRank 0.417 0.200 0.310 0.443 0.392 0.543 0.608 0.454 0.532 0.517

GPT QA Soft Question ReRank 0.441 0.161 0.287 0.435 0.379 0.252 0.599 0.452 0.509 0.492

GPT QA Hard Question ReRank 0.452 0.156 0.297 0.435 0.382 0.501 0.633 0.441 0.516 0.503

GPT QA Soft Both ReRank 0.430 0.159 0.315 0.450 0.396 0.543 0.576 0.556 0.600 0.585

GPT QA Hard Both ReRank 0.429 0.157 0.322 0.447 0.395 0.555 0.601 0.536 0.592 0.577

Table 3. Results of ablation study by removing one or several components from the processed question-answering framework.

Table 3 shows the results of the ablation study. Due to space limit, we focused on three metrics: MAP , R@50% and WSS@95%.

From the GPT QA Soft/Hard rows, we can see that our QA framework resulted in good performances, improving significantly over

the non-QA baselines (first three rows) on Intervention, Qualitative and Prognosis. The last six rows are the performances of our

framework by using either one or both re-ranking methods. Comparing them against GPT QA Soft/Hard, we see that re-ranking was

one success key to significant performance improvement, although it is less conclusive which re-ranking method is consistently

better. To gain better insights into the latter question, we averaged the performance metrics across all 31 SRs, resulting in the

“Average” columns in the table. It looks that criteria-level re-ranking maybe overall stronger than question-level re-ranking

(by comparing the GPT QA Soft/Hard Criteria ReRank rows against the GPT QA Soft/Hard Question ReRank rows). By comparing the

GPT QA Soft/Hard Both ReRank rows against the four rows using one re-ranking method, we are more or less able to conclude that both

re-ranking methods may have their own values in prioritising candidate studies towards facilitating systematic reviews. Meanwhile, we

point out that more experiments need be done on more SRs of the Qualitative and Prognostic categories to draw more convincing

conclusions on the effectiveness of the two methods of answer re-ranking, which is one of our directions for future work. Surprisingly,

we found that the non-QA baselines (i.e., the GPT Cos Sim Criteria/Question/Both rows) worked extremely well on DTA, beating the

baseline QA approaches (i.e., the GPT QA Soft/Hard rows). After analysing the qualities of generated questions for the DTA SRs, we

guess the cause was the quality or complexity of generated questions of this SR category (more discussions in the “Quality of Question

Generation” section). Nevertheless, answering re-ranking and question answering complement each other. This is proved by

the significantly improved performances obtained by GPT QA Soft/Hard Both ReRank (i.e., the last two rows) over others (the fourth to

tenth rows).

Quality of Question Generation

We manually checked the question qualities and found notable strengths and occasional challenges of GPT-3.5 in question generation.

Figure 4a illustrates how GPT-3.5 translated a lengthy exclusion criterion into two relevant questions, Q4 and Q5. The exclusion criterion

sentence (in purple and blue) was automatically reworded by GPT-3.5 (see the underlined words) in a way that a POSITIVE response

consistently signifies compliance with a selection criterion. Occasionally, GPT-3.5 failed to generate completely independent questions,

such as Q5 in Figure 1. This led to redundant or overlapped questions, introducing possible biases in combining answer scores. To avoid

these issues, question generation may be done by humans. Less radically, it may be practical for humans to separate the selection criterion

sentences and use each sentence to generate questions one by one. Humans may also manually decide how to convert a long selection

criterion sentence into several questions.
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(a) Handling exclusion criteria.

(b) Problems with “OR” clauses.

Fig. 4: Examples of strengths and challenges of GPT-3.5 in question generation.

Notably, GPT-3.5 also displayed difficulties with complex “OR” clauses in a long selection criterion sentence, erroneously splitting

them into separate questions and complicating the scoring process. In such cases, matching one question should give a POSITIVE score,

but the NEGATIVE answers to other questions generated from the OR clause will mistakenly underestimate the score. Figure 4b shows

an example. A single selection criterion sentence with three conditions connected by “OR” logic was split into three questions Q2 to

Q4. Suppose a candidate study “evaluated the accuracy of the NEXUS criteria” and three questions are correctly answered. This results

in one POSITIVE answer for Q2 (scored 1) and two NEGATIVE answers for Q3 and Q4 (scored 0). The ensemble score is 1, lower

than that by rejecting answers Q3 and Q4 (two NEUTRAL answers, each scored 0.5, leading to a final score of 2), which is obviously

suboptimal. This granularity of analysis points toward a need to enhance the model’s ability to discern and maintain the integrity of

compound logical structures within questions. We postulate that a viable solution is to train a good question generator and analyzer to

tackle these issues.

To somehow provide a quantitative evaluation of the quality of question generation, we manually annotated the “correctness” of all

generated questions for all 31 SRs. The simple guidelines for scoring generated questions are as follows: 2 marks assigned to perfect

question (e.g., Q1 to Q4 in Figure 1); 1 mark assigned to incomplete question, i.e., a question missing some information from the

corresponding selection criterion; 1 mark assigned to each question generated from an “OR” clause (e.g., Q2 to Q4 in Figure 2b); 0 mark

assigned to meaningless/redundant question (e.g., Q5 in Figure 1); and -1 mark to wrong question, i.e., a question twisted the original

meaning of the corresponding criterion, which never happened in our datasets though. Table E1 in Appendix E shows the mean question

scores for all four SR categories. DTA recorded the lowest score, 1.50, which might be the cause for the under-performance of our QA

framework to our own cosine similarity baseline using selection criteria due to the reasons stated in the last paragraph. Nevertheless,

the mean score is still very high, indicating no or few meaningless questions. Prognosis scored 2.0, meaning perfect question generation.

However, it’s crucial to note that this category comprised only a single SR, potentially causing bias in evaluation. We argue that the
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findings underscore the possibility of delegating question generation to LLMs like GPT-3.5, though further improvement can be achieved

by human intervention as a quality control measure.

Comparing Large Language Models

Three additional successful mainstream LLMs, namely LLaMA 2, Gemini Pro and Claude 3, were compared against ChatGPT (GPT-

3.5). As shown in Table C4 in Appendix C, we found our approach performed extremely well on the Intervention subset. We achieved

close to 100% R@50% for all 20 SRs in this category by at least one variant of our approach. Accordingly, because 50% samples

can be safely delegated to our approach for decision, the WSS@95% was also very high for all Intervention SRs. However, GPT-3.5

struggled a bit on the DTA subset, mainly on two SRs (see “CD012768” and “CD012233” in Table C3 in Appendix C). Therefore, the

experiments in this section focused the comparison on DTA. Table 4 compares the screening performances using the four LLMs as the

question answering engine and two LLMs for answer re-ranking (see the “Large Language Models” section for details). For example,

LLaMA QA Soft Gemini Both ReRank means LLaMA 2 was used for question answering, and Gemini embedding was used for answer

re-ranking.

We have several interesting findings from Table 4. The first four rows show that, in a certain sense, Claude 3 did perform significantly

better in question answering, as was expected to see. Using QA alone, it could achieve more than 90% R@50%. The WSS@95% and

WSS@100% were both greatly improved too. We envision that the overall effectiveness of our QA-based framework will be

continuously improved with more powerful LLM-backed QA engines. However, Gemini Pro and GPT-3.5 had better R@5%,

R@10% and R@20% values, suggesting them to be more useful in an active learning setting. By comparing the last eight rows against the

first four rows, we observe that answer re-ranking consistently improved the overall performance using different LLMs as the QA engine,

further justifying the effectiveness of our proposed re-ranking methods. Additionally, Gemini embedding proved to be significantly more

helpful than GPT embedding. Note that the GPT embedding model we used was “text-embedding-ada-002”, strong but much older than

the Gemini embedding model “text-embedding-004”. From this angle, the results further underscore the necessity of answer re-ranking.

We anticipate that improvements in text embedding will bring added benefits to our proposed framework. Overall, a

strong QA engine (Claude 3 in our case) and a strong text embedding for re-ranking (Gemini embedding “text-embedding-004” in our

case) resulted in the best-performing system, achieving a 95.5% average R@50% and a 0.653 average WSS@95%. This implies that, on

average, a maximum of 65.3% of human labour can be saved with the assistance of LLMs. Finally, and not least, the performance of

different LLMs varies a lot across different SRs (see Tables D1 and D2 in Appendix D). This variability provides us with an opportunity

to integrate the strengths of various LLMs, which will be one of the main directions of our future work.

Quality of Question Answering

As shown in the previous section, the quality of question answering is one key success factor for our approach. In this subsection, we

attempted to evaluate the quality of responses from GPT-3.5 and three additional LLMs, including LLaMA 2 (70B), Gemini Pro and

Claude 3 (see the “Large Language Models” section). We randomly selected ten samples from each systematic review in the DTA

category. The correctness of each answer for each question on each sample was checked by the first author. To further minimise human

annotation bias, we annotated these responses using three much more powerful versions of LLMs — GPT-4, Gemini 1.5 Pro, and Claude
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Models L Rel MAP R@5% R@10% R@20% R@30% R@50% WSS@95% WSS@100%

GPT QA Soft 1979 0.255 0.319 0.495 0.674 0.765 0.878 0.408 0.334

Llama2 QA Soft 1809 0.152 0.254 0.435 0.603 0.710 0.803 0.377 0.336

Gemini QA Soft 2487 0.232 0.309 0.526 0.678 0.725 0.847 0.382 0.235

Claude QA Soft 1800 0.163 0.304 0.410 0.545 0.763 0.905 0.436 0.411

GPT QA Soft GPT Both ReRank 1136 0.315 0.438 0.593 0.766 0.858 0.941 0.556 0.506

GPT QA Soft Gemini Both ReRank 679 0.347 0.503 0.669 0.825 0.886 0.953 0.630 0.600

Llama2 QA Soft GPT Both ReRank 1250 0.259 0.423 0.614 0.779 0.851 0.930 0.540 0.452

Llama2 QA Soft Gemini Both ReRank 833 0.325 0.514 0.651 0.825 0.875 0.951 0.636 0.540

Gemini QA Soft GPT Both ReRank 1920 0.293 0.456 0.627 0.755 0.815 0.906 0.488 0.357

Gemini QA Soft Gemini Both ReRank 1162 0.330 0.528 0.684 0.800 0.862 0.952 0.597 0.511

Claude QA Soft GPT Both ReRank 1475 0.244 0.406 0.564 0.742 0.855 0.950 0.548 0.479

Claude QA Soft Gemini Both ReRank 924 0.305 0.522 0.659 0.808 0.881 0.955 0.653 0.573

Table 4. Performance comparison of different large language models on the DTA category.

(a) ”Head-to-head” comparison. (b) Correlation analysis.

Fig. 5: Comparisons of the question answering capabilities of different large language models.

3 Opus. The ground truth was determined by majority voting among the human annotator and all three LLM annotators. In total, 400

answers and their explanations were manually annotated, 50 per review topic.

The results in Table E2 in Appendix E show that the LLMs are nearing human-level accuracy in question answering in several

instances. ChatGPT (GPT-3.5) lead with an average accuracy of 0.673 compared to 0.720 achieved by human annotators. Claude 3

Haiku and Gemini Pro also showed promising results (0.648 and 0.620, respectively). The close proximity of LLM accuracy to the human

level is a promising development, particularly for applications involving a zero-shot setting, like abstract screening. This capability could

be harnessed to significantly alleviate human workload by initially filtering out straightforward cases, leaving only the most

ambiguous or complex samples for human verification. Such an approach enhances efficiency and allows human expertise to

be concentrated on cases requiring more nuanced judgement, thereby optimising resource allocation and improving screening quality.

Enhancing LLMs’ question-answering capability in the subject fields of systematic reviews will definitely benefit automatic abstract

screening, which is one of our future research directions. In addition, it can be observed that different LLMs excelled on different review

topics. Such diversity opens the gate to exploring LLM ensembles for improved accuracy.

To gain better insights, we conducted a head-to-head comparison and correlation analysis of the comparative capabilities of various

LLMs. The head-to-head comparison (Figure 5a) calculated the head-to-head winning rate of each model against others, including the

human annotator. As partly expected, all models outperformed LLaMA 2, with Claude 3 excelling among all LLMs but surprisingly only

rivalling GPT-3.5. This corroborates with the first four rows in Table 4, where GPT-3.5 showed better performance than LLaMA 2 and

Gemini across most metric while Claude 3 excelled in L Rel, R@50% and WSS but not others. The correlation map (Figure 5b) counted
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the percentage of times two LLMs gave the same answer (Positive/Neutral/Negative). Different LLMs exhibited substantial variability on

the 400-question human-annotated sample set. GPT-3.5 had the highest correlation with human annotator, which corroborates its closer

performance to human in the head-to-head contest. Although all models share higher answer similarity than LLaMA 2, the fact that

LLaMA 2 presented good performance in term of the important metrics L Rel and WSS, which are directly linked to each other, cannot

rule out LLaMA 2 from serving as an AI assistant for abstract screening, especially when open-access is factored into consideration.

Nevertheless, we believe the in-depth analysis presages the synergistic potentials of different LLMs to improve the efficiency of systematic

reviews.

Conclusion

This paper proposed an effective LLM-assisted question-answering framework to facilitate abstract screening and advance automated

systematic review. Our framework starts with converting selection criteria to binary questions, answering and scoring questions using

LLMs, adjusting answer scores using question- and criteria-level re-rankings, and combining answer scores to prioritise candidate

studies. Extensive experiments emphasised the particular pertinence of selection criteria of included studies to automated abstract

screening and LLMs’ proficiency in understanding and utilising selection criteria to prioritise candidate studies. LLMs demonstrate

exceptional capability in parsing and applying these criteria to discern and prioritise candidate studies to facilitate filtering relevant

studies. Specifically, LLMs such as GPT-3.5 successfully handled the complexity of a mixture of inclusion and exclusion criteria by

correctly phrasing the questions. The overall quality of question generation was very high based on human verification. However, it faces

challenges in formulating several juxtaposed criteria with a logical OR relationship. The positive results of LRel (position of the last

relevant study), R@5% (recall at top 5%), R@10%, WSS@95% (Workload Saved over Sampling at 95% recall level), and WSS@100% not

only showed the competency of the proposed framework as a zero-shot abstract screening methodology but also indicated its potential

use in reducing human effort in building a high-quality dataset for training a abstract screener. The comparative study of several

mainstream LLMs in question answering, including GPT-3.5, LLaMA 2, Gemini Pro and Claude 3, has shown promising results, with

some models nearing human-level accuracy. This progress suggests that LLMs can significantly reduce the human effort required in the

initial filtering stage of abstract screening by handling clear-cut cases, thereby allowing human experts to focus on more ambiguous or

complex instances. Such strategic deployment of LLMs enhances operational efficiency and elevates the quality of systematic reviews.

Notably, the comparative analysis of various LLMs has broadened our understanding of the variability in performance across different

models, highlighting the potential for leveraging the comparative strengths of diverse LLM to enhance screening accuracy. Thanks to the

high R@95% (mostly > 95%), we conjecture that LLMs can replace the second reviewer by more or less safely delegating 50% screening

job to LLMs or machine learning models trained with the assistance of LLMs, although large-scale validation studies are needed.
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