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From Sleep Patterns to Heart Rhythms: Predicting
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Abstract—Background: Atrial fibrillation (AF) is often asymp-
tomatic and thus under-observed. Given the high risks of stroke
and heart failure among patients with AF, early prediction and
effective management are crucial. Importantly, obstructive sleep
apnea is highly prevalent among AF patients (60–90%); therefore,
electrocardiogram (ECG) analysis from polysomnography (PSG),
a standard diagnostic tool for subjects with suspected sleep apnea,
presents a unique opportunity for the early prediction of AF. Our
goal is to identify individuals at a high risk of developing AF
in the future from a single-lead ECG recorded during standard
PSGs.

Methods: We analyzed 18,782 single-lead ECG recordings
from 13,609 subjects at Massachusetts General Hospital, iden-
tifying AF presence using ICD-9/10 codes in medical records.
Our dataset comprises 15,913 recordings without a medical
record for AF and 2,056 recordings from patients who were
first diagnosed with AF between 1 day to 15 years after the
PSG recording. The PSG data were partitioned into training,
validation, and test cohorts. In the first phase, a signal quality
index (SQI) was calculated in 30-second windows and those
with SQI<0.95 were removed. From each remaining window,
150 hand-crafted features were extracted from time, frequency,
time-frequency domains, and phase-space reconstructions of
the ECG. A compilation of 12 statistical features summarized
these window-specific features per recording, resulting in 1,800
features. We then updated a pre-trained deep neural network and
data from the PhysioNet Challenge 2021 using transfer-learning
to discriminate between recordings with and without AF using
the same Challenge data. The model was applied to the PSG
ECGs in 16-second windows to generate the probability of AF
for each window. From the resultant probability sequence, 13
statistical features were extracted. Subsequently, we trained a
shallow neural network to predict future AF using the extracted
ECG and probability features.

Results: On the test set, our model demonstrated a sensitivity
of 0.67, specificity of 0.81, and precision of 0.3 for predicting AF.
Further, survival analysis for AF outcomes, using the log-rank
test, revealed a hazard ratio of 8.36 (p-value of 1.93× 10−52).

Conclusions: Our proposed ECG analysis method, utilizing
overnight PSG data, shows promise in AF prediction despite a
modest precision indicating the presence of false positive cases.
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This approach could potentially enable low-cost screening and
proactive treatment for high-risk patients. Ongoing refinement,
such as integrating additional physiological parameters could
significantly reduce false positives, enhancing its clinical utility
and accuracy.

Index Terms—Polysomnography, atrial fibrillation, apnea, ma-
chine learning, sleep, stroke

I. INTRODUCTION

Atrial fibrillation (AF) is one of the most prevalent cardiac
arrhythmias in the United States. It is often asymptomatic
and therefore under-diagnosed in the general population. It
is associated with a higher risk of stroke (5-fold) together
with a higher risk of heart failure (3-fold) [1]. Moreover,
there is strong evidence of a relationship between AF and
obstructive sleep apnea (OSA). Cardiovascular disease and
OSA are closely linked with respect to their pathophysiology
and epidemiology [2]. The atrial arrhythmogenic mechanism
is based on imbalances of the autonomic nervous system,
chronic intermittent hypoxia, inflammation, and swings in
thoracic pressure during different phases of the acute apnoeic
episodes [3]. OSA is acknowledged as a contributing risk
factor for the onset and advancement of AF. Additionally,
OSA diminishes the efficiency of antiarrhythmic medications,
electric cardioversion (EC), and catheter ablation (CA) pro-
cedures in managing AF [4]. The gold standard for diag-
nosis of OSA in older individuals and those with cardiac
and pulmonary comorbidities is laboratory polysomnography
(PSG). PSG encompasses the simultaneous recording and
analysis of various physiological parameters during sleep,
including electroencephalography (EEG), electrooculography
(EOG), electromyography (EMG), monitoring respiratory ef-
fort, airflow dynamics, blood oxygen saturation levels as well
as electrocardiography (ECG). Those undergoing PSG are at
higher risk for AF than those who have home sleep apnea
tests (which often do not record ECG). This gives a unique
opportunity to predict future AF from the ECG channel given
the higher risk of AF for patients with suspected sleep apnea.

II. DATASET

In this study, we utilized data from the Massachusetts
General Hospital collected for the Human Sleep Project [5].
Our dataset comprises 18,782 PSG recordings from 13,609
patients. All signals are measured in microvolts with a sam-
pling frequency of 200 Hz. For the prediction of future AF, a
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TABLE I
SUBJECTS AND RECORDINGS DISTRIBUTION BY THE PRESENCE OF AF

Data Subjects Recordings
AF-free 11,898 15,913
AF-past 327 413
AF-future 1,704 2,456
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Fig. 1. Swimmer plot illustrating the progression of AF events for individual
participants. The vertical line marks the time the PSG was conducted, while
each horizontal circle represents the duration from the PSG date to the
diagnosis of AF in EHR.

single ECG channel recorded below the right clavicle near the
sternum and over the left lateral chest wall was utilized. The
mean length of the ECG recording is 7.62± 1.34 hours.

We retrieved the AF vs. AF-free labels together with the
date of AF being diagnosed from electronic health records
(EHR) based on the ICD9 (427.31, 427.32) and ICD10 (I48.0,
I48.1, I48.2, I48.91) codes [6], [7]. For identifying incident
AF from EHR, we used the following definition: Two ICD
9/10 codes (out or inpatient) separated by more than seven
days but within one year [7]. Table I summarizes the number
of recordings for three different categories: AF-free, AF-past
pointing to the patients diagnosed with AF prior to their PSG
date, and AF-future representing patients diagnosed with AF
after the PSG recording.

For the prediction of future AF, we will continue to use
recordings that are either from the category AF-free or AF-
future, including only patients who were first diagnosed with
AF from 1 day to 15 years after the day PSG was taken. The
progression of AF is captured by a swimmer plot (Figure 1)
representing the time elapsed from the PSG date to the
diagnosis of AF in the EHR.

III. METHODS

We employed two techniques to predict future AF: an
algorithm for feature extraction and a deep learning method to
determine the probability of AF, which were then combined
into a single prediction algorithm.

A. Feature extraction algorithm

The algorithm for feature extraction is based on the winning
solution [8] from the PhysioNet Challenge 2017 focused on
the classification of AF from short single lead ECG recordings
[9]. The processing pipeline consists of upsampling the ECG
to 300 Hz, splitting the ECG into 30-second windows to
align with sleep stages, and consequently calculating the
signal quality index (SQI) by comparing the results of two
different peak detection algorithms. The 30 s window is
discarded from further analysis in case SQI is lower than
0.95. Segments with satisfying SQI (higher than 0.95) are
denoised and the baseline wander is removed based on the
sparse derivative decomposition algorithm [10]. Subsequently,
a set of 150 hand-crafted ECG features is extracted containing
time domain and morphological features, frequency domain
features, time-frequency domain features, and nonlinear (phase
space) features [8]. This results in an array of size N x 150,
where N represents the number of 30-second segments of the
recording. Subsequently, 12 statistical features (mean, median,
standard deviation, skewness, kurtosis, maximum, minimum,
mean gradient, median gradient, maximum gradient, minimum
gradient and standard deviation of the gradient) are extracted
for each one of ECG hand-crafted features across N-30s
windows resulting in 1,800 (12 statistical features x 150 ECG
hand-crafted features) ECG statistical features.

B. Deep learning approach

The second approach uses the deep learning solution [11]
from the PhysioNet Challenge 2021 [12] focused on arrhyth-
mia classification with emphasis on differences in performance
for varying numbers of input ECG channels. The model
architecture is designed as a custom Residual neural network
with an attention layer, pre-trained on 86,000 recordings
from the public PhysioNet Challenge 2021 dataset for 26
arrhythmias classification. We then updated a pre-trained deep
neural network using transfer learning to discriminate between
recordings with and without AF using the same Challenge data
by changing the last fully connected layer.

During the preprocessing stage, the PSG’s ECG recordings
are upsampled to 500 Hz, bandpass filtered from 1–47 Hz,
divided into 16-second windows (8,192 samples), and each 16-
second window is standardized using z-score. The pre-trained
model was then applied to the 16-second windows to generate
the probability of AF. The result is the M × 1 probability
vector, where M is the number of 16-second windows across
the recording. Subsequently, we extracted the same 12 statis-
tical features out of the probability vector and added a 13th
feature; the number of segments with a probability higher than
threshold (0.45). The threshold was estimated empirically on
the PhysioNet Challenge 2021 training dataset.

C. Final prediction model

In the final phase, we combined 1,800 features extracted
from our feature extraction algorithm with an additional 13
features derived from the posterior probability of the deep
learning model. The PSG data were partitioned into training,
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TABLE II
RECORDINGS PARTITION INTO THE TRAINING, VALIDATION, AND TEST

SETS

Training Validation Test
AF-free 12,903 1,400 1,610
AF-future 1,668 193 195

validation, and test sets (Table II) ensuring that individual
patients remained exclusive to each cohort. Stratification based
on the target label was applied across all cohorts.

Subsequently, we trained a random forest classifier con-
sisting of 200 trees and computed feature importance by
assessing the mean and standard deviation of impurity de-
crease accumulation within each tree. Through grid search,
we identified the top 1,000 most significant features. Follow-
ing this, we constructed a neural network (NN) architecture
comprising 5 blocks, each containing identical layers with
varying hyperparameters: a fully connected layer with ReLU
activation function, batch normalization layer, and dropout
layer. The output dimensions of these layers are 128, 128,
64, 32, and 2, respectively, with a dropout probability of 0.2
for all layers except the last, where it is set to 0.5. A softmax
activation function is appended after the final block to yield
the probability of AF-free versus AF-future. Throughout the
training, we employed the Adam optimizer with a learning rate
of 0.001 and incorporated a learning rate scheduler, adjusting
the rate dynamically with a step size of 7 epochs and a gamma
value of 0.1 over a training span of 32 epochs to optimize
convergence. After training the model, we determined the
optimal threshold for class dichotomization as the operating
point of the receiver-operating characteristic (ROC) curve, set
at 0.59. Subsequently, we evaluated the model’s performance
on the test cohort.

D. Analysis of performance for different time frames

After training the model, we assessed the model’s per-
formance across various time windows ranging from one to
fifteen years for the test set. To ensure accurate evaluation, we
employed point censoring techniques. Point censoring arises
when, despite ongoing monitoring, patients are lost to follow-
up or the event of interest does not occur within the study’s
time frame. More specifically, for patients free of AF, we
censored those whose observation period was shorter than a
defined time frame. Conversely, for patients categorized as AF-
future, we censored individuals diagnosed with AF after the
specified time frame. After applying censoring, we assessed
the model’s sensitivity, specificity, and positive predictive
value (PPV) across follow-up time frames ranging from 1 to
15 years, with a step size of 1 year.

E. Survival analysis

The model’s ability to stratify patients into high-risk and
low-risk groups for future AF was assessed using survival
analysis on the test set. To measure the relative risk of AF
occurrence between groups over time we computed the hazard
ratio (HR) using the log-rank test. We conducted survival

TABLE III
RESULTS FOR VALIDATION AND TEST SETS FOR FUTURE AF PREDICTION

Metric Validation Test
AUROC 0.82 0.82
AUPRC 0.46 0.42
PPV 0.34 0.30
Sensitivity 0.70 0.67
F1 0.46 0.42
Specificity 0.81 0.81

TABLE IV
CONTINGENCY TABLE OF OBSERVED AND EXPECTED FREQUENCIES OF

RECORDS FOR APNEA VS PREDICTED AF

Presence of Apnea Values AF-future AF-free
Apnea Observed 304 696
Apnea Expected 240 760
Apnea-free Observed 113 623
Apnea-free Expected 177 560

analysis by selecting the initial recording and its corresponding
prediction from each subject, as some subjects contributed
multiple recordings.

F. Sleep apnea, stroke and AF association

To test the association between sleep apnea and future AF
we conducted a chi-squared test on the test cohort. Sleep apnea
labels were extracted from PSG recording annotation files, and
the apnea-hypopnea index (AHI) was calculated. Patients with
an AHI higher than 5 were categorized as having sleep apnea
[13].

Subsequently, we calculated the chi-squared statistic to
assess the difference between the observed and expected
frequencies, assuming independence between sleep apnea and
atrial fibrillation.

We also conducted a chi-squared test to examine the asso-
ciation between future stroke and predicted future AF. Stroke
labels were obtained from EHR based on ICD9 (430, 431,
433, 434.9, 434, 436) and ICD10 codes (I60, I61, I63, I64,
I63.9) [14].

IV. RESULTS

The overall results of future AF prediction for both the
validation and test datasets are provided in Table III. While
the performance regarding AUROC is relatively impressive at
0.82 on both validation and test data, the PPV and AUPRC
show modest performance.

The results for different time windows after point censoring
are captured in Figure 2 with the corresponding counts of
recordings for each time frame captured in Table V.

A. Survival analysis

In the context of survival analysis, we obtained an HR of
8.36 (95% CI: 5.60 to 12.48) with p-value of 1.93 × 10−52.
The Kaplan-Meier plot illustrating these findings is depicted
in Figure 3.
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B. Sleep apnea, stroke and AF association

The contingency tables summarizing the observed and aex-
pected frequencies for the presence or absence of sleep apnea
and AF are presented in Table IV.

Our chi-squared test yielded a statistic of 51.77 and a p-
value of 6.23 × 10−13, indicating a significant association
between sleep apnea and future atrial fibrillation.

The observed and expected frequencies for the presence or
absence of future stroke and AF are displayed in Table VI.
The chi-squared test statistic yielded 20.9, with a p-value of
4.85 × 10−6 , indicating a significant association between
future stroke and predicted future AF.

V. DISCUSSION

The results of our method for predicting future AF on the
test cohort demonstrate promising performance across various
evaluation criteria as illustrated in Table III. The specificity of
0.81 indicates a satisfactory ability of the model to identify
patients as AF-free in the future. Moreover, a sensitivity of
0.67 signifies the model’s acceptable capability in detecting
patients at high risk of developing AF. While the PPV stands at
0.3, suggesting room for improvement due to a notable number
of false positive cases, it is essential to contextualize this
metric. PPV is a prevalence prevalence-dependent metric, and
exceeds the prevalence of 15% for future AF in our dataset.

Given our time-to-event data, we aimed to assess our
algorithm’s performance in predicting future AF across various
time frames spanning 1 to 15 years. Identifying patients at
risk of developing AF within the initial years following the
PSG is crucial for timely intervention and treatment strategies.
As depicted in Figure 2, our observations reveal a slight
decrease in sensitivity over the 15-year prediction period.
Conversely, specificity remains relatively stable throughout
the duration, showing no significant fluctuations. Notably, we
observe an improvement in PPV with an increasing time
window reflecting the influence of class prevalence.

The survival analysis for AF outcome, visually represented
by the Kaplan-Meier plot in Figure 3, unveiled a significantly
higher survival rate for subjects predicted by our model as low
risk for developing AF. The hazard ratio of 8.36 indicates that
the rate of AF occurring in the group predicted as high risk of
having AF is more than 8 times the rate of the AF-free group.

This study also aimed to investigate the relationship between
current sleep apnea and the predicted future AF. Upon compar-
ing the observed frequencies in the dataset with the expected
frequencies for sleep apnea and AF using the chi-squared test
(Table IV), we determined a significant association (p-value
<0.0001). These findings underscore the critical importance of
AF screening for patients undergoing a PSG, given the shared
pathophysiology between sleep apnea and AF.

Furthermore, the significance of screening patients for future
AF is highlighted by the findings of the chi-squared test
examining the association between predicted AF and future
stroke diagnostic labels (Table VI). Moreover, our model pre-
dicted AF for 37.5% of all stroke incidences, suggesting that
preventative screening could potentially reduce the incidence
of future strokes.

While the results are tantalizing for mass AF risk screening
(over 2 million PSGs are performed yearly in the USA), it is
important to note some limitations of our study. First, since the
volume of ECG was vast (over 140,000 hours of data) it was
unfeasible to overread the ECGs to identify if the algorithm
was detecting or predicting the presence of AF. In future work
we aim to randomly sample the ECG with high probabilities of
AF, to identify undiagnosed episodes. Nevertheless, it might be
problematic to definitely classify a patient as having AF just
from some random samples. Another option for identifying
subjects with AF already present might be running multiple
existing AF classification algorithms, validated on the external
datasets. By focusing on segments classified as AF with high
algorithmic consensus, we can categorize these recordings into
a group suggestive of present but undiagnosed AF.

Regardless, this may just be semantics, since no longitudinal
study of AF has been performed which identifies how AF
evolves in an unselected population. It may be that patients
that go on to be diagnosed as suffering from AF, were
already exhibiting some AF episodes ’silently’. In that sense,
there would be no real ’prediction’ of AF, but just early
identification. Of course, one may argue this for almost all
diseases, since the definitive diagnosis is often just defined as
passing a certain threshold.

For future AF, it is possible that patients who were identified
as having a high risk of future AF did already manifest AF at
some point, but it was either in another health system or went
unnoticed. This issue would only serve to reduce our model’s
performance.

Finally, we note that cardiac dynamics during sleep are
complex, and not well understood. Sleep influences the car-
diovascular, endocrine, and thermoregulatory systems, and the
circadian patterns of blood pressure, and sympathetic and
parasympathetic activation change throughout the night. Thus,
sleep stage (NREM/REM, deep/light NREM) or state (sta-
ble/unstable) specific analysis may reveal more mechanisms
and predictive power for our model.

VI. CONCLUSION

This study introduced a novel method for predicting fu-
ture AF using single-lead ECG recordings from standard
PSG data. Our approach leverages a large dataset of ECG
recordings, demonstrating the capacity to pinpoint individuals
at elevated risk of AF years before clinical manifestation.
The model exhibited acceptable sensitivity and specificity
within the test cohort, with a significant hazard ratio identified
through survival analysis. However, the PPV indicates room
for improvement in reducing false positives.

These results suggest the potential of our method as a non-
invasive screening tool that could be integrated into existing
diagnostic protocols for sleep apnea, enhancing early detection
and management of AF. Ongoing refinement and rigorous
validation are essential to improve accuracy and clinical utility.
With further development, this approach could significantly
impact AF management, improving patient outcomes and
reducing healthcare costs associated with its complications.
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Fig. 2. Illustration of model performance for future AF prediction for different time windows ranging from 1-15 years. The illustration encompasses
sensitivity, PPV, and specificity metrics. Additionally, Table V indicates the follow-up time in years in the first row, while the second and third rows represent
the corresponding counts of recordings for AF-free and AF-future categories after applying point censoring.

TABLE V
NUMBER OF RECORDINGS AFTER POINT CENSORING FOR DIFFERENT TIME FRAMES

Time (years) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
AF-free 1,586 1,569 1,546 1,508 1,456 1,278 1,102 954 782 619 482 338 200 77 10
AF-future 21 42 61 81 101 138 158 171 179 181 185 188 194 195 195
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Fig. 3. The Kaplan-Meier curve illustrates the probability of survival with
outcome AF for two distinct groups. One group comprises subjects classified
by the model as AF-free represented by the orange curve, while the other
group consists of individuals deemed to be at high risk of developing AF in the
future depicted by the green curve. The log-rank test revealed a hazard ratio
of 8.36 (95% CI: 5.60 to 12.48), indicating a significant difference between
the groups (p <0.0001).

TABLE VI
CONTINGENCY TABLE OF OBSERVED AND EXPECTED FREQUENCIES FOR

FUTURE STROKE VS PREDICTED AF

Future stroke Values AF-future AF-free
Stroke Observed 72 120
Stroke Expected 46 146
Stroke-free Observed 360 1,253
Stroke-free Expected 386 1,227
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