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Abstract

This study uses Kolmogorov-Arnold Networks (KANs)
to analyze electrocardiogram (ECG) signals in order
to detect cardiac abnormalities. These novel networks
have demonstrated potential for application in biosig-
nal analysis, particularly ECG, due to their flexibility
and smaller parameter requirements, making them can-
didates for wearable devices. The network structure com-
prises a simple KAN model with a single hidden layer of
64 neurons. It was trained on the Telehealth Network
of Minas Gerais (TNMG) dataset and tested for gener-
alization on the Chinese Physiological Signal Challenge
2018 (CPSC) dataset. The KAN model delivered reason-
ably promising results, achieving an F1-score of 0.75 and
an AUROC of 0.95 on the TNMG dataset. During the
out-of-sample generalization test on the CPSC dataset,
it achieved an F1-score of 0.62 and an AUROC of 0.84.
It has also shown resistance to missing data channels
by maintaining a reasonable performance, down to only
a single lead left of ECG data instead of the initial 12
leads. Compared with traditional Multi-Layer Percep-
trons (MLP) and Neural Circuit Policy (NCP, aka. Liq-
uid Time Constant Networks), KANs exhibit superior
flexibility, adaptability, interpretability, and efficiency.
Their compact size and reduced computational require-
ments make them potential candidates for deployment on
hardware, particularly in personalized medical devices.

Keywords: Abnormality Detection, Simple Net-
work, Electrocardiogram, Generalization, Robustness,
Kolmogorov-Arnold Networks.

1 Introduction

There are many techniques for monitoring cardiac ac-
tivity, with Electrocardiography (ECG) being a notable
option due to its non-invasive and cost-effective charac-
teristics. The 12-lead ECG is the preferred method for
evaluating the heart’s electrical activity in clinical set-
tings [1]. Detecting and treating abnormalities is a key
function of cardiac care units. Annually, over 3 million
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ECGs are performed worldwide for patients with var-
ious conditions, ranging from heart rhythm anomalies
to hormonal imbalances caused by organ failures [2, 3].
ECG signals can also detect seizures [4]. These ECGs
are typically analyzed by experienced doctors who diag-
nose issues based on their knowledge and experience [5].
However, when morphological disturbances in the ECG
signal become complex, interpretations can vary signifi-
cantly among physicians [6]. This variability underscores
the need for a system capable of analyzing ECG signals
with high accuracy, reducing errors, and enabling timely
detection and treatment of issues [7, 8].

Multi-layer Perceptrons (MLPs) are fundamental to deep
learning models and have been extensively utilized in ap-
plications like ECG signal analysis. Known for their ca-
pability to approximate nonlinear functions, MLPs are
effective in detecting ECG abnormalities, which is cru-
cial for cardiac diagnosis and monitoring [9, 10, 11, 12].
However, MLPs often have limitations, such as fixed acti-
vation functions and less interpretable structures, which
can hinder performance improvements and clinical appli-
cability [13].

In response to these limitations, more compact and ef-
ficient neural network models such as Neural Circuit
Policies (NCPs) have been developed. NCPs which is
designed for energy-efficient computation, have demon-
strated impressive performance in various tasks, includ-
ing ECG signal analysis [14]. By integrating principles
from neuroscience, NCPs achieve high accuracy with
fewer parameters, rendering them suitable for deploy-
ment on resource-constrained devices [15]. Additionally,
there is potential for merging NCPs with Spiking Neural
Networks to enhance power efficiency [16].

Kolmogorov-Arnold Networks (KANs) offer a promising
alternative. Inspired by the Kolmogorov-Arnold repre-
sentation theorem, KANs use learnable activation func-
tions on network edges rather than fixed node functions.
This design enhances flexibility, adaptability, and in-
terpretability, which are critical in medical applications
where understanding model decisions is essential. Recent
studies, such as those by [17], have shown KANs outper-
forming traditional MLPs in tasks like data fitting and
solving partial differential equations, suggesting their ef-
fectiveness in optimizing ECG analysis and improving
cardiac diagnoses.

This work examines the performance of KANs, compar-
ing them with MLPs and NCPs in the context of ECG
signal analysis, focusing on detecting cardiac abnormali-
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Table 1: Comparsion between different networks (∗ ∗ ∗:
Superior; ∗∗: Moderate; ∗: Inferior)
Network’s characteristic MLP NCP KAN

Learnable activation function ∗ ∗ ∗∗
High performance ∗ ∗∗ ∗ ∗ ∗
Reduced parameters ∗ ∗∗ ∗ ∗ ∗
Interpretability ∗ ∗∗ ∗ ∗ ∗
Efficiency ∗ ∗∗ ∗ ∗ ∗
Spline based ∗ ∗ ∗∗

ties. These comparisons are graphically depicted in Fig. 1
and detailed in Table 1. KANs hold promise for future
hardware implementation due to their potential for re-
duced parameters and efficiency. Their adaptability and
efficiency are important features and, hence, candidates
for deployment in hardware, providing practical solutions
for real-time monitoring and diagnosis in clinical envi-
ronments. Assessing the architectures below numerous
conditions has a look at pursuits to assess the ability of
KANs to decorate ECG evaluation in cardiac healthcare.
Given the increasing demand for efficient and real-time
monitoring solutions, this work envisions the KANs de-
ployment in wearable edge-devices. These devices are de-
signed to swiftly detect anomalies and effectively identify
cardiac abnormalities, leveraging KAN’s compact archi-
tecture and reduced computational complexity.

1.1 Background

In the field of abnormality detection, several notable
models have been developed. Petmezas et al. [18] intro-
duced a Hybrid Convolutional Long Short-Term Mem-
ory Neural Networks (CNN-LSTM) Network with a sen-
sitivity of 97.87% and a specificity of 99.29% for ECG
heartbeat classification. A model by Gupta et al. [19]
combined fractional wavelet transform, Yule-Walker au-
toregressive analysis, and Principal Component Analy-
sis (PCA), achieving a mean square error of less than
0.2%, a detection accuracy of 99.89%, and an output
Signal-to-Noise Ratio (SNR) of 25.25 dB. The model
proposed by Chen et al. [20] utilized five Convolutional
Neural Network (CNN) blocks, a bidirectional Recurrent
Neural Network (RNN) layer, an attention layer, and a
dense layer, achieving an F1-score of 0.84 in ECG de-
tection. Huang et al. [21] introduced a fast compression
residual CNN, achieving an average accuracy of 98.79%
for ECG classification. Additionally, a shallow Diagonal
State Space Sequence (S4D) model developed by Huang
et al. [22] for ECG achieved a robust F1-score of 0.81 and
demonstrated high robustness with input data.
Recent studies have also applied NCP models to
ECG signal processing. For example, Huang et al.
[15] presented two models, ConvLSTM2D-Liquid Time-
Constant network (CLTC) and ConvLSTM2D-Closed-
Form Continuous-time neural network (CCfC). Both
models were evaluated on the ECG datasets, showing im-
pressive generalization and robustness capabilities [15].
KANs have emerged as a novel approach in neural net-
work architecture, inspired by the Kolmogorov-Arnold

representation theorem. Unlike traditional MLPs using
fixed node functions, KANs utilize learnable activation
functions on network edges, enhancing flexibility and in-
terpretability [17]. The potential of KANs in ECG anal-
ysis is underscored by their ability to handle complex
signal patterns, which is essential for accurate cardiac
abnormality detection.

In summary, while MLPs and their variants have been
widely used for ECG signal analysis, introducing KANs
represents a significant advancement. By leveraging the
unique properties of the Kolmogorov-Arnold representa-
tion theorem, KANs offer a promising alternative that
could enhance the accuracy, interpretability, and effi-
ciency of ECG analysis models, ultimately improving
cardiac healthcare outcomes.

2 Prerequisite

2.1 Kolmogorov-Arnold Networks

KANs represent a significant advancement over tra-
ditional MLPs by utilizing learnable activation func-
tions on edges rather than fixed activation functions
on nodes [17]. This approach allows KANs to achieve
higher accuracy and interpretability, making them suit-
able for various applications, including time series fore-
casting and ECG signal classification.

2.2 Characteristics of KANs

KANs are based on the Kolmogorov-Arnold representa-
tion theorem, which states that any multivariate contin-
uous function can be represented as a finite composition
of continuous univariate functions and addition opera-
tions [17]. This theorem forms the foundation of KANs,
enabling them to replace traditional linear weights with
spline-parametrized univariate functions. The key char-
acteristics of KANs include:

• Learnable Activation Functions: KANs place
learnable univariate activation functions on the net-
work’s edges, enhancing the model’s flexibility and
accuracy.

• Spline-based Representation: Using spline func-
tions allows KANs to adapt to the data dynamically,
providing more accurate representations.

• Improved Efficiency and Interpretability:
KANs achieve superior performance with fewer pa-
rameters than MLPs, and the learnable functions
can be visualized for better interpretability.

The following equation represents the fundamental oper-
ation of a KAN layer:

x̂i =
n∑

j=1

φij(xj)
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(c) Kolmogorov-Arnold Network (KAN)(b) Neural Circuit Policy (NCP)

Model Results

Figure 1: The figure illustrates the distinctions between three types of networks: a traditional Multilayer Perceptron
(MLP) with a pre-set activation function (a), a Neural Circuit Policy (NCP) designed to emulate biological neural
circuits (b), and a KAN network capable of learning activation functions (c). (a) Represents a standard MLP
architecture where the activation functions are predetermined and fixed. (b) Depicts an NCP model that mimics
biological neural circuits’ modularity and information flow, emphasizing adaptability and task-specific decision-
making. (c) Shows a KAN network with the unique ability to learn and adjust its activation functions based on
the input data and learning objectives, enhancing its flexibility and performance across diverse tasks.

where x̂i is the activation value at node i and φij is the
learnable activation function on the edge from node j to
node i.

2.3 Mathematical Formulation of KANs

KANs leverage the Kolmogorov-Arnold representation
theorem to decompose a high-dimensional function into
a sum of univariate functions. This decomposition can
be expressed as:

f(x) =
2n+1∑
q=1

Φq

(
n∑

p=1

ϕq,p(xp)

)

Here, Φq and ϕq,p are univariate functions parameterized
as splines, and xp represents the input features. This
formulation allows KANs to effectively capture both the
compositional structure and univariate functions, provid-
ing a powerful framework for function approximation.

2.4 Application of KANs to ECG Signal
Detection

In this paper, to demonstrate the significance of KANs’
application in bio-signal efficient and effective process-
ing, we applied it to ECG signal abnormality classifica-
tion using two separate datasets (out of distribution) of
12-lead ECGs (see Sec. 3). These two datasets, one with
eight classes and another with six, have four overlap-
ping classes on which we performed our out-of-sample
tests. KANs can achieve higher accuracy in detecting
cardiac abnormalities due to their ability to dynamically
learn and adapt activation functions. This flexibility al-
lows KANs to model ECG signals more effectively. Com-
pared to traditional MLPs, this novel network architec-
ture requires fewer parameters to perform similarly or
better. This efficiency makes these networks suitable for
applications where computational resources are limited.
The learnable spline-based activation functions provide a
more interpretable model. Clinicians can visualize these
functions to understand how the model processes ECG
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signals. KANs are particularly adept at capturing non-
linear relationships in ECG data, which are common in
physiological signals. This capability leads to more ro-
bust and accurate classification.

3 Datasets

In this research, two independent datasets were used for
out-of-distribution evaluation of the proposed models.
The first was the Chinese Physiological Signal Challenge
2018 (CPSC) dataset [23], designed for automated detec-
tion of rhythm and morphology irregularities in 12-lead
ECGs. The second dataset came from the Telehealth
Network of Minas Gerais (TNMG) [24] and was used
mainly for training. The CPSC dataset served as an in-
dependent test set to evaluate the models on unseen data,
advancing our goal of prospective real-world and clinical
analysis, which remains an ongoing research focus in our
group.

The primary goal was to assess the models’ generaliza-
tion and effectiveness on unfamiliar data. The evaluation
began with training on the TNMG dataset and a perfor-
mance assessment on the CPSC dataset. These outcomes
are crucial for determining the models’ reliability and ef-
ficacy in practical applications.

3.1 TNMG Dataset

This study utilized the TNMG dataset comprising
2,322,513 annotated 12-lead ECG samples. This exten-
sive dataset encompasses six distinct categories of cardiac
irregularities, namely Atrial Fibrillation (AF), Left Bun-
dle Branch Block (LBBB), First Degree Atrioventricular
Block (1dAVb), Right Bundle Branch Block (RBBB), Si-
nus Tachycardia (ST), and Sinus Bradycardia (SB) [24].
The ECG recordings were obtained at a sampling rate of
400 Hz.

A systematic sampling strategy was adopted to create a
balanced dataset for model training. Specifically, 3,000
samples were randomly chosen for each of the six abnor-
malities and an additional 3,000 normal samples, yielding
a subset of 21,000 instances. Any additional samples re-
quired to complete 21,000 records were randomly drawn
from the TNMG dataset for patients exhibiting multiple
abnormalities. For more detailed information on these
abnormalities, see Table 2. The dataset was normalized
to standardize the length to 4096 readings, ensuring con-
sistent analysis and modeling. Readings exceeding this
length were excluded, simplifying data processing and
enabling meaningful comparisons.

In our previous work, we provided a detailed illustra-
tion of the gender and age distribution within the subset,
promoting inclusiveness and ensuring valid analyses [15].
Additionally, the subset aligns with the general popu-
lation’s age distribution, enhancing its representative-
ness for age-related studies. The sampling methodology
achieved a balanced distribution of abnormalities, allow-
ing for a comprehensive examination of their character-

istics and impacts. This balance improves the model’s
learning process and overall performance [31].

3.2 CPSC Dataset

The CPSC dataset comprises 12-lead ECGs initially sam-
pled at 500 Hz. To ensure compatibility between the
CPSC and TNMG datasets, the TNMG data is resam-
pled to 500 Hz. This dataset includes ECGs from pa-
tients with various cardiovascular conditions. Each ECG
is labeled by experts, providing precise annotations for
detected abnormalities across eight distinct categories.

This study assessed the model’s generalization capabil-
ities using four specific abnormalities from the CPSC
dataset: AF, RBBB, 1dAVb, and LBBB. The addi-
tional four abnormalities—Premature Atrial Contraction
(PAC), ST-segment Depression (STD), Premature Ven-
tricular Contraction (PVC), and ST-segment Elevation
(STE)—were not considered because only four abnormal-
ities overlap with those in the TNMG dataset.

During the data curation, entries containing missing
readings were filtered out, resulting in a final dataset
of 6,877 distinct ECG recordings. Standardization was
applied to ensure a consistent length of 4,096 readings,
with any surplus readings removed during the data re-
finement phase. For a detailed dataset overview, please
refer to our previous work [15].

Upon analysis, a noticeable gender disproportion was ob-
served, with a higher representation of male patients than
female patients. However, the age distribution closely
mirrors the general population’s, showcasing many pa-
tients in older age brackets. Furthermore, a slight un-
evenness was observed in the distribution of abnormal-
ities, with LBBB occurrences being less frequent than
other abnormalities within the dataset.

4 Methods

Our primary goal is to assess the effectiveness of KANs
in processing ECG data, aiming to develop a hardware-
friendly solution. To achieve this, we engineered a com-
pact architecture that markedly reduces computational
demands while upholding accuracy. Following the archi-
tecture’s development, we fed data into the model for
training and validation. Then, we assessed its perfor-
mance in terms of generalizability to new, unseen data
and its robustness. Furthermore, we explored the net-
work’s capabilities in handling single-lead ECG data,
inching closer to potential wearable applications.

4.1 Data Preprocessing

Several preprocessing steps are necessary to ensure signal
quality and consistency before applying the Short-Time
Fourier Transform (STFT) to ECG data. These steps
include bandpass filtering, wavelet denoising, and nor-
malization.
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Table 2: Abnormalities in the TNMG dataset
Type Description

LBBB + Left ventricle is activated after the right, affecting perfusion, mechanical function, and workload within the
left ventricle [25].

AF ⋄ The most common arrhythmia, characterized by an irregular and rapid heartbeat [26].

SB † Slower-than-normal heart rate due to decreased electrical signals from the sinus node [27].

ST ‡ Elevated resting heart rate and an increased heart rate response to minor physical activities or changes in
posture, indicative of tachyarrhythmia [28].

1dAVb ∗ ECG’s PR interval exceeding 200 ms, indicating a first-degree atrioventricular block [29].

RBBB § The condition disrupts the heart’s normal electrical activity, delaying right ventricle depolarization due to
interrupted signal transmission in the His-Purkinje system [30].

+ Left Bundle Branch Block (LBBB); ⋄ Atrial Fibrillation (AF); † Sinus Bradycardia (SB); ‡ Sinus Tachycardia (ST);

∗ First Degree Atrioventricular Block (1dAVb); § Right Bundle Branch Block (RBBB)

By using bandpass filtering between 0.5 Hz and 40 Hz, re-
moves noise outside the desired frequency range, enhanc-
ing signal quality by eliminating low-frequency drift and
high-frequency noise. Wavelet denoising further cleans
the ECG signals by decomposing them into different fre-
quency components and reconstructing them while re-
moving noise. Finally, min-max normalization scales the
ECG data to a specified range, ensuring equal contri-
bution of all features and preventing any single feature
from dominating the analysis. Min-max normalization is
believed to enhance the model’s generalizability [32].
The STFT is a powerful tool for analyzing non-stationary
signals like ECG data, providing time-frequency repre-
sentations that enable the detection of transient features
that might be missed by traditional Fourier Transform
methods [33, 34, 35]. By dividing the signal into over-
lapping segments and applying the Fourier Transform to
each segment, STFT creates a two-dimensional represen-
tation with time and frequency dimensions. The window
size and overlap choice are crucial for resolution and ac-
curacy [36].
STFT has been used effectively in various studies to
enhance ECG abnormality detection and classification.
For example, Acharya et al. [37] used STFT to detect
arrhythmias with improved performance compared to
traditional methods. Similarly, De Chazal and Reilly
[38] used STFT for automated ECG beat classification,
achieving high accuracy in distinguishing between nor-
mal and abnormal heartbeats.

4.2 Simple Model Architecture

With our focus on understanding the effectiveness of
KANs, we aimed to keep the network size small. In this
study, we designed and evaluated four distinct model ar-
chitectures to assess their efficacy in detecting abnormal-
ities in ECG signals. These architectures were designed
with varying levels of complexity to investigate the per-
formance trade-offs linked to different network depths
and sizes. The models included:

• A single hidden layer with 64 neurons.

• A two hidden layers with 32 neurons per layer.

• A four hidden layer with 16 neurons per layer.

• A single hidden layer with 128 neurons.

Our primary aim was to utilize a network featuring an
intermediate architecture of 64 neurons. We will then
identify the best-performing networks within this archi-
tecture.
As illustrated in Fig. 2, all the proposed architectures
are built upon the foundational principles of KANs, em-
ploying learnable activation functions on network edges
rather than fixed node functions. This design choice am-
plifies flexibility, adaptability, and interpretability, qual-
ities crucial for medical applications where comprehend-
ing model decisions is paramount. The training process
for these models entailed using ECG data for cardiac ab-
normality detection. These models underwent training to
maximize performance and minimize losses. Their per-
formance will be assessed using various metrics to under-
stand the model’s overall performance comprehensively.

4.3 Evaluation Metrics

In evaluating model performance, key metrics such as
precision, recall, and their combined measure, the F1-
score, play pivotal roles. Precision gauges the accuracy of
positive predictions, while recall indicates the proportion
of actual positives correctly identified, offering insights
into the model’s performance trade-offs.
When dealing with binary classification, metrics like the
AUROC (Area Under the Receiver Operating Charac-
teristic curve) measure a model’s efficacy in determining
negative and positive cases through various threshold lev-
els. Conversely, the AUPRC (Area Under the Precision-
Recall Curve) emphasizes the model’s accuracy in pin-
pointing positive cases, which is particularly useful in
handling imbalanced datasets.
Metrics such as F1-score, precision, recall, AUROC,
and AUPRC are crucial for evaluating machine learning
model performance, especially in tasks like abnormality
detection.

5 Experiment

5.1 The Training Process

In the experimental phase of our study, we utilized the
TNMG subset data as the primary training dataset for
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Preprocessed ECG 
and STFT12-lead ECG Data

Input Neurons: 33 * 129 * 12
Epoch: 50, Batch Size: 64
Learning Rate: 0.001
Optimizer: AdamW
Loss Function: Binary Cross Entropy

Learnable activation functions

Hidden Layer: 1 layer of 64 neurons
Other Designs: 1 layer of 128 neurons
                           2 layers of 32 neurons
                           4 layers of 16 neurons

Learnable activation functions

Neurons: 6
Output: Heart Abnormality Detection

Figure 2: The model architecture consists of KAN neu-
rons tailored for STFT-processed ECG data. The input
layer comprises 33×129×12 neurons, matching the STFT
pre-processed ECG data points. It then passes through
intermediate layers with 64 neurons, with additional in-
termediate architectures also tested. Finally, six output
neurons are corresponding to the six abnormalities being
detected.

our KAN models. This dataset provided diverse ECG
recordings encompassing various cardiac abnormalities.
The models underwent training for 50 epochs with a
batch size of 64. We utilized the AdamW optimizer
with a weight decay of 10−4 and employed binary cross-
entropy loss. A scheduler (ExponentialLR) was also im-
plemented with a gamma of 0.9.

While the dataset seems balanced overall, there remains
an imbalance between total positive and negative cases
due to the multi-labeled nature of abnormalities. This
means a person can have more than one abnormality. To
rectify this skewness and enhance the model’s ability to
detect positive cases, a technique called repetition-of-4
was implemented. This approach involves replicating all
data instances with positive cases four times within the
training data. This technique has improved the model’s
performance in detecting positive cases [15].

5.2 In-sample Training and Validation
Procedures

For assessing model performance, we set aside a dedi-
cated dataset comprising 20% of the TNMG subset for
validation.

These data points were intentionally withheld from the
model’s training phase and reserved solely for perfor-
mance evaluation. This separate validation approach di-
rectly compared the models’ individual performances.

5.3 Evaluation on Unseen Data

We evaluated our model’s performance using the CPSC
dataset, which closely represents real-world scenarios.
This assessment involved comparing the models’ predic-
tions against data labels using a variety of performance
metrics. This in-depth analysis will help us grasp the
models’ strengths and limitations, providing valuable in-
sights into their effectiveness. Additionally, these find-
ings will form the basis for identifying potential areas to
enhance ECG analysis. We specifically selected the four
abnormalities in both CPSC and TNMG for comparison.

5.4 Model Robustness

In assessing our model’s resilience, we’ll conduct a se-
ries of deliberate tests involving the removal of channels
from the 12-lead ECG data. This evaluation targets the
model’s performance when dealing with missing inputs,
especially within the KAN networks’ framework. The
tests will be methodically carried out, gradually remov-
ing varying numbers of channels, spanning from 1 to 6
leads. These experiments aim to understand the model’s
capacity to sustain accuracy across a spectrum of sce-
narios. We will utilize a range of performance metrics
to assess its performance objectively. These metrics will
facilitate a thorough evaluation and comparison of the
model’s efficacy under different conditions. The findings
from these assessments will help identify areas for im-
provement and offer direction for future enhancements.

5.5 Model for Single-Lead ECG

In addition to the evaluations conducted with the 12-
lead ECG data, we designed an experiment to assess the
model’s performance using data with only a single lead.
Specifically, we utilized Lead II data to train the KAN
model. This experiment aimed to investigate whether
the model could maintain its performance when trained
with data of just one lead, thereby evaluating its poten-
tial for use in scenarios where only single-lead ECG data
is available. The training procedure, hyperparameters,
and validation methods remained consistent with those
used in the 12-lead ECG experiments to ensure a fair
comparison. The only change we made was reducing the
input layer from 33× 129× 12 to 33× 129× 1, reflecting
the reduction in input data.

6 Results

In this section, we will comprehensively analyze the mod-
els’ performance, specifically focusing on utilizing KAN
models for training and evaluation. Our discussion will
explore the models’ generalizability capabilities and ro-
bustness. Additionally, we will showcase the model’s po-
tential for single-lead ECG data analysis.
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6.1 Training with Different Architecture

As we seek to understand the effectiveness of KAN neu-
rons and explore their potential for use in hardware ap-
plications that demand compact network sizes and fewer
parameters, we are conducting a study focused on small
networks. Accordingly, we have designed a network com-
prising 64 neurons evenly distributed across 1, 2, and 4
hidden layers. This design encompasses a model with a
single intermediate layer of 64 neurons, two intermediate
layers of 32 neurons each, and four intermediate layers of
16. We trained these models using 50 epochs, and Fig. 3
illustrates the training process of these models.
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Figure 3: The training processes of various KAN archi-
tectures show increasing accuracy and decreasing loss
throughout. However, discrepancies can be observed
among different network architectures.

We can observe that with the same number of neurons,
the model trains more effectively with a single layer of 64
neurons, as evidenced by the lower stabilization of loss
and higher accuracy. For completeness, we also tested
a model with an intermediate layer of 128 neurons, and
it’s noticeable that as the number of neurons increases,
the model’s performance improves.
While a more complex network yields better perfor-
mance, we opted for the model with one intermediate
layer of 64 neurons for further analysis. Our focus is on
understanding the effectiveness of these neurons in ECG
applications, with an eye toward future hardware imple-
mentations.

6.2 In-Sample Performance Evaluation

This research study focuses on training the proposed
KAN model using the TNMG subset dataset, as detailed
earlier in this paper. The TNMG subset dataset serves
as the primary resource for developing and evaluating the
models in this investigation. The model’s validation re-
sults on in-sample pre-processed data are summarized in
Table 3. The model exhibits robust performance, achiev-

ing an F1-score of 0.75. Moreover, the AUROC value
stands at 0.95, with an AUPRC value of 0.84.
These results highlight that even a single hidden layer
KAN network model performs robustly, indicating sig-
nificant potential for ECG analysis tasks. The observed
performance metrics underscore the importance of data
pre-processing methods tailored to the specific applica-
tion.

Table 3: In-Sample Validation Results on TNMG dataset
(R: Recall, P: Precision)

Class R P F1 AUROC AUPRC

1dAVb 41.3% 52.6% 46.3% 80.6% 46.6%
RBBB 77.8% 83.9% 80.7% 95.1% 88.8%
LBBB 87.3% 91.2% 89.2% 98.8% 95.7%
SB 87.7% 88.6% 88.2% 98.7% 94.4%
AF 41.6% 54.1% 47.1% 81.8% 50.8%
ST 86.1% 88.3% 87.2% 98.3% 93.4%
Average 71.2% 78.8% 74.8% 94.6% 84.1%

6.3 Model Generalization

Our evaluation strategy involved applying our trained
models from the TNMG subset to make predictions on
the CPSC dataset, as outlined in the data methodology.
This assessment was designed to ascertain how effectively
our models could handle new data instances from the
CPSC dataset, which may possess inherent differences
compared to the training dataset. Notably, the CPSC
dataset encompasses eight distinct types of abnormali-
ties, with only four overlapping with those in the TNMG
dataset.
Analyzing the KAN model’s performance on the CPSC
dataset provides valuable insights into its ability to trans-
fer learned knowledge to new data domains. This exam-
ination is a critical benchmark for assessing the model’s
generalization capabilities beyond its original training
data, demonstrating its adaptability to a broader range
of clinical scenarios.
Table 4 outlines the model’s generalization performance,
achieving an F1-score of 0.62, an AUROC of 0.84, and
an AUPRC of 0.61. While a decrease in performance is
noticeable, the drop remains within an acceptable range
based on our experience. Considering the simplicity of
the architecture we’ve introduced, there is significant po-
tential for further improvement with advancements in re-
search in this novel network. These results highlight the
potential of the KAN network model in ECG analysis,
indicating its viability for real-world applications. Given
that this network comprises solely KAN neurons, there
is considerable room for enhancing the performance of
this model with future research into the network.

6.4 Model Robustness

To evaluate the model’s efficacy, we broadened our anal-
ysis to incorporate the CPSC dataset, deliberately in-
troducing systematic variability. Furthermore, we per-
formed supplementary evaluations by randomly omitting
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Table 4: Out-of-Distribution Generalization Results on
CPSC dataset (R: Recall, P: Precision)

Class R P F1 AUROC AUPRC

1dAVb 41.7% 34.0% 37.5% 78.1% 34.0%
RBBB 54.1% 85.2% 66.2% 80.3% 74.5%
LBBB 78.7% 86.0% 82.2% 97.3% 86.2%
AF 59.3% 42.4% 49.5% 78.9% 48.3%
Average 67.3% 67.4% 62.2% 83.6% 60.7%

a defined number of channels from the 12-lead ECG data.
This deliberate alteration of input data enabled us to
assess the model’s robustness and its aptitude to man-
age incomplete or absent input information proficiently.
These experimental maneuvers significantly enhance our
comprehension of the model’s adaptability and resilience
in practical scenarios where data integrity might be com-
promised.
In Fig. 4, it can be observed that as the number of emp-
tied leads increases, the F1 performance metric of the
models declines. However, the decline is insignificant,
which may be partly attributed to the min-max normal-
ization, which is known to enhance resistance to missing
channels [32].

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

6

5

4

3

2

1

0

N
o.

 o
f E

m
pt

y 
Ch

an
ne

ls

AUPRC
AUROC

Figure 4: Assessing model robustness using AUROC and
AUPRC metrics across different levels of missing chan-
nels in CPSC ECG data.

6.5 Exploring Model Performance with
Single-Lead ECG Data

As part of our investigation into the model’s capabili-
ties, we conducted an experiment utilizing the TNMG
dataset. Interestingly, for this specific experiment, we
focused solely on Lead II data to train the KAN model.
The detailed outcomes of this experiment can be found
in Table 5.
Contrasting the outcomes outlined in Table 3, originat-
ing from a model trained on comprehensive 12-lead ECG
data, with the results of a model exclusively trained
on Lead II data reveals intriguing observations. While
there’s a marginal dip in the overall performance of the

latter model across various abnormalities, it’s remark-
able that such proficiency was achieved using data from
only one lead. Despite this limitation, the model’s per-
formance remains robust.

Table 5: In-sample Validation of a Model Trained on
Single-lead ECG Data (R: Recall, P: Precision).

Class R P F1 AUROC AUPRC

1dAVb 41.0% 58.1% 48.0% 86.1% 55.1%
RBBB 61.4% 69.2% 65.1% 87.7% 70.8%
LBBB 67.7% 79.1% 72.9% 94.8% 83.1%
SB 88.0% 86.2% 87.1% 98.5% 93.2%
AF 36.3% 50.9% 42.4% 81.4% 46.3%
ST 85.7% 89.3% 87.5% 98.1% 93.4%
Average 63.6% 73.9% 68.3% 92.7% 77.8%

7 Discussion

This study represents the initial successful application of
KAN to ECG signal analysis, particularly focusing on
multi-abnormality detection. The results demonstrate
promising and satisfactory outcomes. The proposed
KAN models have shown strong performance and robust
generalization capabilities, effectively handling situations
involving incomplete or missing input data. Even a sin-
gle hidden layer KAN network, with only 64 nodes in
its hidden layer, exhibited excellent performance. This
highlights the flexibility and adaptability of KAN net-
works, even in extremely simple structures.
Compared to traditional MLPs, KANs offer significant
advantages. MLPs, while powerful, often struggle with
fixed activation functions and less interpretable struc-
tures, which can hinder performance and clinical applica-
bility [13]. In contrast, KANs leverage the Kolmogorov-
Arnold representation theorem to implement learnable
activation functions on the network’s edges, enhancing
flexibility and interpretability. Additionally, the study
compared KANs to more recent and compact models
such as NCP models. NCPs, a bio-inspired neural net-
work, have demonstrated significant success in efficient
and robust ECG abnormality detection [15]. Despite
these advanced capabilities, the simple single hidden
layer KAN network with 64 neurons in its hidden layer
performed comparably, underscoring its potential as a
highly adaptable and efficient model for ECG analysis.
A notable characteristic of KANs is their efficiency. The
model’s compact size and quick training make it well-
suited for potential deployment on hardware, especially
in personalized medical devices. This efficiency supports
real-time data processing and reduces power consump-
tion, a critical factor for continuous monitoring applica-
tions.
In our evaluation, we compared the single hidden layer
KANs with NCPs [15], using metrics such as precision,
recall, F1-score, and AUROC. The results are detailed in
Table 6.
While the KANs model may lag in performance com-
pared to other efficient neural networks like NCPs, their
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Table 6: Validation and Generalization Results (R: Re-
call, P: Precision)

Model P R F1 AUROC

Validation Results
CLTC 85.7% 80.3% 82.7% 96.1%
CCfC 85.9% 80.6% 82.8% 96.3%
KAN 71.2% 78.8% 74.8% 94.6%

Generalization Results
CLTC 69.8% 75.4% 69.9% 90.1%
CCfC 75.5% 73.9% 72.1% 91.3%
KAN 67.3% 67.4% 62.2% 83.6%

architecture has fundamental differences. The CCfC and
CLTC models incorporate a layer of ConvLSTM2D to
aid in the feature extraction process, whereas the pro-
posed KANs model does not include additional layers
for this purpose. We also trained an MLP model with
the same architecture as the proposed KAN, but it did
not yield significant results. This underscores the power
and efficiency of the neurons in the KAN model, which
sheds light on future applications in hardware compat-
ibility when further optimization is done in the newly
introduced KAN.

8 Limitations and Future Work

8.1 Limitations

Despite the promising results demonstrated by KANs in
ECG signal analysis, several limitations need to be ad-
dressed:

• Novelty and Integration: KANs are a relatively
new architecture and have not yet been widely tested
or integrated with other advanced neural network
layers such as CNNs or RNNs. This limits the cur-
rent understanding of how KANs can be effectively
combined with other deep-learning models to en-
hance performance further.

• Code Optimization: The existing implementa-
tions of KANs are still in the early stages and may
not be fully optimized for large-scale deployment.
The current codebase might lack the efficiency and
robustness required for real-world applications, par-
ticularly in resource-constrained environments like
wearable devices.

8.2 Future Work

Future work should focus on addressing these limitations
by:

• Integration with Other Architectures: Explor-
ing the integration of KANs with other neural net-
work architectures to create more robust and versa-
tile models.

• Code and Algorithm Optimization: Enhanc-
ing the performance and reducing the computational

complexity of KANs by optimizing their code and
algorithms.

• Deployment on Devices: Deploying KANs on
portable and wearable health monitoring systems,
which requires further minimization of power re-
quirements and ensuring sustainable and efficient
operation in real-time applications.

9 Conclusion

In this paper, we have explored the performance of
MLPs, NCPs, and KANs in ECG signal analysis, focus-
ing on detecting cardiac abnormalities. KANs, inspired
by the Kolmogorov-Arnold representation theorem, offer
a novel approach with learnable activation functions on
network edges, enhancing flexibility and interpretability.
Our findings highlight the potential of KANs to revo-
lutionize ECG analysis in cardiac healthcare, promis-
ing significant advancements in accuracy, interpretabil-
ity, and efficiency. The results show that the KAN model
exhibits strong in-sample performance while maintaining
good generalization in out-of-distribution scenarios. The
model also shows robustness to incomplete data, which
is common in real-world scenarios. When tested with
single-lead ECG data instead of 12 leads, the model’s
performance remains robust, confirming its suitability for
wearable device applications.
While KANs have shown promising results, their practi-
cal application and integration with other neural network
layers need further investigation. Future research should
focus on optimizing KANs for deployment on portable
and wearable devices, ensuring they are efficient, robust,
and capable of real-time data processing. These advance-
ments could ultimately contribute to better patient out-
comes and more effective cardiac healthcare solutions.
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Thomas Y. Hou, and Max Tegmark. KAN:
Kolmogorov-arnold networks, 2024.

[18] Georgios Petmezas, Kostas Haris, Leandros Ste-
fanopoulos, Vassilis Kilintzis, Andreas Tzavelis,
John A Rogers, Aggelos K Katsaggelos, and Nicos
Maglaveras. Automated atrial fibrillation detection
using a hybrid CNN-LSTM network on imbalanced
ECG datasets. Biomedical Signal Processing and
Control, 63:102194, 2021. ISSN 1746-8094.

[19] Varun Gupta, Monika Mittal, and Vikas Mittal. A
novel FrWT based arrhythmia detection in ECG sig-
nal using YWARA and PCA. Wireless Personal
Communications, pages 1–18, 2022.

[20] Tsai-Min Chen, Chih-Han Huang, Edward SC Shih,
Yu-Feng Hu, and Ming-Jing Hwang. Detection and
classification of cardiac arrhythmias by a challenge-
best deep learning neural network model. iScience,
23(3), 2020.

[21] Jing-Shan Huang, Bin-Qiang Chen, Nian-Yin Zeng,
Xin-Cheng Cao, and Yang Li. Accurate classifica-
tion of ECG arrhythmia using mowpt enhanced fast
compression deep learning networks. Journal of Am-
bient Intelligence and Humanized Computing, pages
1–18, 2020.

[22] Zhaojing Huang, Luis Fernando Herbozo Contreras,
Leping Yu, Nhan Duy Truong, Armin Nikpour,
and Omid Kavehei. S4D-ECG: A shallow state-of-
the-art model for cardiac abnormality classification.
Cardiovascular Engineering and Technology, pages
1–12, 2024.

[23] Feifei Liu, Chengyu Liu, Lina Zhao, Xiangyu Zhang,
Xiaoling Wu, Xiaoyan Xu, Yulin Liu, Caiyun Ma,
Shoushui Wei, Zhiqiang He, et al. An open access

10

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 4, 2024. ; https://doi.org/10.1101/2024.06.04.24308428doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.04.24308428


database for evaluating the algorithms of electrocar-
diogram rhythm and morphology abnormality de-
tection. Journal of Medical Imaging and Health In-
formatics, 8(7):1368–1373, 2018.
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