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Abstract 

Post-Acute Sequelae of SARS-CoV-2 infection (PASC), also known as Long-COVID, 
encompasses a variety of complex and varied outcomes following COVID-19 infection that are 
still poorly understood. We clustered over 600 million condition diagnoses from 14 million 
patients available through the National COVID Cohort Collaborative (N3C), generating hundreds 
of highly detailed clinical phenotypes. Assessing patient clinical trajectories using these clusters 
allowed us to identify individual conditions and phenotypes strongly increased after acute 
infection. We found many conditions increased in COVID-19 patients compared to controls, and 
using a novel method to associate patients with clusters over time, we additionally found 
phenotypes specific to patient sex, age, wave of infection, and PASC diagnosis status. While 
many of these results reflect known PASC symptoms, the resolution provided by this 
unprecedented data scale suggests avenues for improved diagnostics and mechanistic 
understanding of this multifaceted disease. 
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Introduction 

The long-term health consequences of SARS-CoV-2 are not fully understood.1 Research 

suggests that many patients experience persistent symptoms,2–4 known as Post-Acute 

Sequelae of SARS-CoV-2 infection (PASC; also known as Long-COVID), affecting multiple 

organ systems, including pulmonary, cardiovascular, hematological, neurological, and renal 

systems.5 The disruption of the host immune response is suspected to play a role in various 

PASC-associated conditions, including reactivation of dormant persistent infections,6 

autoimmune responses,7 and multi-inflammatory syndrome of children (MIS-C).8 Emerging 

evidence indicates that PASC may present with one or more sub-phenotypes, comprising 

potentially overlapping clusters of frequently co-occurring symptoms, and prevalence of these 

may be influenced by patient demographics or infection severity.4,9–12 

 

Various clustering algorithms have been applied to identify sub-phenotypes of PASC from 

patient data, including k-means clustering with disease ontology data, multiple correspondence 

analysis, hierarchical ascendant classification, association rule mining, and latent class 

analysis.9,10,13–15 Topic models, a class of natural-language clustering techniques suitable for 

electronic health record (EHR) data, are also widely used. Broadly, topic models identify ‘topics’ 

as sets of frequently co-occurring terms in a document corpus. In EHR contexts, a patient’s 

clinical history is treated as a document, and their conditions or other events serve as terms, 

often encoded in medical vocabularies such as ICD-10-CM codes. Topic modeling methods 

employed for PASC and COVID-19 include Poisson factor analysis, non-negative matrix 

factorization, and Latent Dirichlet Allocation (LDA).16–18 LDA is particularly well studied in the 

context of EHR data,19,20 characterizing each topic (interpreted as a phenotype or sub-

phenotype depending on context) as a distinct probability distribution over terms (conditions or 

other medical events), and each document (patient) as a distinct distribution over topics. 

 

While these studies have identified PASC sub-phenotypes in unique ways, common themes 

have emerged, including clusters representing cardiovascular,9,10,16,18,21 pulmonary,10,14,16,21, 

neurocognitive,10,14, musculoskeletal,9,10,14,16,21,22, and fatigue-related symptoms.10,14,21 In many 

cases these are combined and there exist one or more multi-system clusters.9,10,13,15 Despite the  

diverse methods applied, a variety of limitations prevent understanding these sub-phenotypes in 

a broader clinical context. For example, many studies cluster symptoms and diseases from the 

post-infection period only,9,10,13–17,22 and do not consider the presence of pre-existing sub-

phenotypes beyond predetermined risk factors (though see Humpherys et al. who investigate 

mortality risk via independent pre- and post-infection clusterings18). Though some studies focus 

only on patients suspected or diagnosed with PASC,9,10,13,16 or differentiate between COVID-19 

patients with and without PASC symptoms,14,21 few include individuals lacking any indicators of 

COVID-19.15,22 Without this broader comparison, identifying sub-phenotypes unique to these 

diseases is challenging. Finally, while clustering methods are naturally data driven, some 

research limits scope to conditions already presumed linked to PASC,9,13,15,16 potentially missing 

rare or otherwise unknown associations.  
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To better understand the long-term effects of COVID-19, we employed LDA topic modeling on 

EHR data from the National COVID Cohort Collaborative (N3C), encompassing over 12 million 

patients across 63 clinical sites and more than 230 healthcare locations.23 The resulting model 

identified hundreds of clinically-consistent condition clusters as topics representing potential 

sub-phenotypes of interest. New-onset rates for a diverse set of top-weighted conditions were 

significantly higher in held-out PASC and COVID-19 patients compared to Controls with no 

COVID-19 indication. Further, by analyzing whole-topic associations temporally (pre- and post-

infection) among these cohorts, we identified several sub-phenotypes associated with COVID-

19 or PASC, specific to patient age, sex, or pandemic wave. Many of our findings confirm 

established features of PASC, while others present new insights or more detailed perspectives, 

prompting further investigation into this complex and heterogeneous condition. 

Methods 

Study design 

The LDA implementation we use aims to represent a document corpus as a set of topics, where 

each topic is characterized by a multinomial distribution over possible words or terms, and each 

document is characterized by a multinomial distribution over topics. It assumes a hierarchical 

generative model, where for any given term in a given document, a topic is first selected 

according to the document’s topic distribution, and then a term is selected according to that 

topic’s term distribution.24 In our application patient medical histories represent documents and 

conditions recorded for those patients represent terms, a common approach in topic modeling 

for EHR data.19,20  

 

Figure 1 illustrates our approach. Initially, we trained a model on a diverse set of patient 

histories, including those with and without COVID-19, using independent training and validation 

patient sets to guide model development. The resulting topics represent a comprehensive set of 

phenotypes across the N3C cohort; to understand how these topics relate to patients over time 

and with respect to infection status, we held out an additional independent assessment patient 

set. Within this set we identified three cohorts: PASC, patients with a clinical PASC diagnosis, 

COVID, those with an indicated COVID-19 infection but no PASC diagnosis, and Control, those 

with neither. These patients’ histories were divided into pre- and post-infection clinical phases, 

assigning Control patients a mock infection date for the purpose. In a first set of statistical tests 

we individually assessed the top 20 high-relevance conditions from each topic, comparing new-

onset rates post-infection for PASC and COVID patients compared to Controls. Next we 

assessed each topic as a whole, by modeling topic probability estimates derived separately 

from pre- and post-infection data. Including patient demographics such as age and sex in these 

models reveals which patient cohorts and groups experience significant changes in which topics 

post-infection, as compared to Controls. 
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Figure 1: Experimental design summary. (1) We trained an LDA topic model on a broad set 

of N3C patient data, tuning and evaluating the model with a held-out validation set using the 

UCI coherence metric. (2) Within a separate held-out assessment patient set, we defined three 

cohorts: PASC (patients with Long COVID), COVID (COVID-19 only), and Control (neither). For 

these patients we defined a 1-year pre-infection phase 6-month post-infection phase, utilizing a 

mock infection date for Control patients. (3) For the top 20 conditions per topic, we assessed 

new onset rates for COVID and PASC patients compared to Controls in the post-infection 

phase. (4) Finally, we defined per-topic logistic models, with outcome variables as the topic 

model’s assigned probabilities to individual patient phase data. Model coefficients then relate 

patient demographics, cohort, infection phase, and combinations of these factors to topic 

assignment for further study. 

Data pre-processing 

N3C multi-site EHR data are harmonized to the OMOP common data model. We analyzed 

condition records from OMOP’s condition_era table, which merges repeated, identical 

condition records into single condition timeframes via a 30-day sliding window.25 We used N3C 

release v87, representing data as of Aug. 2, 2022, using only records from a subset of sites 

passing minimal quality filters (see Suppl. Methods). The COVID-19 diagnostic code (U07.1), 

being a major criterion for N3C data selection and present in 22% of patients, was excluded, 

along with early pandemic alternatives such as unspecified viral disease (10%) and disease due 

to coronaviridae (0.5%). Additional clinically-uninformative terms such as Clinical finding and 
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Findings of sexual activity were removed, as were all entries not expected in the OMOP 

condition domain (Suppl. Methods, Suppl. Table 1). Records with implausible dates, either 

starting before January 1, 2018 (N3C’s earliest inclusion date) or extending beyond a site's data 

contribution date, were also excluded. Patients were randomly assigned to sets, with 20% 

allocated to the assessment set and the remaining patients split 80% for training and 20% for 

validation (Suppl. Figure 1).  

Cohort selection and clinical phases 

Before conducting statistical analyses, we filtered patients in the assessment set to ensure data 

quality and consistency. Some N3C-contributing sites reported no U09.9 PASC diagnosis 

codes, possibly due to lack of implementation in their EHR software,26 leading us to exclude all 

patients from these sites to prevent misclassification of PASC patients. For individual-condition 

tests, we required patients to have at least two weeks of active condition history in both pre- and 

post-infection phases. For per-topic tests, we assessed patient features requiring complete data 

across all covariates and excluded Omicron patients due to incomplete data (see Statistical 

analyses below). 

 

Each patient in the assessment cohorts was assigned an index date, representing their 

estimated first COVID-19 infection, or a mock infection date for Control patients. From these 

dates we identified two clinical phases per patient: a 1-year, pre-infection phase ending 15 days 

before the index (to account for acute symptoms prior to first diagnosis or test), and a 6-month, 

post-infection phase beginning 45 days after the index to capture possible PASC conditions.27 

Conditions were counted in any phase they overlapped, allowing a single condition to be 

represented in both phases if applicable. Cohorts were restricted to patients supporting these 

three contiguous phases within a single observation period, as recorded in the OMOP 

observation_period table. 

 

PASC: Patients with a U09.9 PASC diagnosis code on or after Oct. 1, 2021 when this code was 

released, or the CDC-recommended alternative B94.8 Sequelae of other specified infectious 

and parasitic diseases prior to this date.28 For patients with a strong primary infection indicator, 

a positive SARS-CoV-2 Polymerase Chain Reaction (PCR) or Antigen (Ag) test (Suppl. Table 2) 

or U07.1 COVID-19 diagnosis, we chose the first of any of these as the infection index date. For 

patients without these we used the first PASC indicator as the index date. In cases where the 

primary infection indicator occurs within 45 days of PASC we considered the test or diagnosis 

unreliable and used the PASC indicator as the index date. 

 

COVID: Patients with a confirmed primary COVID-19 infection as indicated by a positive PCR 

test, antigen test, or U07.1 COVID-19 diagnosis, and who are not in the PASC cohort. Their 

infection index date was the first of any of these indicators. 

 

Control: Patients with no indication of COVID-19 in N3C data, including positive PCR, antigen, 

or antibody test (Suppl. Table 3), COVID-19 (U07.1) or PASC diagnosis (U09.9 or B94.8), or a 

visit to a PASC specialty clinic (unique information provided by six N3C-contributing sites). 
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Patients diagnosed with Multisystem inflammatory syndrome (M35.81) were excluded as 

potential confounders. Control patients were assigned a mock infection date, chosen uniformly 

at random to simulate pre-infection, acute, and post-infection phases of the correct lengths 

contained entirely within their longest continuous observation period. Mock infection dates were 

constrained to be after March 1, 2020 to align temporally with pandemic trends.  

Machine learning methods 

To train our topic model, we used full pre-processed N3C patient histories from the training set 

as documents, employing per-patient counts of OMOP condition_concept_id entries from the 

condition_era table. While many LDA variations exist, most are computationally prohibitive for 

the scale of data considered. We therefore adopted the online LDA method described by 

Hoffman et al.,24 implemented in Apache Spark version 3.2.1,29 with a 5% batch size and 10 

iterations over the data (maxIter = 200, subsamplingRate = 0.05). 

 

Using the held-out validation patient set we computed UCI Coherence30 to measure model 

quality and choose the final number of topics. For each topic, this unitless metric assesses how 

frequently top-weighted conditions co-occur in patients relative to random chance (see Suppl. 

Methods), with higher values indicating higher-quality topics. As coherence scores are normally 

distributed (see Results), we report coherence as a z-score C, with positive values indicating 

higher-than-average topic coherence and quality. 

 

We further defined a usage value U (range 0–100%) as the average assigned probability across 

patients. Given that topic usage varied across N3C-contributing sites, we calculated a usage 

uniformity metric H, expressed as the normalized information entropy (range from 0–1) of site 

usage, with values approaching 1.0 indicating more uniform usage across sites. We also 

conducted topic similarity analysis via Jensen-Shannon distance (range 0–1), a symmetrical 

metric with values closer to 0.0 suggesting more similar topics.19,31,32 

 

Common conditions such as Essential Hypertension may be highly weighted by many topics. A 

condition’s relevance to a topic is the log-ratio of the topic-specific probability to the condition’s 

global probability (as defined by the LDAVis package33 when 𝛾 = 0), with positive values 

indicating conditions more specific to a given topic. Highly-weighted terms with low relevance 

thus indicate those heavily used by multiple topics. Topic usage and term relevance were 

computed using both the validation and training sets for completeness. 

Statistical analyses 

As discussed above, we used assessment cohort data to determine how individual conditions, 

and whole topics, uniquely manifest post-infection in PASC and COVID patients as compared to 

Controls.  

 

Across topics, we selected the top 20 conditions with positive relevance scores for individual 

testing of new-onset rates, a count chosen to balance the total tests required with depth of topic 
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exploration, and roughly aligned with our topic visualizations (see Results). For each condition 

we considered patients with no incidence in the pre-infection phase, counting those who did and 

did not go on to experience the condition in the post-infection phase per cohort. 2x2 Fisher’s 

exact tests assessed these counts for PASC versus Control and COVID versus Control patients 

separately. Tests were multiply-corrected (Bonferroni) and used fisher.test in R (v3.5.1) with 

alternative = “two.sided” and simulate.p.value = TRUE to allow for large and small 

counts.34 

 

For whole-topic assessment, we used the trained topic model to independently estimate 

posterior topic distributions for pre- and post-infection data. Given the generative model 

assumed by LDA, a probability of p for topic T in phase i suggests that p% of newly sampled 

conditions in i would be sourced from T.24 More formally, single-topic probability estimates follow 

a Beta distribution as a result of the Dirichlet prior.35 For each topic we model these as success 

rates in binomial trials (Figure 1), resulting in a potentially overdispersed Beta-binomial 

distribution.36 We thus use Generalized Estimating Equations (GEEs; geeglm in geepack v1.3.9), 

both to capture within patient pre- and post-infection correlation structure (with id = person_id, 

corstr = "exchangeable"),37 and to employ robust error estimation while allowing for 

overdispersion (with scale.fix = FALSE).38,39 Outcomes were equally weighted, as opposed to 

weighted by the number of conditions represented, to avoid high-utilization patients dominating 

results. 

 

In addition to phase (pre- or post-infection) and cohort (PASC, COVID, Control), each topic’s 

logistic model included patient demographic covariates: sex (Male, Female), race (White, Black 

or African American, Asian or Pacific Islander, Native Hawaiian or Other Pacific Islander, Other 

or Unknown), BMI, life stage (Pediatric 0-10, Adolescent 11-18, Adult 19-65, Senior 66+), Quan-

based Charleson comorbidity index (Suppl. Methods),40 and date-based “wave” of infection. We 

defined infection waves based on CDC surveillance data,41 categorizing them as Early (prior to 

March 1, 2021), Alpha (March 1, 2021 to June 30, 2021), or Delta (July 1, 2021 to Dec. 31, 

2021). Patients with index during the Omicron wave (Jan. 1, 2022 and later) were excluded due 

to limited data across covariates, as were all patients without complete information. Models 

included site-level covariates as potential sources of heterogeneity,28,42 including source 

common data model (PCORnet, ACT, OMOP, TrinetX, OMOP-PedsNet), percentage of PASC 

patients, and site-specific topic usage (Suppl. Methods). We also developed models without 

site-level covariates for a subset of topics to assess their importance.  

 

After fitting these models, we applied a difference-in-differences approach using estimated 

marginal means contrasts to look for changes in topic rates pre-to-post infection, for PASC 

patients versus Controls, within specific groups defined by sex, life stage, and wave of infection. 

The same tests were run for COVID versus Control patients. To validate this approach, we 

conducted additional ‘baseline’ contrasts for expected differences in females versus males, and 

pediatric, adolescent, and senior patients versus adults. In total we conducted 22 contrasts for 

each topic, multiply-correcting the complete set across all topics (Holm). Estimated marginal 

means contrasts were provided by emmeans (v1.8.9) in R (v3.5.1). 
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Results 

Topic usage and coherence across sites 

Of 75 available sites, 63 passed initial quality filtering, representing 12,486,133 patients with at 

least one condition recorded between 1/1/2018 and 8/2/2022. The topic model training set 

contained 7,992,339 patients and 387,401,304 conditions, while the validation set contained 

1,996,380 patients and 96,738,753 conditions, representing a corpus of 48,372 unique condition 

identifiers. Mean topic coherence improved as the number of generated topics increased from 

150 to 300, but not beyond (Suppl. Figure 2), so we selected the model with 300 topics for final 

analysis. 

 

Figure 2 illustrates selected topics as word clouds, displaying the top conditions of each by 

weight. Topics are named T-1 to T-300 in order of their usage U (rounded to nearest 0.1%, see 

Methods), font size is proportional to condition weight in each topic, and color indicates 

condition relevance to the topic. Supplementary materials include word clouds for all topics 

(Suppl. Figure 3). Jensen-Shannon distance indicates that topics have little overlap (Suppl. 

Figure 4), with a median distance of 0.82 (range 0.39–0.83). The last 10 topics however, T-290 

to T-300, form a group with increased co-similarity and many generic, low-relevance conditions 

mixed with a small number of high-relevance conditions.  

 

 
Figure 2: Word clouds illustrating top-weighted conditions for selected topics. Conditions 

are sized according to probability within each topic and colored according to relevance, with 

positive relevance indicating conditions more probable in the topic than overall. Each condition 

displays the numeric OMOP concept ID encoding the relevant medical code used for clustering, 

as well as the first few words of the condition name. Per-topic statistics in panel headers show 

usage of each of each topic across sites (U, rounded to nearest 0.1%), topic uniformity across 

sites (H, 0–1, higher values being more uniform), and relative topic quality as a normalized 

coherence score (C, z-score, higher values being more coherent).  
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Coherence scores follow a roughly normal distribution across topics (Suppl. Figure 5), and 

overall coherence tends to increase with rarer, more specific topics except for the last 10. Topic 

coherence varies by site, moreso for rarer topics (Suppl. Figure 6). All sites exhibit low 

coherence for the final 10 topics, and most of the final ~35 are low coherence for most sites 

except for one. Two sites report low coherence for most topics. Topic usage also varies by site, 

though most sites and topics follow similar patterns of usage (Suppl. Figure 7). T-4 was used 

almost exclusively by a single site and has very low coherence with only a few high-relevance 

terms, although this site uses other topics similarly to other sites.  

 

N3C sites contribute data from one of several source common data models (CDMs). The source 

CDM used by sites is not strongly correlated with coherence or usage (Suppl. Figures 6 and 7), 

except for two sites in the PEDSnet network specializing in pediatric care and another using 

TriNetX. These three sites exhibit distinctive patterns, including lower coherence and usage for 

T-153 pertaining to Gout (not typically associated with pediatric patients) and higher usage for 

T-127 pertaining to male pediatric conditions such as Phimosis and Undescended testicle.  

Individual conditions significant for PASC and COVID 

From the 2,495,414-patient assessment set, 4,386 PASC, 105,967 COVID, and 335,841 

Control patients met cohort eligibility requirements for individual-condition tests. Amongst PASC 

patients, 36% had a strong primary infection indicator at least 45 days prior to their PASC 

indication. After removing duplicates from the top entries for each topic, we tested 4,794 

individual conditions for new onset post-infection. Of these, 213 are significant for the PASC 

cohort, 208 for COVID, and 89 for both with p < 0.05 after multiple correction. The complete list 

of significant results is available in Suppl. Table 4, and Figure 3 labels a subset of these. The 

PASC cohort shows larger rates for most significant conditions, although several conditions are 

represented in the COVID cohort as well, such as Pneumonia caused by SARS-CoV-2, Viral 

pneumonia, Postviral fatigue syndrome, Loss of sense of smell, and Abnormal menstrual cycle. 

Additionally, the following conditions have significant estimated odds ratios (ORs) greater than 2 

in both cohorts: Loss of sense of smell, Disorder of respiratory system, Acute lower respiratory 

tract infection, Upper respiratory tract infection due to Influenza, Telogen effluvium, and Non-

scarring alopecia. 
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Figure 3: Increased and decreased new-onset conditions in PASC and COVID patients 

compared to Controls post-infection. The x-axis shows estimated odds ratios and the y-axis 

shows the adjusted p-values for new incidence of top-weighted, positive-relevance terms from 

all topics amongst COVID (left) and PASC (right) cohorts compared to Controls, in the six-

month post-acute period compared to the previous year. Many known PASC-associated 

conditions increased in both cohorts, while some conditions are cohort-specific. Additionally, in 

the COVID cohort, incidence of many conditions associated with regular care or screening is 

reduced compared to controls. 

 

Several conditions are strongly increased in the PASC cohort, including Chronic fatigue 

syndrome, Malaise, Finding related to attentiveness, Headache, Migraine (with and without 

aura), and Anxiety disorder. Neurosis is also present, but it should be noted that site-labeled 

source codes for this are almost entirely ICD-10-CM F48.9, Non-psychotic mental disorder, 

unspecified or similar (F48.8 and ICD-9 300.9). Notably, Impaired cognition is more common in 

PASC patients (OR 4.26) but less common in COVID patients (OR 0.53) compared to Controls. 

Other neurological conditions increased in PASC include Inflammatory disease of the central 

nervous system, Disorder of autonomic nervous system, Polyneuropathy, Orthostatic 

hypotension, and Familial dysautonomia (a genetic condition–see Discussion). 

 

The significant results for PASC also highlight a variety of symptoms related to the 

cardiovascular, pulmonary, and immune systems. Cardiac conditions such as Tachycardia, 

Palpitations, Congestive heart failure, Myocarditis, Cardiomyopathy, and Cardiomegaly are 

observed. Pulmonary issues are well represented with Pulmonary embolism, Bronchiectasis, 
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Fibrosis of lung, and various generic labels for respiratory failure or disorder. Amongst 

immunological conditions are Reactive arthritis triad, Elevated C-reactive protein, 

Lymphocytopenia, Hypogammaglobulinemia, Systemic mast cell disease, and generic 

Immunodeficiency disorder. In addition, bacterial, viral, and fungal infections are increased, 

including Bacterial infection due to Pseudomonas, Aspergillosis, and Pneumocystosis. Other 

common themes include musculoskeletal issues (Fibromyalgia, Muscle weakness, various 

types of pain) and hematological issues (Blood coagulation disorder, Anemia, Hypocalcemia, 

Hypokalemia).  

 

The analysis also reveals estimated odds ratios less than 1, indicating decreased incidence 

post-infection compared to Controls, for 219 conditions in one or both cohorts. Most of these 

(174) were significant only for the larger COVID cohort, and several are related to routine 

screening or elective procedures potentially disrupted by a COVID-19 infection or lack of care 

access during the pandemic, such as Pre-operative state, Nicotine dependence, Radiological 

finding, Gonarthrosis, and Hypertensive disorder.43 Preoperative state was largely coded as 

SNOMED CT 72077002 or ICD-10-CM Z01.818, both widely used across sites and indicative of 

pre-surgical examination. Unable to Assess Risk appears to be a custom code used by a single 

site, mapped to OMOP concept ID 42690761 by N3C. Other conditions may be more difficult to 

identify in the six months after a COVID-19 infection due to symptom masking or altered care-

seeking behavior. Examples include Diverticulosis of large intestine and Esophageal 

dysphagia.44,45 In addition to Pre-operative state, five conditions are significantly decreased for 

PASC patients, all related to late-term pregnancy, while Third trimester pregnancy is increased 

in COVID patients (see Discussion).  

Topics significant for PASC and COVID by demographic 

From the assessment set, 2,859 PASC patients, 89,374 COVID patients, and 303,017 Control 

patients met cohort eligibility criteria for per-topic logistic models; Suppl. Table 5 provides per-

group patient counts. Baseline contrasts broadly reflected expected trends by life stage and sex 

(Suppl. Figure 3). T-2 for example pertains to pregnancy, with an estimated female/male OR of 

45, pediatric/adult OR 0.06, adolescent/adult 0.2, and senior/adult 0.03. Similarly, T-3 highly 

weights neonatal conditions and generates a pediatric/adult OR of 43, but no significant 

female/male trend. 

 

Our primary contrasts considered life stage, sex, and infection-wave demographic groups, 

evaluating post-vs-pre topic odds radios for PASC or COVID patients compared to 

corresponding odds ratios for Controls. For example, the contrast ((PASC adult post) / (PASC 

adult pre)) / ((Control adult post) / (Control adult pre)) results in an OR estimate of 9.89 for T-23, 

suggesting that post-infection, adult PASC patients increase their odds of generating conditions 

from this topic nearly 10 times more than Controls do over a similar timeframe. Figure 4 

illustrates this result and others for the subset of topics with significant OR estimates >2 for 

more than one demographic group. All effectiveness and contrast results are listed in Suppl. 

Table 6 and visualized in Suppl. Figure 4. 
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Amongst the 5,400 sex, life-stage, and wave-specific contrasts, 314 are significant after multiple 

correction, representing 68 distinct topics. Of these, 130 are represented by the final 10 low 

quality topics with OR ~0.6 for all patient groups, potentially reflecting broad healthcare access 

patterns driven given their shared similarity and few high-relevance terms. Most contrasts have 

small ORs, with only 30 contrasts across 9 topics having an OR of 2 or higher. The majority of 

strong effects are seen for the PASC cohort, and while topic coherence was largely 

uncorrelated with PASC or COVID association, topics with the strongest significant increases in 

the PASC cohort were less coherent than average (Suppl. Figure 8). PASC confidence intervals 

were larger due to this cohort’s much smaller size, a trend also seen across relative group 

sizes.  

 

 
Figure 4: Topics with significant OR estimates >2 for at least two demographic groups. 

The top row illustrates topics using the same color and size scales as Figure 2; OR estimates 

are shown for demographic-specific contrasts of PASC or COVID pre-vs-post odds ratios 

compared to similar Control odds ratios. For example, adult PASC patients increase odds of 

generating conditions from T-23 post-infection nearly 10 times more than Controls do over a 

similar timeframe (see Results). Lines show 95% confidence intervals for estimates; semi-

transparent estimates are shown for context but were not significant after multiple-test 

correction. 

 

T-23 stands out as a topic with strong migration among PASC patients, with all subgroups 

having significant estimated ORs of 5-10. High-weight, high-relevance conditions in T-23 include 

Fatigue, Malaise, Loss of sense of smell, and other well-known PASC symptoms, as well as the 

diagnosis code for PASC itself (Post-acute COVID-19). By contrast, COVID patients do not 
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show statistically significant migration to this topic, with the exception of Adults with a small OR 

of 1.2.  

 

T-19 shows significant OR estimates for several PASC and COVID groups with similar 

magnitudes. This topic includes several variants of pneumonia and acute respiratory infection 

symptoms (Disorder of respiratory system, Dyspnea, Hypoxemia, Cough), suggesting significant 

long-term COVID-19 or secondary infections at least 45 days post-primary-infection. For both 

PASC and COVID cohorts, these increases are most associated with early-wave infections. 

 

Topics 86 and 137 show increases for several PASC groups, especially pediatric and 

adolescent patients. While T-86 is characterized by Pleural and Pericardial effusion and related 

pain, T-137 describes skin conditions, particularly hair loss, including Non-scarring alopecia and 

Telogen effluvium, both identified individually above. While effusion is a known factor for severe 

COVID-19 pneumonia, especially in older patients,46 these results highlight similar outcomes in 

young patients. A systematic review of alopecia in COVID-19 patients by Nguyen and Tosti 

found that Anagen effluvium was associated with younger patients compared to other types of 

alopecia, but few of the reviewed studies included young patients.47  

 

Figure 5 displays additional results for selected topics with cohort or demographic-specific 

patterns. T-8 represents cardiovascular conditions, and shows a mild but significant increase for 

adult COVID patients compared to controls. T-43 (not shown) is also significant for PASC adult 

patients, and encompasses pulmonary conditions. Several of the top-weighted conditions within 

these topics were individually significant, such as Palpitations, Cardiac arrhythmia, Chronic 

obstructive lung disease, and Pulmonary emphysema for both cohorts, and for PASC Dizziness 

and giddiness and Tachycardia. While all of these were individually increased in the PASC 

cohort, Cardiac arrhythmia, Chronic obstructive lung disease, and Pulmonary emphysema were 

decreased in the COVID cohort relative to controls.  
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Figure 5: Other select topics with demographic or cohort-specific trends. T-8 is 

statistically significant only for COVID adults compared to controls. Topics 72 and 77 include 

diffuse sets of conditions, while T-36 is reduced for PASC pediatric and senior patients, despite 

representing known PASC outcomes (see Discussion). 

 

T-72 is increased for both COVID and PASC pediatric patients compared to Controls, though 

this is only statistically significant for the larger COVID cohort. It covers a range of non-specific 

PASC-like conditions, including Illness, Neurosis (also discussed above), Ill-defined disease, 

Mental health problem, and Disease type and/or category unknown. Brain fog and 

Neurocirculatory asthenia are additionally found in this topic.  

 

T-77 is increased in female PASC patients compared to controls. This topic is diffuse and has 

no particularly highly weighted conditions, although many had high relevance scores to the 

topic. Several of these are laboratory-based, such as Hypokalemia, Anemia, and Hyponatremia. 

Tachycardia, Pleural effusion, Deficiency of macronutrients, and Adult failure to thrive syndrome 

are also present. The low specificity and coherence of T-77 make it difficult to interpret, although 

many of these conditions were individually significant above. T-20 (not shown) was increased 

for COVID adults and COVID delta-wave patients, and also has few high-weight terms, but 

relevant conditions include Acute renal failure syndrome, Sepsis, and Acidosis. 

 

T-36 strongly decreased for both pediatric and senior PASC patients, and covers only a few 

conditions with high weights and relevance scores, including Acquired hypothyroidism and 

Autoimmune thyroiditis. This result is paradoxical, as these conditions are common long-term 

outcomes of COVID-19 infection.48 Another paradoxical result is a strong (OR 11.7) increase in 

T-92 for adolescent PASC patients, which covers a variety of physical contusions, lacerations, 
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and abrasions. The highest-weighted condition in this topic however is Traumatic and/or non-

traumatic injury, all of which were originally coded as ICD-10 T14.8 Other injury of unspecified 

body region for these patients.  

 

Adolescent PASC patients are increased in four topics: T-23, T-86, and T-137 already 

discussed, and T-174 which highly weights Thyrotoxicosis, C-reactive protein abnormal, and 

Polymyalgia rheumatica. PASC pediatric patients increase significantly in T-23 and T-137 

already discussed, as well as T-57 covering a variety of pulmonary issues such as Chronic 

cough, Bronchiectasis, and Hemoptysis. On the other hand, PASC adolescent patients were 

reduced in seven topics and PASC pediatric patients showed a reduction in sixteen, covering a 

broad range of conditions. These assessment cohorts are small, with 49 pediatric and 66 

adolescent patients. Chart reviews revealed that they were distributed across 18 and 20 sites, 

respectively, and had a similar mean number of conditions recorded in the year prior to infection 

as other cohorts in the same life stages. However, mean condition counts for these PASC 

patients were nearly 50% higher in the 6-month post-infection phase (Suppl. Table 5). 

 

These models included covariates to account for site-level differences in topic usage, 

percentage of PASC patients, and source common data model. To assess the importance of 

these, we also ran models without them for the subset of topics shown in Figures 4 and 5. 

Results are highly similar (Suppl. Figure 9), with models without site-level covariates showing 

slightly higher (< 6%) odds ratios for topics 23, 36, and 72. 

Discussion 

While an ICD-10-CM diagnosis code (U09.9) and specialty clinics exist to treat Long COVID, 

there is still work to be done identifying PASC conditions and how these new diagnoses and 

referrals are used in practice.28,49 Our model, trained on 387 million condition records from 8.9 

million patients in the N3C, is one of the most extensive applications of topic modeling to EHR 

data to date, generating hundreds of diverse and clinically-relevant topics. Only a handful of 

topics were of low quality, and those in the middle by usage tended to have the highest 

coherence scores. We hypothesize that common topics are encumbered by a variety of coding 

options and practices, while rare topics support only a few relevant conditions on top of more 

common and unrelated background conditions. We found these trends across models with 

different topic counts, potentially driven by the use of Dirichlet distributions initialized with sparse 

uniform priors. Topic usage and coherence varied across contributing sites, with notable 

patterns of usage at PEDsnet sites in particular. Topic modeling may provide insights into site 

differences in coding practices or data quality, which are concerns in federated and centralized 

data repositories.42 

 

Investigating top-weighted topic terms revealed many conditions associated with increased 

new-onset rates in PASC and COVID cohorts compared to Controls, including neurocognitive, 

cardiovascular, pulmonary, and immune-related. Most of these were significant for both cohorts 

or only the PASC cohort, despite its smaller size. A number of conditions showed lower new 
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incidence in COVID patients compared to Controls, possibly due to decreased access to routine 

care (e.g. breast cancer50) or behavioral changes (e.g. diverticulosis44) through the pandemic.  

 

Modeling patient-topic assignment supports queries across patient demographics at a topic 

level. This approach identified several topics increasing in PASC and COVID patient groups 

relative to Controls. T-23 stands out as the clearest PASC-related topic across demographics, 

and includes many conditions commonly associated with Long COVID such as fatigue, malaise, 

new daily headache, and dyspnea. Other topics are demographic-specific, such as T-86 

covering Pleural and Pericardial effusion, T-137 with Non-scarring alopecia and Seborrheic 

dermatitis, and T-57 covering other pulmonary issues for younger PASC patients. 

 

While most effects are larger for PASC patients, T-19 shows similar effect sizes for COVID 

adults and seniors. This topic largely represents secondary pneumonias and related symptoms, 

suggesting that while these are not used as indicators for PASC, they are nevertheless long-

term issues for COVID-19 patients. The association is strongest with the early waves of the 

pandemic, reflecting severity of illness and lack of effective treatment protocols during this 

period.51 Few such wave effects were significant overall; T-20 with Acute renal failure syndrome, 

Acidosis, and Sepsis is an exception showing increases for COVID delta-wave patients. Despite 

the few PASC pediatric patients and wide confidence interval ranges, several topics were 

increased for this group indicating a unique cohort with significant long-term COVID-19 health 

outcomes. On the other hand, estimates for COVID-only pediatric patients for most topics, 

including T-23, T-57, and T-137, are non-significant despite a larger sample size.  

 

While this study reaffirms many known PASC trends, several results merit further investigation. 

Female PASC patients increased in T-77, which is diffuse, multisystem, and covers many 

conditions identified in other tests. More targeted analyses of this set may reveal a unique sub-

phenotype or mix of sub-phenotypes experienced by a unique population. Additionally, T-72 

represents a cluster of ill-defined conditions; its increase for COVID pediatric patients may 

reflect difficulties in PASC identification for this group. For example, the highest-weighted term, 

Illness, was originally coded as ICD-10 R69 Illness, unspecified in the vast majority of cases. 

Amongst individual conditions, Impaired cognition increased in PASC patients but decreased in 

COVID patients. Many of these were originally coded as R41.844, Frontal lobe and executive 

function disorder. Executive dysfunction has been linked to COVID-19, particularly for patients 

with acute respiratory distress syndrome.52 This diagnosis is distinct from those typical for 

ADHD (F90), so it is unclear whether the reduction observed in COVID patients was a result of 

reduced healthcare access.  

 

In contrast to other studies,53,54 we found few gastrointestinal conditions increased in PASC or 

COVID patients, though Abdominal pain, Viral gastroenteritis, and Dysphagia were increased in 

PASC patients (Suppl. Table 4). Neither did we find statistically significant sex differences, 

despite a known increased risk for PASC in female patients. Our experiments, however, 

evaluate cohorts defined by PASC diagnosis. While female patients are more likely to develop 

PASC, our results suggest minimal sex differences amongst patients who have been positively 

identified. Still, other work has suggested sex differences,55 and similar non-significant trends in 
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our results may be worthy of followup. The apparent reduction in late-term pregnancy conditions 

for PASC patients and simultaneous increase for COVID patients (both in comparison to 

Controls) is notable. We hypothesize that pregnant patients are less likely to be diagnosed with 

PASC given the similarity of presentation, but more likely to be monitored if infected during 

pregnancy.  

 

A high incidence of postural orthostatic tachycardia syndrome (POTS) has been identified in 

PASC clinical research,56 but a POTS-specific ICD-10 code did not exist prior to October 1, 

2022, and therefore POTS is not present in our dataset. The closest available term in the 

SNOMED hierarchy, Orthostatic hypotension, was found to be significantly elevated in PASC, 

as were Disorder of the autonomic nervous system and Familial dysautonomia. Many symptoms 

significant for the PASC cohort, such as Tachycardia, Palpitations, Dizziness and giddiness, 

Fatigue, and Finding related to attentiveness are suggestive of POTS or similar forms of 

dysautonomia. The presence of Familial dysautonomia (ICD-10-CM G90.1), a rare genetic 

disorder, is unlikely to be due to increased screening given that we saw no corresponding 

uptake in genetic testing. Rather, we suspect that frequent mis-coding may occur because the 

ICD-10-CM catalog has only one match for the term "dysautonomia" (G90.1 Familial 

dysautonomia), which when used alone encompasses multiple PASC-related conditions.57 Such 

errors are not uncommon when using medical record software.58 

 

Many of our results are immune-related, including conditions (Lymphocytopenia, 

Hypogammaglobulinemia, Systemic mast cell disease) and infections more common in 

immunocompromised patients (Aspergillosis, Pneumocystosis). Topic 36 highly weighting 

Hypothyroidism and Thyroiditis shows reductions for PASC pediatric and senior patients, a 

paradoxical result given that these are known post-acute sequelae.48 It may be that patients with 

pre-existing thyroid disorders are underdiagnosed for PASC, while new thyroid disorders after 

COVID-19 infection are identified as PASC and related symptoms alone. Together these results 

suggest an important role for thyroid-mediated dysfunction in PASC patients, and we 

recommend investigation into how these related diseases are diagnosed and treated.  

 

Design choices and limitations of this study should be considered when interpreting results. To 

maximize the number and specificity of testable topics, we trained our model on a diverse set of 

patients with and without COVID-19 and PASC, using complete patient histories to maximize 

effective document size. LDA does not model temporal relationships between terms when 

generating topics, and topics may thus highly weigh both risk factors and outcomes. Like many 

clustering methods, LDA and its online variant are subject to suboptimal convergence resulting 

in possible variation in topics across runs.59,60 To mitigate these risks we employed 

hyperparameter tuning, increased training iterations, and model evaluation via coherence on an 

independent validation set. In addition to data filtering for quality and fitness of use, we removed 

diagnoses for COVID-19 itself prior to topic modeling. Because these conditions largely define 

inclusion criteria for both N3C and our COVID cohort, they are broadly correlated and their 

inclusion would likely influence topic composition significantly. 
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While many results are shared between the COVID and PASC cohorts, it’s important to note 

that these are computed against a common Control cohort rather than between PASC and 

COVID directly, and the larger size of the COVID cohort results in increased sensitivity. Overall 

trends in healthcare utilization and access during the pandemic should be considered, and 

these may be influenced by COVID-19 infection itself. N3C’s observational EHR data, although 

extensive, are not a random sample and represent a diversity of specialties, coding practices, 

and other factors, as evidenced by variation in topic usage and coherence across sites. We 

excluded patients from sites without any U09.9 PASC diagnoses to minimize misclassification of 

PASC patients, but these sites may serve unique populations or use topics in distinct ways. 

Topic-level models included several site-level covariates, including per-site topic usage and 

percentage of PASC patients. Models excluding these covariates yielded highly similar results, 

supporting cross-site generalizability, and the use of a held-out assessment set for these tests 

provides a level of independence from topic generation. Finally, we’ve focused on group-level 

inferential analyses to broadly understand PASC sub-phenotypes. Although topic models 

provide per-patient topic associations, the probabilistic nature of LDA limits its utility for 

individual patients and further research is needed prior to patient-level predictive applications.  

 

With this context in mind, topic modeling applied to a large EHR dataset has proven highly 

effective for assessing the progression of post-acute sequelae of SARS-CoV-2 infection. Our 

LDA model identified hundreds of fine-grain potential sub-phenotypes in the data, and 

interpreting the probabilistic assignment of patients to them through GEE-based logistic 

regression is a novel and flexible approach, supported by properties of both methods and 

empirically by expected demographic baselines. Future investigations may assess other factors 

such as acute disease severity, contrast different cohorts, analyze inter-topic patterns to 

uncover sub-phenotype-specific risk factors, or employ time-series techniques to examine topic 

distributions across multiple time windows.  

 

Ultimately, a finer understanding of presentations across populations can inform research, 

diagnostics, treatment, and health equity for multi-faceted diseases such as PASC. Tracking 

patient clinical trajectories over time in light of model-derived sub-phenotypes revealed post-

acute sequelae of SARS-CoV-2 infection, several of which were associated with patient sex, 

age, wave of infection, or presence of a PASC diagnosis. Some results, such as those 

highlighting immune dysfunction, thyroid involvement, and secondary infections improve our 

understanding of potential mechanisms for PASC. Others, such as those highlighting non-

specific phenotypes in the COVID cohort, may lead to improved diagnostics and support for 

patients suffering from Long-COVID but yet to receive a PASC diagnosis. 
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Supplemental Figures 

Suppl. Figure 1 

Consort diagram illustrating stratification of patients into sets and cohorts, number of unique 

sites represented by those groups, and how each is used in analysis. The site quality filter 

removed sites with inpatient serum creatinine or white blood cell count results for fewer than 

25% of patients, the site U09.9 filter removed patients from sites with no U09.9 diagnoses, and 

filter variables are as described for specific tests (see Suppl. Methods). 
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Suppl. Figure 2 

Mean topic coherence scores for LDA models varying the number of topics generated (K). Topic 

coherences are computed as intrinsic UCI Coherence30 using the top 20 terms per topic. UCI 

coherence evaluates, for all term pairs amongst these top 20, how frequently they occur 

together in patient histories compared to the expectation assuming terms occur independently, 

on the validation data set. K=300 was chosen as the final number of topics. 

 

 

 

Suppl. Figure 3 

Full topic clouds for all 300 topics generated and visualizations of corresponding contrasts.  

 

Available at https://doi.org/10.5281/zenodo.11188766. 
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Suppl. Figure 4 

Topic/topic dissimilarity as Jensen-Shannon Distance. Topic self-distances of 0 are not shown. 
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Suppl. Figure 5 

Histogram of topic coherence values.  
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Suppl. Figure 6 

Mean UCI coherence scores per topic and contributing data site (ID anonymized). Site 

identifiers are masked, but labeled with the source common data model in use at the site. 
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Suppl. Figure 7 

Relative usage of topics per contributing site (ID anonymized). For a given site and topic, 

relative usage is computed as the sum of assigned weights to that topic for patients from that 

site divided by the number of patients, representing a distribution over topics per site. 
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Suppl. Figure 8 

Per-topic coherence (horizontal axis) vs. contrast effect sizes (log-odds scale, vertical axis) for 

tested groups (panels) in PASC vs. Control (top) and COVID vs. Control (bottom) contrasts. 

Labeled topics are those with statistically significant log-odds differences of >1 or <-1 (OR >2 or 

<0.5). Points are sized and colored according to mean topic usage for the group and cohort in 

the post-infection phase, with blue points representing Control patients and red points 

representing PASC (top) or COVID (bottom) patients. 
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Suppl. Figure 9 

Results for Figures 4 (top) and 5 (bottom) for models with and without site-level covariates of 

topic usage, percentage of PASC patients, and source common data model. 
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Supplemental Methods 

Minimal Site Quality Filters 

EHR data from the National COVID Cohort Collaborative (N3C), released Aug. 2, 2022 

represent records from 75 contributing sites. All analyses were restricted to data from 63 sites 

passing minimal quality checks: sites were excluded if greater than 25% of inpatient visits were 

not accompanied by serum creatinine or white blood cell count measures (N=11), or if greater 

than 5% of COVID-19 confirmed patients were indicated as inpatient continuously for 200 or 

more days prior to and including their confirmed COVID-19 date (as potential long-term care 

facilities, N=1).  

Model Training 

Model training utilized the online Latent Dirichlet Allocation (LDA) method of Hoffman et al.24 as 

implemented in Apache Spark (pyspark.ml.clustering.LDA) version 3.2.1.29 Parameters used 

include k (the number of topics, 300 in the final model), seed (42, a random seed to initialize the 

training), and maxIter (200, providing 10 passes over the training data in batches of 5% each). 

Determination of condition-topic and topic-patient distributions were produced by the fitted LDA 

model. 

Topic Annotations 

Each topic is annotated with three values: U, representing the relative usage of the topic by total 

weight assigned to patients (range 0-100%), H, a measure how uniformly the topic is used by 

N3C-contributing sites (range 0-1, with values closer to 0 being site-specific), and C, a measure 

of each topics’ coherence compared to the mean over all topics. All three are computed over the 

training and validation sets.  

 

U is computed as the sum over patients of the weight assigned to the topic, divided by the 

number of patients (which is also the total weight assigned over all topics).  

 

H is computed as the information entropy of the relative usage of the topic across sites, 

normalized to a maximum value of 1.0 when the usage is uniformly distributed. Relative usage 

for a given site is computed as the total weight assigned to the topic for patients from the site, 

divided by the total number of patients from that site.  

 

Per-topic coherence C is calculated for each topic using the UCI Coherence metric (see Model 

Validation below). These values are not meant to be interpreted on an absolute scale, but since 

they are normally distributed amongst topics (Suppl. Figure 4) we adjust them to z-scores for 

comparative use.  
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Jensen-Shannon Distance 

Jensen-Shannon Distance between topics 𝑡𝑖  and 𝑡𝑗  is a true metric and is defined as the square 

root of the Jensen-Shannon divergence: 

 

 
 

where 𝑐𝑡𝑥
= 𝑝(𝑐|𝑡𝑥) (the probability assigned to term 𝑐 in topic 𝑡𝑥) and 𝑀 is (𝑐𝑡𝑖

 +  𝑐𝑡𝑗
)/2. 

 

Topic Term Relevance 

Term relevance provides a measure of term-topic-specificity, with values greater than zero 

indicating terms more likely for the topic than overall.33 For term 𝑐𝑖 and topic 𝑡𝑗 , we define 

relevance as 

 
 

 

Model Validation 

UCI coherence for a given topic 𝑡𝑖 is computed over the top N terms by probability for the topic, 

where we used N = 20. Letting 𝑇𝑖  be the set of top 20 terms for 𝑡𝑖 , a sum score is computed for 

each distinct pair of terms a and b, where the score for a given pair is the log of the measured 

probability of their occurring together in a patient compared to the joint probability assuming 

independence. To avoid undefined scores, 0 is used for pairs where the denominator is 0, and 1 

is added to the joint probability.30 

 

 
 

Overall model quality was evaluated as the mean of coherence scores across topics, computed 

over the validation dataset only.  

 

Per-Condition Tests 

All tests were performed in R v3.5.1.61 As described in the main text, patients in the test data set 

were included for evaluation of new-onset conditions if they satisfied requirements for being in 
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the PASC, COVID, or Control cohorts. The top 20 conditions from each topic with relevance 

score > 0 were evaluated by considering only patients without the condition in the pre phase, 

comparing counts of PASC (and COVID) patients later indicated and not indicated for the post 

phase, to those same counts in the Control cohort. R’s fisher.test() was used with 

simulate.p.value = TRUE to support tests where counts are large.34 Reported p values were 

multiple-test corrected using Bonferroni’s method.  

BMI and Quan Comorbidity Scores 

Patient BMI values used in modeling were the maximum over those reported after Jan. 1 2018, 

or the maximum of those computed as weight/(height^2) if no BMI measurement was directly 

available. Weight values outside 5kg–300kg and height values outside 0.6m–2.43m were 

excluded from BMI calculations. Quan comorbidity scores40 were computed from available 

source ICD code prefixes as shown in Suppl. Table 7. 

 

Topic Regression Tests 

Regression models were fitted using geepack v1.3.9,38 with contrasts computed using emmeans 

v1.8.9.62 Individual patient histories defined by their pre- and post- phase data were assigned 

topic probability distributions by the fitted LDA model. For each topic, we fitted a logistic 

regression model with outcome variable being the model-assigned topic probability as the trial 

success rate with equal weight, from covariates phase (pre or post), cohort (PASC, COVID, or 

Control), patient life stage and wave of the index date (see main Methods), sex, race, Quan 

comorbidity score, BMI, source CDM (PCORnet, ACT, OMOP, TrinetX, and OMOP (PedsNet)). 

To account for potential differential usage of PASC labels or topics, we also included 

percentage of patients at the given patients’ site in the PASC cohort, and usage of the topic by 

the patients’ site relative to all sites (summing to 1.0 across sites). Interactions were included for 

terms of interest for contrasts using the R/geepack formula topic_probability ~ phase * 
cohort * (index_wave + sex + life_stage) + site_percent_pasc * phase * cohort + 
site_relative_topic_usage + race + quan_score + bmi + cdm. Only patients from the 

assessment set with complete information for all variables were included.  
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Supplemental Tables 

Suppl. Table 1 

OMOP Concepts excluded from model training, evaluation, and testing. 

 
Concept Name OMOP Concept Id 
No matching concept 0 
Clinical finding 441840 
COVID-19 37311061 
Viral disease 440029 
Disease due to coronaviridae 4100065 
Sexually abstinent 764423 
Single current sexual partner 4043045 
New sexual partner 44813701 
Sexually active with men 43021202 
Single historical sexual partner 43021216 
Number of current sexual partners - finding 4276728 
Bigamy 4336540 
Sexual activity - two to three times per month 4012347 
Sexual activity - two to three times per week 4012202 
Finding of number of historical sexual partners 43021214 
No longer sexually active 4043041 
Multiple current sexual partners 4038723 
Sexually active with transgender person 43021204 
Number of sexual partners - finding 4269990 
Satisfactory sexual experience 44811373 
Sexual activity - daily 4012377 
Currently not sexually active 4012376 
Never been sexually active 4145811 
Fornication 4031991 
Sexual activity - monthly 4012348 
Sexual activity - weekly 4012203 
Sexual contact with high risk partner 44789379 
Finding of frequency of sexual activity 4188013 
Engages in sexual activity outside marriage 43021163 
Sexually active with women 43021203 
Purposely unmarried and sexually abstinent 43021238 
Sex within a relationship only 4021660 
Sexually active in last month 37017764 
Sexually active 4043042 
Finding relating to sexual activity 4114865 
Sexually active in last year 37017763 
Engages in sexual activity before marriage 43021162 
Sexually active in last six months 37017762 
Multiple historical sexual partners 43021215 

 

  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 11, 2024. ; https://doi.org/10.1101/2023.09.11.23295259doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.11.23295259
http://creativecommons.org/licenses/by-nd/4.0/


 

44 

Suppl. Table 2 

OMOP Concepts describing COVID-19 PCR or Antigen tests. 

 

Concept Name 
OMOP 

Concept Id 

SARS-CoV-2 (COVID-19) N gene [Presence] in Respiratory specimen by Nucleic acid amplification 

using CDC primer-probe set N2 
586525 

SARS-CoV-2 (COVID-19) RdRp gene [Presence] in Saliva (oral fluid) by NAA with probe detection 36032174 

SARS-related coronavirus RNA [Presence] in Specimen by NAA with probe detection 723472 

SARS-CoV-2 (COVID-19) N gene [Cycle Threshold #] in Specimen by Nucleic acid amplification 

using CDC primer-probe set N2 
706155 

SARS-CoV-2 (COVID-19) S gene [Cycle Threshold #] in Specimen by NAA with probe detection 723468 

SARS-CoV-2 (COVID-19) N gene [#/volume] (viral load) in Respiratory specimen by NAA with probe 

detection 
36661370 

SARS-CoV-2 (COVID-19) S gene [Cycle Threshold #] in Respiratory specimen by NAA with probe 

detection 
723467 

SARS-CoV-2 (COVID-19) N gene [Presence] in Serum or Plasma by NAA with probe detection 586520 

SARS-CoV-2 (COVID-19) S gene [Presence] in Respiratory specimen by NAA with probe detection 723465 

SARS-CoV-2 (COVID-19) [Presence] in Specimen by Organism specific culture 586516 

SARS-CoV-2 (COVID-19) N gene [Cycle Threshold #] in Specimen by NAA with probe detection 706167 

SARS-CoV-2 (COVID-19) Ag [Presence] in Respiratory specimen by Rapid immunoassay 723477 

SARS-CoV-2 (COVID-19) RNA [Log #/volume] (viral load) in Specimen by NAA with probe detection 715262 

SARS-related coronavirus N gene [Cycle Threshold #] in Specimen by Nucleic acid amplification 

using CDC primer-probe set N3 
706172 

SARS-CoV-2 (COVID-19) RNA [Presence] in Saliva (oral fluid) by NAA with probe detection 715260 

SARS-CoV-2 (COVID-19) S gene [Presence] in Serum or Plasma by NAA with probe detection 586519 

SARS-CoV-2 (COVID-19) ORF1ab region [Cycle Threshold #] in Respiratory specimen by NAA with 

probe detection 
723469 

SARS-CoV-2 (COVID-19) RNA [Cycle Threshold #] in Specimen by NAA with probe detection 586529 

SARS-related coronavirus E gene [Presence] in Respiratory specimen by NAA with probe detection 586523 

SARS-CoV-2 (COVID-19) ORF1ab region [Presence] in Saliva (oral fluid) by NAA with probe 

detection 
36031506 
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Concept Name 
OMOP 

Concept Id 

SARS-CoV-2 (COVID-19) S gene [Presence] in Specimen by NAA with probe detection 723466 

SARS-CoV-2 (COVID-19) RNA [Presence] in Nasopharynx by NAA with non-probe detection 723476 

SARS-CoV-2 (COVID-19) N gene [Presence] in Saliva (oral fluid) by Nucleic acid amplification using 

CDC primer-probe set N1 
36032258 

SARS-CoV-2 (COVID-19) RNA [Presence] in Nasopharynx by NAA with probe detection 586526 

SARS-related coronavirus E gene [Presence] in Serum or Plasma by NAA with probe detection 586518 

SARS-CoV-2 (COVID-19) S gene [Presence] in Respiratory specimen by Sequencing 36031213 

SARS-CoV-2 (COVID-19) RNA [Presence] in Nose by NAA with probe detection 757677 

SARS-CoV-2 (COVID-19) N gene [Presence] in Specimen by Nucleic acid amplification using CDC 

primer-probe set N2 
706154 

SARS-CoV-2 (COVID-19) RNA panel - Respiratory specimen by NAA with probe detection 706158 

SARS-CoV-2 (COVID-19) N gene [Presence] in Respiratory specimen by NAA with probe detection 706161 

SARS-CoV-2 (COVID-19) RdRp gene [Cycle Threshold #] in Specimen by NAA with probe detection 723470 

SARS-CoV-2 (COVID-19) RdRp gene [Presence] in Lower respiratory specimen by NAA with probe 

detection 
36031652 

SARS-CoV-2 (COVID-19) N gene [Presence] in Saliva (oral fluid) by NAA with probe detection 36661378 

SARS-related coronavirus+MERS coronavirus RNA [Presence] in Respiratory specimen by NAA 

with probe detection 
706159 

SARS-related coronavirus E gene [Presence] in Specimen by NAA with probe detection 706174 

SARS-CoV-2 (COVID-19) N gene [Presence] in Specimen by Nucleic acid amplification using CDC 

primer-probe set N1 
706156 

SARS-CoV-2 (COVID-19) RNA [Cycle Threshold #] in Respiratory specimen by NAA with probe 

detection 
586528 

Measurement of Severe acute respiratory syndrome coronavirus 2 antigen 37310257 

SARS-related coronavirus E gene [Cycle Threshold #] in Specimen by NAA with probe detection 706166 

SARS-CoV-2 (COVID-19) Ag [Presence] in Upper respiratory specimen by Immunoassay 36032419 

SARS-CoV-2 (COVID-19) RNA panel - Specimen by NAA with probe detection 706169 

SARS-CoV-2 (COVID-19) RNA [Presence] in Respiratory specimen by NAA with non-probe 

detection 
36031238 
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Concept Name 
OMOP 

Concept Id 

SARS-CoV-2 (COVID-19) RdRp gene [Presence] in Respiratory specimen by NAA with probe 

detection 
706160 

SARS-CoV-2 (COVID-19) N gene [Presence] in Nasopharynx by NAA with probe detection 715272 

SARS-CoV-2 (COVID-19) N gene [Presence] in Nose by NAA with probe detection 757678 

SARS-CoV-2 (COVID-19) RNA [Presence] in Saliva (oral fluid) by Sequencing 715261 

SARS-CoV-2 (COVID-19) RNA [Presence] in Specimen by NAA with probe detection 706170 

SARS-CoV-2 (COVID-19) N gene [Cycle Threshold #] in Specimen by Nucleic acid amplification 

using CDC primer-probe set N1 
706157 

SARS-CoV-2 (COVID-19) ORF1ab region [Presence] in Respiratory specimen by NAA with probe 

detection 
723478 

SARS-related coronavirus N gene [Presence] in Specimen by Nucleic acid amplification using CDC 

primer-probe set N3 
706171 

SARS-CoV+SARS-CoV-2 (COVID-19) Ag [Presence] in Respiratory specimen by Rapid 

immunoassay 
757685 

SARS-CoV-2 (COVID-19) RNA [Presence] in Respiratory specimen by Sequencing 36661377 

SARS-CoV-2 (COVID-19) N gene [Log #/volume] (viral load) in Respiratory specimen by NAA with 

probe detection 
36661371 

SARS-CoV-2 (COVID-19) RdRp gene [Cycle Threshold #] in Respiratory specimen by NAA with 

probe detection 
723471 

SARS-CoV-2 (COVID-19) RdRp gene [Presence] in Upper respiratory specimen by NAA with probe 

detection 
36031453 

SARS-CoV-2 (COVID-19) RdRp gene [Presence] in Specimen by NAA with probe detection 706173 

SARS-CoV-2 (COVID-19) N gene [Presence] in Specimen by NAA with probe detection 706175 

SARS-CoV-2 (COVID-19) ORF1ab region [Cycle Threshold #] in Specimen by NAA with probe 

detection 
706168 

SARS-CoV-2 (COVID-19) N gene [Presence] in Respiratory specimen by Nucleic acid amplification 

using CDC primer-probe set N1 
586524 

SARS-CoV-2 (COVID-19) ORF1ab region [Presence] in Specimen by NAA with probe detection 723464 

SARS-related coronavirus RNA [Presence] in Respiratory specimen by NAA with probe detection 706165 

SARS-CoV-2 (COVID-19) RNA panel - Saliva (oral fluid) by NAA with probe detection 36032061 

SARS-CoV-2 (COVID-19) RNA [Presence] in Respiratory specimen by NAA with probe detection 706163 

SARS-CoV-2 (COVID-19) specific TCRB gene rearrangements [Presence] in Blood by Sequencing 36031944 
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Concept Name 
OMOP 

Concept Id 

SARS-CoV-2 (COVID-19) RNA [Presence] in Serum or Plasma by NAA with probe detection 723463 

 

Suppl. Table 3 

All indicators of COVID-19 infection (except for PCR and Antigen tests, Suppl. Table 3). 

 

Concept Name Concept Id 

SARS-CoV-2 (COVID-19) IgG Ab [Presence] in Serum, Plasma or Blood by Rapid immunoassay 706181 

SARS-CoV-2 (COVID-19) IgA Ab [Units/volume] in Serum or Plasma by Immunoassay 723459 

SARS-CoV-2 (COVID-19) IgM Ab [Presence] in Serum, Plasma or Blood by Rapid immunoassay 706180 

SARS-CoV-2 (COVID-19) IgM Ab [Presence] in DBS by Immunoassay 36659631 

SARS-CoV-2 (COVID-19) IgM Ab [Titer] in Serum or Plasma by Immunofluorescence 36661373 

SARS-CoV-2 (COVID-19) neutralizing antibody [Presence] in Serum by pVNT 757680 

SARS-CoV-2 (COVID-19) IgG+IgM Ab [Presence] in Serum or Plasma by Immunoassay 723479 

SARS-CoV-2 (COVID-19) Ab panel - Serum, Plasma or Blood by Rapid immunoassay 706176 

SARS-CoV-2 (COVID-19) IgG Ab [Titer] in Serum or Plasma by Immunofluorescence 36661374 

SARS-CoV-2 (COVID-19) IgM Ab [Units/volume] in Serum or Plasma by Immunoassay 706178 

SARS-CoV-2 (COVID-19) IgA Ab [Presence] in Serum or Plasma by Immunoassay 723473 

SARS-CoV-2 (COVID-19) neutralizing antibody [Titer] in Serum by pVNT 757679 

SARS-CoV-2 (COVID-19) Ab [Presence] in Serum or Plasma by Immunoassay 586515 

SARS-CoV-2 (COVID-19) IgG Ab [Units/volume] in Serum or Plasma by Immunoassay 706177 

SARS-CoV-2 (COVID-19) S protein RBD neutralizing antibody [Presence] in Serum or Plasma by 

sVNT 
36031734 

SARS-CoV-2 (COVID-19) IgA Ab [Titer] in Serum or Plasma by Immunofluorescence 36661372 

SARS-CoV-2 (COVID-19) Ab [Units/volume] in Serum or Plasma by Immunoassay 586522 

SARS-CoV-2 (COVID-19) IgA+IgM [Presence] in Serum or Plasma by Immunoassay 757686 

Measurement of Severe acute respiratory syndrome coronavirus 2 antibody 37310258 

SARS-CoV-2 (COVID-19) IgG Ab [Presence] in Serum or Plasma by Immunoassay 723474 

SARS-CoV-2 (COVID-19) Ab panel - Serum or Plasma by Immunoassay 706179 

SARS-CoV-2 stimulated gamma interferon [Presence] in Blood 36031969 

SARS-CoV-2 stimulated gamma interferon release by T-cells [Units/volume] in Blood 36032309 

SARS-CoV-2 (COVID-19) IgA Ab [Presence] in Serum, Plasma or Blood by Rapid immunoassay 586521 
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Concept Name Concept Id 

SARS-CoV-2 (COVID-19) Ab [Presence] in DBS by Immunoassay 36031197 

SARS-CoV-2 (COVID-19) Ab [Presence] in Serum, Plasma or Blood by Rapid immunoassay 36661369 

SARS-CoV-2 (COVID-19) IgM Ab [Presence] in Serum or Plasma by Immunoassay 723475 

SARS-CoV-2 (COVID-19) Ab [Interpretation] in Serum or Plasma 723480 

SARS-CoV-2 (COVID-19) IgG Ab [Presence] in DBS by Immunoassay 586527 

SARS-CoV-2 stimulated gamma interferon release by T-cells [Units/volume] corrected for background 

in Blood 
36031956 

Suppl. Table 4 

All significant single-condition tests. Listed estimates are odds ratios for the given cohort pre-to-

post compared to Controls, and p-values are adjusted across all condition tests for both cohorts 

(Bonferroni, prior to filtering to significance). Available at 

https://doi.org/10.5281/zenodo.11188766. 

Suppl. Table 5 

Summary statistics for patients in the assessment set, with mean and standard deviation of 

condition era counts in pre- and post-infection phases. Note that the pre-infection phase covers 

1 year of patient history, while the post-infection phase covers 6 months post-acute. 

 

Cohort Life Stage Phase 
Mean # 

Conditions 
SD # 

Conditions 
# Patients # Sites 

Control adolescent post 10.296 10.373 10789 32 

Control adolescent pre 15.76 16.994 10789 32 

Control adult post 17.518 18.525 180338 34 

Control adult pre 27.794 29.446 180338 34 

Control pediatric post 8.894 9.611 16029 32 

Control pediatric pre 15.815 19.157 16029 32 

Control senior post 25.357 24.142 95861 33 

Control senior pre 40.438 36.562 95861 33 

COVID adolescent post 10.311 12.376 3703 31 

COVID adolescent pre 15.979 19.2 3703 31 

COVID adult post 17.177 18.777 60279 34 

COVID adult pre 28.432 31.169 60279 34 
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COVID pediatric post 10.074 12.872 3724 29 

COVID pediatric pre 17.001 21.634 3724 29 

COVID senior post 24.847 24.162 21668 34 

COVID senior pre 41.522 38.15 21668 34 

PASC adolescent post 23.287 22.347 66 20 

PASC adolescent pre 18.893 21.219 66 20 

PASC adult post 30.281 30.778 2047 32 

PASC adult pre 34.566 42.242 2047 32 

PASC pediatric post 21.061 15.282 49 18 

PASC pediatric pre 19.755 15.492 49 18 

PASC senior post 42.374 36.527 697 32 

PASC senior pre 50.292 51.6 697 32 

Suppl. Table 6 

All topic-level logistic model tests. Estimates are odds ratios for the given cohort and 

demographic compared to Controls for the same demographic. Ratios where the demographic 

is listed as NA are for demographic contrasts independent of phase or cohort (model 

effectiveness checks, see main Methods). P-values are adjusted across all contrast tests 

(Holm). Available at https://doi.org/10.5281/zenodo.11188766. 

Suppl. Table 7 

Source ICD code prefixes used to generate Quan-based comorbidity scores. 

 

ICD Prefixes Charleson Group 
Quan 
Score 

'I21','I22','I252' 1: Acute or historical MI 0 

'I43','I50','I099','I110','I130','I132','I255','I420','I425','I426','I427','I428','I429','P290' 2: CHF 2 

'I70','I71','I731','I738','I739','I771','I790','I792','K551','K558','K559','Z958','Z959' 3: Peripheral vascular disease 0 

'G45','G46','I60','I61','I62','I63','I64','I65','I66','I67','I68','I69','H340' 4: Cerebrovascular disease 0 

'F00','F01','F02','F03','G30','F051','G311' 5: Dementia 2 

'J40','J41','J42','J43','J44','J45','J46','J47','J60','J61','J62','J63','J64','J65','J66','J6
7','I278','I279','J684','J701','J703' 

6: COPD 1 

'M32','M33','M34','M06','M05','M315','M351','M353','M360' 7: Rheumatic disease 1 

'K25','K26','K27','K28' 8: Peptic ulcer 0 

'B18','K73','K74','K700','K701','K702','K703','K709','K717','K713','K714','K715','K
760','K762','K763','K764','K768','K769','Z944' 

9: Mild liver disease 2 

'E100','E101','E106','E108','E109','E110','E111','E116','E118','E119','E120','E121
','E126','E128','E129','E130','E131','E136','E138','E139','E140','E141','E146','E14
8','E149' 

10: Diabetes 0 
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'E102','E103','E104','E105','E107','E112','E113','E114','E115','E117','E122','E123
','E124','E125','E127','E132','E133','E134','E135','E137','E142','E143','E144','E14
5','E147' 

11: Diabetes with chronic 
complications 

1 

'G81','G82','G041','G114','G801','G802','G830','G831','G832','G833','G834','G83
9' 

12: Paralysis 2 

'N18','N19','N052','N053','N054','N055','N056','N057','N250','I120','I131','N032','N
033','N034','N035','N036','N037','Z490','Z491','Z492','Z940','Z992' 

13: Renal disease 1 

'C00','C01','C02','C03','C04','C05','C06','C07','C08','C09','C10','C11','C12','C13','

C14','C15','C16','C17','C18','C19','C20','C21','C22','C23','C24','C25','C26','C30', 

'C31','C32','C33','C34','C37','C38','C39','C40','C41','C43','C45','C46','C47','C48', 

'C49','C50','C51','C52','C53','C54','C55','C56','C57','C58','C60','C61','C62','C63',  

'C64','C65','C66','C67','C68','C69','C70','C71','C72','C73','C74','C75','C76','C81', 

'C82','C83', 'C84','C85','C88','C90','C91','C92','C93','C94','C95','C96','C97' 

14: Localized 
cancer/leukemia/lymphoma 

2 

'K704','K711','K721','K729','K765','K766','K767','I850','I859','I864','I982' 
15: Moderate/severe liver 

disease 
4 

'C77','C78','C79','C80' 16: Metastatic cancer 6 

'B20','B21','B22','B24' 17: HIV/AIDS 4 
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