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Abstract 14 

Background: 15 

Kidney diseases, including membranous nephropathy (MN), IgA nephropathy (IgAN), and chronic 16 
kidney disease (CKD), pose significant global health challenges due to their high prevalence and 17 
severe outcomes. There is still an urgent need to discover new targets for treating kidney diseases. 18 
Mendelian randomization (MR) has been widely used to repurpose licensed drugs and discover novel 19 
therapeutic targets. Thus, we aimed to identify novel therapeutic targets for Kidney diseases and 20 
analyze their pathophysiological mechanisms and potential side effects. 21 

Methods: 22 

Integrated with currently available druggable genes, Summary-data-based MR (SMR) analysis was 23 
conducted to estimate the causal effects of blood expression quantitative trait loci (eQTLs) on kidney 24 
diseases. A study was replicated using distinct blood eQTL and diseases genome-wide association 25 
study (GWAS) data sources to validate the identified genes. The eQTL data was obtained from 26 
eQTLGen and GTEx v8.0, with sample sizes of 31,684 and 15,201, respectively. The data on kidney 27 
diseases was sourced from the Kiryluk Lab, CKDgen, and the Finngen consortium, with sample sizes 28 
ranging from 7,979 to 412,181. Subsequently, reverse two-sample MR and colocalization analysis 29 
were employed for further validation. Finally, the potential side effects of the identified key genes in 30 
treating kidney diseases were assessed using phenome-wide MR and mediation MR. 31 

Results: 32 

After correcting for the false discovery rate, a total of 20, 23, and 6 unique potential genes were 33 
found to have causal relationships with MN, IgAN, and CKD, respectively. Among them, MN 34 
showed validated associations with one gene (HCG18), IgAN demonstrated associations with four 35 
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genes (AFF3, CYP21A2, DPH3, HLA-DRB5), and chronic kidney disease (CKD) displayed an 36 
association with one gene (HLA-DQB1-AS1). Several of these key genes are druggable genes. 37 
Further phenome-wide MR analysis revealed that certain genes may be associated with diabetes, fat 38 
metabolism, and infectious diseases, suggesting that these factors could potentially serve as 39 
mediators. 40 

Conclusions: 41 

This study presents genetic evidence that supports the potential therapeutic benefits of targeting these 42 
key genes for treating kidney diseases. This is significant in prioritizing the development of drugs for 43 
kidney diseases. 44 

1 Introduction 45 

Kidney diseases, including membranous nephropathy (MN), IgA nephropathy (IgAN), and chronic 46 
kidney disease (CKD), pose significant global health challenges due to their high prevalence and 47 
severe outcomes. MN, characterized by the deposition of immune complexes in the glomerular 48 
basement membrane, often leads to nephrotic syndrome and progressive renal failure if untreated(1). 49 
IgAN, the most common glomerulonephritis worldwide, is marked by the accumulation of IgA in the 50 
glomeruli, causing inflammation and potentially advancing to end-stage renal disease (ESRD)(2). 51 
CKD, defined by the gradual loss of kidney function over time, affects millions and significantly 52 
increases the risk of cardiovascular disease and mortality(3). Despite advancements in understanding 53 
the pathophysiology of these diseases, effective treatments remain limited. Current therapeutic 54 
strategies primarily focus on managing symptoms and slowing disease progression, but they do not 55 
halt or reverse kidney damage. For instance, the treatment of MN and IgAN often involves 56 
immunosuppressive therapies, which can have substantial side effects and variable efficacy. 57 
Similarly, CKD management revolves around controlling hypertension and diabetes, delaying 58 
progression rather than curing the disease. The identification of novel therapeutic targets is crucial to 59 
developing more effective treatments. With advances in genomics, proteomics, and bioinformatics, 60 
there is an unprecedented opportunity to uncover molecular pathways involved in kidney disease 61 
pathogenesis. Targeting these pathways could lead to innovative therapies that address the underlying 62 
causes of kidney damage rather than merely alleviating symptoms. This approach holds promise for 63 
improving patient outcomes and quality of life, highlighting the importance of ongoing research in 64 
this field. 65 

Mendelian randomization (MR) is a powerful epidemiological method that leverages genetic variants 66 
as instrumental variables to assess the causal effects of modifiable risk factors on disease 67 
outcomes(4). By utilizing the random assortment of genes from parents to offspring, MR mimics the 68 
conditions of a randomized controlled trial, thereby minimizing confounding and reverse causation 69 
issues that often plague observational studies(5,6). This technique has gained prominence in 70 
identifying potential drug targets by providing insights into the causal relationships between 71 
biomarkers, risk factors, and disease outcomes(7,8). 72 

In recent years, MR has been increasingly applied to drug discovery and development. By correlating 73 
genetic variants that influence drug target genes with clinical outcomes, MR can validate the 74 
therapeutic potential of specific targets before costly clinical trials are initiated. For instance, the use 75 
of MR has facilitated the identification of novel therapeutic targets for cardiovascular diseases by 76 
confirming the causal role of lipid levels and inflammatory markers in disease progression(9,10). 77 
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Similarly, MR studies have highlighted the potential of targeting specific metabolic pathways in 78 
treating diabetes and other metabolic disorders(11,12). 79 

The application of MR in drug target discovery is not without challenges, including the need for 80 
robust genetic instruments and comprehensive datasets. However, integrating MR with advanced 81 
genomic technologies and large-scale biobanks holds great promise for the future of precision 82 
medicine. By enhancing our ability to identify and validate causal relationships between potential 83 
drug targets and disease outcomes, MR can accelerate the development of effective and safe 84 
therapeutics, ultimately improving patient care. 85 

2 Methods 86 

This study was conducted according to the reporting guidelines outlined by the Strengthening the 87 
Reporting of Observational Studies in Epidemiology (STROBE) initiative. 88 

2.1 Identification of druggable genes 89 

The information regarding druggable genes was obtained from the Drug-Gene Interaction Database 90 
(DGIdb V.5.0.6) and the latest review on the "druggability" of genes(13). DGIdb provides 91 
comprehensive information on drug-gene interactions and druggable genes from various sources, 92 
including publications, databases, and other web resources(14). For this study, we retrieved the 93 
"categories" data from DGIdb, which was released in February 2022. This dataset contains a 94 
comprehensive list of druggable genes mapped to Entrez genes in DGIdb. Furthermore, we 95 
supplemented our findings with additional gene listings of druggable genes from the review 96 
conducted by Finan et al.  97 

2.2 Expression quantitative trait loci 98 

The blood eQTL dataset used in this study was obtained from eQTLGen (https://eqtlgen.org/). The 99 
dataset comprises blood samples from 31,684 individuals of European ancestry who were in good 100 
health(15). It covers cis-eQTLs of 16,987 genes. We exclusively considered cis-eQTL results that 101 
exhibited high significance (false discovery rate (FDR) < 0.05) and also incorporated allele frequency 102 
information. We identified genetic variants located within a 1000 kb range on both sides of the 103 
coding sequences (cis) that exhibited a strong association with gene expression. These variants were 104 
extracted using eQTL summary statistics obtained from the eQTLGen Consortium. Nonetheless, it 105 
should be noted that eQTLGen does not encompass variants linked to gene expression levels on the 106 
X and Y chromosomes, as well as mtDNA. Further details regarding the data can be found in the 107 
original publication. Additionally, to validate the obtained results, we employed the whole-blood cis-108 
eQTL data from the Genotype-Tissue Expression (GTEx) project, specifically GTEx V.8 109 
(https://gtexportal.org/home/datasets), which consisted of 15,201 samples. 110 

2.3 Kidney diseases data 111 

The primary source of discovery data for this study is the MN and IgAN databases provided by the 112 
Kiryluk Lab(16,17), along with the CKD database provided by the Finngen Consortium. To validate 113 
our findings, we additionally utilized the databases from the Finngen Consortium, CKDgen, and 114 
other sources. Regarding the Kiryluk Lab data, all MN cases were diagnosed utilizing the gold 115 
standard method of renal biopsy, whereas all IgAN cases were defined through dominant mesangial 116 
IgA staining on renal biopsy immunofluorescence. Cases potentially associated with secondary 117 
causes (e.g., Hepatitis, autoimmune, or malignant diseases) were excluded to uphold study rigor. 118 
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CKDgen's research covers chronic kidney disease (CKD), which is defined by the criteria of 119 
eGFRcrea < 60 ml/min/1.73m² and includes conditions such as urinary albumin-to-creatinine ratio 120 
(UACR > 30 mg/g) and gout(18,19). As the study samples are predominantly sourced from the 121 
general population, the research did not primarily focus on severe CKD and severe proteinuria. The 122 
analysis concentrates on cases with eGFR > 15 ml/min/1.73m² and excludes patients receiving 123 
dialysis treatment. 124 

2.4 Mendelian randomization 125 

The MR method necessitates the fulfillment of three fundamental assumptions. To broaden the 126 
scope of MR, we performed a summary-data-based MR approach that estimates pleiotropic 127 
associations between genetic determinants of traits (e.g., gene expression, DNA methylation, or 128 
protein abundance as exposures) and our target complex traits, including MN, IgAN, and CKD. The 129 
heterogeneity-independent instruments (HEIDI) test is one of the sensitivity analysis techniques 130 
utilizing an external reference to estimate linkage disequilibrium (LD). Following false discovery rate 131 
(FDR) correction, genes exhibiting SMR < 0.05 and HEIDI test > 0.05 are deemed to possess causal 132 
relationships. Furthermore, we examine the observed effect sizes (OR values) to discern their roles as 133 
risk or protective factors. Subsequent to the completion of the SMR analysis, we conducted 134 
additional sensitivity analysis employing the Two-sample MR (TSMR) approach, encompassing 135 
inverse variance weighted (IVW) and the Wald ratio. Each method relies on distinct assumptions 136 
regarding the validity of instrumental variables to compute estimates of causal effects, thus 137 
furnishing robust evidence for our findings. In conducting TSMR, we employ data from the 1000 138 
Genomes project (HG19/GRCh37) as a substitute in cases where effect allele frequency data is 139 
missing.  140 

2.5 Phenome-wide MR and mediation MR 141 

Using data from the UK Biobank as the outcome and key genes as the exposure, we employed 142 
phenome-wide Mendelian randomization (MR) to identify phenotypes associated with the key genes, 143 
potentially indicating comorbidity relationships with kidney diseases. Moreover, to identify 144 
intermediary factors associated with kidney diseases, we conducted two-sample MR analysis using 145 
key genes as the exposure, UK Biobank data as the mediator, and kidney diseases as the outcome. 146 

2.6 Bayesian colocalization analysis 147 

Occasionally, a single nucleotide polymorphism (SNP) may be situated within multiple gene regions. 148 
In such instances, if the SNP contains information on the expression of quantitative trait loci (QTL) 149 
for two or more distinct genes, its influence on kidney diseases (MN, IgAN, and CKD) will reflect a 150 
combination of various genes. Co-localization analysis is employed to validate the presence of shared 151 
causal genetic variations between kidney diseases and eQTL. Briefly, we conducted the 152 
colocalization analysis to investigate the co-localization of kidney disease risk and SNP within ±100 153 
kb of the transcription start site (TSS) of each gene in eQTL, focusing on significant MR (Mendelian 154 
randomization) results from the discovery phase (P1 = 1×10−5, P2 = 1×10−5, and P12 = 1×10−5). P1 155 
denotes the probability of a significant eQTL association with the provided SNP, P2 signifies the 156 
probability of the given SNP being associated with kidney disease, and P12 indicates the probability 157 
of the given SNP being associated with both kidney disease and eQTL outcomes. The researchers 158 
evaluated five hypotheses, and posterior probabilities (PP) are utilized to quantify the level of support 159 
for each hypothesis, categorized as PPH0 to PPH4, with a specific emphasis on PPH3 and PPH4. 160 
PPH3 represents the co-localization of gene expression and kidney disease, demonstrating distinct 161 
causal variations within the same gene locus, whereas PPH4 indicates the co-localization of gene 162 
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expression and kidney disease, manifesting shared causal variations. Due to the limited power of co-163 
localization analysis, we confined our analysis to genes that surpassed a threshold of PPH3+PPH4 ≥ 164 
0.5 (0.5 to 0.8 indicating moderate strength, >0.8 indicating high strength). 165 

2.7 Functional Enrichment Analysis 166 

The functions of genes and potential signaling pathways associated with tumorigenesis and 167 
progression in kidney diseases were explored using the Metascape database (v3.5.20240101). By 168 
utilizing these selected functional sets in Metascape, our aim was to gain insights into the molecular 169 
functions, biological processes, pathways, and structural complexes associated with the genes in our 170 
dataset. Additionally, the Signature Module sets enabled us to explore cellular signatures associated 171 
with cell types, chemical and genetic perturbations, immunological signatures, and oncogenic 172 
signatures. The Miscellaneous sets provided information on transcription factor targets and gene-173 
disease associations sourced from trusted databases, including TRRUST, PaGenBase, and 174 
DisGeNET. Furthermore, the L1000 sets allowed us to examine the effects of genetic perturbations, 175 
compounds, cDNA, and ligands. Lastly, we explored the vaccine response signatures, with a 176 
particular focus on COVID-related signatures, to gain insights into the immune response associated 177 
with our target genes. Through this comprehensive analysis, our aim was to uncover potential 178 
functional mechanisms, pathways, and interactions relevant to our target of interest. Gene Ontology 179 
(GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were 180 
conducted. All genes that exhibited significant alterations after correction were included in this 181 
analysis. The GO analysis was categorized into three sections: BP (biological process), CC (cellular 182 
component), and MF (molecular function). A P-value below 0.05 was considered statistically 183 
significant. 184 

3 Results 185 

We successfully identified multiple causal associations between gene expression and kidney diseases 186 
in the blood through SMR tests. To control for type I errors across the entire genome, we conducted 187 
false discovery rate (FDR) correction, which revealed robust evidence of associations (FDR < 0.05). 188 
Subsequently, we performed HEIDI tests (P > 0.05) to explore whether these associations resulted 189 
from shared causal variants rather than pleiotropy. To support our findings, we conducted sensitivity 190 
analyses using other MR methods that are based on similar assumptions, demonstrating consistent 191 
outcomes. Additionally, to address confounding factors, we conducted a colocalization analysis, 192 
which assessed the posterior probability of shared causal variation (PPH4) between gene expression 193 
and kidney diseases, employing a threshold of >0.50. Additionally, we replicated our findings by 194 
performing additional analyses utilizing other GWAS studies. The identified genes were classified 195 
into four distinct target groups based on SMR, TSMR, colocalization analysis, and external 196 
replication results.  197 

Genes with an FDR-corrected SMR-P value < 0.05 and a HEIDI test result > 0.05 were considered 198 
essential criteria and classified as tier 1 targets when supported by TSMR, colocalization, and 199 
replication. Genes supported by any two of TSMR, colocalization, and replication were classified as 200 
tier 2 targets. Genes supported by any one of TSMR, colocalization, or replication were classified as 201 
tier 3 targets. The remaining genes were classified as tier 4 targets.  202 

Following the aforementioned principles, we identified a primary target (HCG18) and multiple 203 
secondary targets associated with MN. Moreover, we identified four primary targets (AFF3, 204 
CYP21A2, DPH3, HLA-DRB5) and several secondary targets associated with IgAN. Additionally, 205 
we identified various secondary targets associated with CKD (Table 1). In the case of MN, a decrease 206 
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of 1 standard deviation (SD) in HCG18 expression was significantly associated with an 82% 207 
reduction in risk (OR: 0.18, 95% CI: 0.08-0.43, PSMR = 9.79×10-5). Regarding IgAN, an increase of 1 208 
SD in AFF3 expression was linked to a 46% reduced risk (OR: 0.54, 95% CI: 0.39-0.74, PSMR = 209 
1.64×10-4). Similarly, an increase of 1 SD in CYP21A2 expression was associated with a 42% 210 
reduced risk (OR: 0.58, 95% CI: 0.45-0.76, PSMR = 5.53×10-5), an increase of 1 SD in DPH3 211 
expression was correlated with a 27% reduced risk (OR: 0.73, 95% CI: 0.66-0.80, PSMR = 3.89×10-212 
11), and an increase of 1 SD in HLA-DRB5 expression was linked to a 26% reduced risk (OR: 0.74, 213 
95% CI: 0.43-0.86, PSMR = 8.54×10-5). The reverse TSMR analysis revealed an inverse relationship 214 
between IgAN and only HLA-DPA1, HVCN1, and EHMT2, while no associations were found for 215 
the remaining targets in kidney diseases. 216 

3.1 Phewas 217 

Through comprehensive phenotypic Mendelian randomization, we uncovered a range of diseases and 218 
phenotypes associated with kidney disease. These diseases and phenotypes may exhibit comorbidity 219 
with kidney disease. Moreover, employing a two-step approach, we identified diabetes, lipid 220 
metabolism, and other factors as potential pivotal mediators that influence kidney disease via genetic 221 
pathways. 222 

3.2 Functional Enrichment Analysis 223 

Pathways associated with key genes were identified through functional enrichment analysis. The 224 
AKT gene, CD4-positive dendritic cells, the immunoreceptor signaling pathway (UPG0:0002429), 225 
SATO-mediated methylation-induced silencing in pancreatic cancer, KRIGE's response to 226 
TOSEDOSTAT after 24 hours, and the carboxylic acid metabolism process may be associated with 227 
MN through key genes. Th17 cell differentiation and lipid metabolism may be associated with IgAN 228 
through key genes. Differences or upregulation between TARTE cells, plasma cells, and plasmablasts 229 
under specific conditions or treatments may be associated with CKD. 230 

4 Discussion 231 

To the best of our knowledge, this study represents the pioneering attempt to integrate blood 232 
genomics data with SMR, TSMR, Bayesian colocalization, phenotype scanning, KEGG, GO pathway 233 
analysis, and PPI analysis methods. Multiple databases were utilized to uncover and validate the 234 
potential roles of specific genes in MN, IgAN, and CKD. Through genetic prediction, we established 235 
a causal relationship between HCG18 and MN, AFF3, CYP21A2, DPH3, HLA-DRB5 and IgAN, 236 
and HLA-DQB1-AS1 and CKD (the highest-level targets discovered for each disease are listed here). 237 
After conducting a series of analyses, we ultimately identified the aforementioned genes as high-238 
priority potential drug targets for kidney diseases. According to the target principles mentioned 239 
earlier, we believe these genes can function as potential drug targets for the treatment of kidney 240 
diseases, and several of them are druggable.  241 

By utilizing SMR and employing various validation methods, we have newly identified several 242 
promising genes, thus enhancing their potential as therapeutic intervention targets. Therefore, to 243 
determine innovative targets for drug interventions in kidney diseases, we conducted comprehensive 244 
analyses to assess the causal relationships of genes. Causal relationships identified through MR may 245 
involve reverse causality, horizontal pleiotropy, or genetic confounding induced by LD. Therefore, in 246 
this study, we employed IVs exhibiting strong correlations with the genes, utilized the HEIDI test to 247 
estimate LD, and excluded IVs that exhibited evidence of linkage disequilibrium during MR 248 
implementation. Reverse Mendelian randomization analysis uncovered bidirectional causal 249 
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relationships between HLA-DPA1, HVCN1, EHMT2, and IgAN. Additionally, Bayesian 250 
colocalization was utilized to mitigate bias introduced by LD (24). Employing a posterior probability 251 
threshold of 0.5, it was deemed to possess moderate to high colocalization strength, and we identified 252 
all genes that exhibited SMR positivity. Nevertheless, these associations alone do not fully elucidate 253 
the connections between the identified genes and kidney diseases. Additionally, we performed 254 
phenotype scanning analyses of the instrumental variables utilized in the MR analysis to address 255 
confounding factors. Thus, the aforementioned genes have the potential to serve as drug targets for 256 
kidney diseases, with a particular focus on Tier 1 targets. 257 

Membranous Nephropathy 258 

HLA Complex Group 18 (HCG18) is a long non-coding RNA gene. For HCG18 and MN, there are 259 
some indications of a potential relationship, although it is not well-established. Research has shown 260 
that long non-coding RNAs (lncRNAs), including HCG18, are involved in various biological 261 
processes and diseases, including cancer, COVID-19 infections, and potentially other complex 262 
conditions like nephropathy(20–22). However, specific studies directly linking HCG18 to MN are 263 
sparse. One study suggests that lncRNAs like HCG18 could regulate immune responses and cellular 264 
processes that might be relevant to diseases like MN, but conclusive evidence is lacking. 265 

IgA nephropathy 266 

AFF3, also known as ALF Transcription Elongation Factor 3, is a protein-coding gene that encodes a 267 
nuclear transcriptional activation factor with tissue-restricted expression, primarily in lymphoid 268 
tissues. AFF3 is associated with diseases such as Familial Syndrome and Intellectual Developmental 269 
Disorder, specifically X-linked 109. Furthermore, it is suggested that this gene may contribute to 270 
lymphoid development and tumor formation. CYP21A2, also known as Cytochrome P450 Family 21 271 
Subfamily A Member 2, is a protein-coding gene. CYP21A2 is associated with diseases such as 272 
Congenital Adrenal Hyperplasia due to 21-hydroxylase Deficiency and Classical Congenital Adrenal 273 
Hyperplasia, both caused by 21-hydroxylase deficiency. HLA-DRB5, a member of the Major 274 
Histocompatibility Complex Class II, is a protein-coding gene that encodes the DR Beta 5 subunit. 275 
HLA-DRB5 is associated with diseases such as Pityriasis Rosea and Systemic Lupus Erythematosus. 276 
It involves related pathways, including TCR Signaling and Phosphorylation of CD3 and TCR zeta 277 
chains. DPH3, also called Diphthamide Biosynthesis 3, is a protein-coding gene. DPH3 is associated 278 
with diseases such as Diphtheria and Melanotic Schwannoma. It involves related pathways such as 279 
Protein Metabolism, γ-carboxylation, hypusine formation, and arylsulfatase activation. 280 

Chronic Kidney Disease  281 

HLA-DQB1-AS1, an RNA gene classified as a long non-coding RNA (lncRNA), It has been 282 
suggested to be associated with Osteoarthritis and Muscle Atrophy. 283 

Our study has several limitations. Firstly, the blood genomic data used in our analysis were sourced 284 
from two distinct studies that may have utilized varying measurement standards. However, we chose 285 
a database with a large sample size as the discovery cohort, and another one as the validation cohort. 286 
Secondly, during the validation process using different databases, certain genes did not produce 287 
results, resulting in missing data. Missing data does not imply insignificant findings; instead, it 288 
signifies unknown information. Thirdly, the data utilized in our experiments solely represent the 289 
European population, necessitating further research to extend the generalizability of our findings to 290 
other ethnicities. Additionally, the precise mechanisms underlying these genes and kidney diseases 291 
are still unknown. It is essential to acknowledge that unvalidated data analysis may encompass 292 
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aspects necessitating experimental verification, thereby enabling the achievement of objectives 293 
beyond the scope of data analysis alone. Our data can be utilized in future research to validate drug 294 
targets. Enhancing our comprehension of the genetic regulation of drug targets and the circulating 295 
levels of biomarkers may improve drug interventions and clinical trials. 296 

5 Data availability 297 

eQTLs data was derived via public research(23), and MN data was retrieved from Kiryluk Lab(16). 298 
We used R language version 4.3.0 for our analysis. In R language, we utilized the "coloc 299 
(https://github.com/chr1swallace/coloc.git)" and "TwoSampleMR 300 
(https://github.com/MRCIEU/TwoSampleMR.git)" and “locuscompare” packages for our 301 
analysis(24). 302 
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12 Figure legends 381 

Figure 1: Study design. 382 

MN: membranous nephropathy; IgAN: IgA nephropathy; CKD: chronic kidney disease; HEIDI 383 
test: heterogeneity in dependent instruments; FDR: false discovery rate; PPH4: posterior probabilities 384 
of hypotheses 4. 385 
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