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Abstract

Spatial transcriptomics enables in-depth molecular characterization of samples
on a morphology and RNA level while preserving spatial location. Integrating the
resulting multi-modal data is an unsolved problem, and developing new solutions
in precision medicine depends on improved methodologies. Here, we introduce
AESTETIK, a convolutional deep learning model that jointly integrates spatial,
transcriptomics, and morphology information to learn accurate spot representa-
tions. AESTETIK yielded substantially improved cluster assignments on widely
adopted technology platforms (e.g., 10x Genomics™, NanoString™) across multi-
ple datasets. We achieved performance enhancement on structured tissues (e.g.,
brain) with a 21% increase in median ARI over previous state-of-the-art methods.
Notably, AESTETIK also demonstrated superior performance on cancer tissues
with heterogeneous cell populations, showing a two-fold increase in breast can-
cer, 79% in melanoma, and 21% in liver cancer. We expect that these advances
will enable a multi-modal understanding of key biological processes.
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1 Introduction

In multicellular organisms, cells are organized into tissues, groups of cells exhibiting
common characteristics related to the biological function [1, 2]. Recent advances in
spatial transcriptomics enable in-depth molecular characterization of samples, cap-
turing their morphology and RNA composition while retaining the spatial location
(Fig. 1A). The gene expression profiles are usually available per spot, e.g., a 55µm
tissue region (10x Genomics™, Visium) covering the whole transcriptome [3], or at a
single-cell resolution but with a limited number of captured genes (CosMx NanoS-
tring™). More recent spatial transcriptomics technologies provide whole-transcriptome
coverage along with higher resolution (e.g., 2µm, 10x Genomics™, Visium HD).
Spatially aligning cell types by molecular phenotypes and morphology is important
for understanding tissue-specific properties (e.g., neural organization in the brain
[4]) in a physiological state and in the context of disease progression and treatment
[5–8]. Nevertheless, spatial transcriptomics analysis demands manual annotation of
multi-modal data, representing a laborious and resource-intensive process. Achieving
reliable automation and overcoming limitations in cross-modal expertise will lead to
more accurate annotations, offering a comprehensive, multi-modal perspective on
biological mechanisms and interactions [9].

Despite recent progress, computational data analysis that integrates all available
data modalities i.e., spatial information, transcriptomics, and morphology, remains
challenging. Most existing methods either fall short in effectively integrating all
modalities, especially those adapted from single-cell analysis or are computationally
expensive [9]. For example, BayesSpace employs a Bayesian approach with a prior
giving higher weight to physically close spots [10]; MUSE relies on a multi-view
autoencoder to learn a latent space from transcriptomics and morphology [11];
stLearn quantifies morphological distance through histology image features and
incorporates these distances with spatial neighbors to refine gene expression [12].
Furthermore, alternative methods suggested a different perspective on modeling the
spatial transcriptomics data by employing graph neural networks (GNN) [13–15].
However, the expression profiles often suffer from biological variability (e.g., cell-
cycle stage) [16, 17] or technical noise [17, 18]. GNNs’ inherent susceptibility to
noise can undermine their robustness and performance in downstream applications
[19, 20]. Therefore, a new and reliable integration approach is needed to overcome
the aforementioned challenges and improve spatial transcriptomics analysis, ensuring
adaptability across spatial transcriptomics technologies.

To this end, we developed AESTETIK, a model that jointly integrates spatial,
transcriptomics, and morphology information to learn accurate spot representations.
We compared its performance against previous state-of-the-art methods on multiple
datasets and widely adopted technology platforms: Brain tissue [21], breast cancer [22]
and new and yet unreleased metastatic melanoma samples sequenced using Visium
from 10x Genomics™; liver from normal and cancer patients using CosMx from NanoS-
tring™. We substantially improved the clustering accuracy across all datasets which
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yielded spatial domains with coherent expression and morphology. Through an abla-
tion study, we showed the enhanced value of utilizing all available data modalities
given the specifics of the analyzed tissue. Further, we validated the learned represen-
tation by identifying the main biological drivers and characterizing clusters based on
morphology and cell-type composition.

2 Results

2.1 AESTETIK integrates spatial, transcriptomics, and
morphology information

We introduce AESTETIK (AutoEncoder for Spatial Transcriptomics Expression
with Topology and Image Knowledge), a convolutional autoencoder model (Fig.
1B). It jointly integrates transcriptomics and morphology information at a spot level
and topology at a neighborhood level to learn accurate spot representations that
capture biological complexity. Firstly, we preprocess the transcriptomics profiles
and apply principal component analysis (PCA) [23]. Simultaneously, the pre-trained
on Imagenet [24] deep-learning model, Inception v3 [25], is employed to extract
morphology spot features, followed by PCA. After computing clusters separately to
preserve the modality-specific structure, we concatenate the top principal compo-
nents (PC) from both modalities. Next, we construct a square grid for each spot that
includes spatially neighboring spots. This grid per spot, along with the precomputed
clusters, serves as an input to AESTETIK. The model relies on a convolutional
encoder-decoder architecture (Fig. 1C) to learn accurate spatial-, transcriptomics-,
and morphology-informed spot representations. Ultimately, the learned representa-
tions can be leveraged for various downstream applications, including but not limited
to clustering, gene expression, morphology, and pathway analysis.

The motivation for the grid construction is to form an image-like representation,
with grid encoding for spatial neighborhood and channels for both transcriptomics
and morphology modalities. We frame the machine-learning problem as image pattern
recognition and compression, with convolutional autoencoders being the state-of-the-
art architecture for addressing these challenges [26, 27]. The bottleneck layer serves
as a constriction for information flow, forcing the model to capture the biological
signal. Moreover, AESTETIK ’s loss function (Eq. 4) is designed to optimize mul-
tiple objectives simultaneously by combining reconstruction loss for accurate latent
representation and multi-triplet loss (Fig. 1D, Eq. 3) for structure preservation
across modalities. This dual optimization ensures a comprehensive and informative
representation of each data modality.

2.2 AESTETIK improves the identification of spatial domains

We benchmarked AESTETIK performance on multiple datasets with available
ground truth annotations (Fig. 2A). In line with the methodology of [10–15], we
adopted the Adjusted Rand Index (ARI) to measure the similarity between predicted
cluster labels and ground truth, with the number of clusters set to match that in
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Fig. 1 AESTETIK integrates spatial, transcriptomics, and morphology information to

learn accurate spot representations.

A: Spatial transcriptomics enables in-depth molecular characterization of samples on a
morphology and RNA level while preserving spatial location. B: Workflow of AESTETIK.
Initially, the transcriptomics and morphology spot representations are preprocessed. Next, a
dimensionality reduction technique (e.g., PCA) is applied. Subsequently, the processed spot
representations are clustered separately to acquire labels required for the multi-triplet loss.
Afterwards, the modality-specific representations are fused through concatenation and the
grid per spot is built. This is used as an input for the autoencoder. Lastly, the spatial-,
transcriptomics-, and morphology-informed spot representations are obtained and used for
downstream tasks such as clustering, morphology analysis, etc. C: AESTETIK relies on a
convolutional encoder-decoder architecture to learn accurate spot representations from the
spatial transcriptomics data. D: Employing a multi-triplet loss, instead of a single triplet loss
adds extra positive and negative instances per class around the anchor point, improving the
placement of the anchor in the latent space.

the ground truth. To avoid hyperparameter tuning on the samples used for testing,
we introduced reversed leave-one-out cross-validation. More specifically, we used a
single sample and its replicates to select hyperparameters to maximize the median
ARI. Then, the optimal hyperparameters were applied to the remaining test samples.
This process was iterated over all folds, and the resulting median ARI, along with
the standard error, is reported (Fig. 2A).

AESTETIK consistently yielded substantially improved cluster assignments
closer to the ground truth annotations over previous state-of-the-art methods across
all datasets (Fig. 2A). For example on the LIBD Human DLPFC dataset [21],
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Fig. 2 AESTETIK improves the identification of spatial domains with coherent expres-

sion and morphology.

A: Benchmark of AESTETIK and previous state-of-the-art methods in spatial transcrip-
tomics on 5 datasets across 2 technology platforms. The y-axis represents the ARI between
the ground truth and the predicted labels. Models are ordered based on their relative rank
across the datasets. The shape represents the modalities the model integrates. B: Histology
image and manual annotation of slice 151676 from the LIBD human DLPFC dataset [21] and
C: Comparison of cluster assignments for the same slice.

AESTETIK achieved the highest ARI of 0.58±0.02, significantly surpassing the sec-
ond best model - GraphST - by 21%. The LIBD Human DLPFC dataset comprises
12 tissue slices obtained from the dorsolateral prefrontal cortex (DLPFC) brain
region, sequenced using Visium from 10x Genomics™, together with curated manual
annotations based on brain cytoarchitecture and known marker genes (Fig. 2B).
This improvement highlights the superior performance of AESTETIK in effectively
integrating the spatial modality and generating accurate cluster assignments in
structured brain tissue. STAGATE and GraphST demonstrated lower performance,
achieving ARI of 0.48±0.02 and 0.48±0.03, respectively.

To qualitatively illustrate the cluster assignments, we compare them for slice
151676 (Fig. 2C), using the closest annotations to the ground truth across folds.
MUSE (ARI 0.23), Leiden (ARI 0.28), stLearn (ARI 0.36) and SpaGCN (ARI 0.37)
mixed the brain layers, accompanied by noise along the boundaries. BayesSpace (ARI
0.40) partitioned the white matter (WM) and layer 6 into multiple groups. While
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GraphST (ARI 0.55) and STAGATE (ARI 0.57) generated mostly well-defined clus-
ters, layers 1, 2 and 3 were inconsistent. Notably, AESTETIK (ARI 0.63) identified
the brain architecture, and its clusters displayed clearer definitions at the boundaries,
leading to superior performance (Fig. 2C, S1).

Next, we investigate the methods’ performance on the Human Breast Cancer
dataset, which comprises 5 tissue slices sequenced using Visium from 10x Genomics™
and annotated independently in two different labs [22]. This dataset presents unique
challenges, primarily stemming from the considerable inter- and intra-sample hetero-
geneity, including variations in the cancer cell population. AESTETIK achieved the
closest clusters to the ground truth labels with an ARI of 0.51±0.13 (Fig. 2A), indicat-
ing a two-fold increase over the second best model, stLearn (ARI 0.25±0.08). Despite
wide standard error intervals observed in all models, AESTETIK exhibited height-
ened robustness, surpassing the challenges posed by the complexity of breast cancer
tissue (Fig. S2).

2.3 AESTETIK effectively incorporates the morphology
modality

We introduce a new and yet unreleased spatial transcriptomics dataset with 9 distinct
tissue regions sequenced using Visium from 10x Genomics™ from the Tumor Profiler
study [28]. Each region has a replicate resulting in 18 samples of size 6.5 × 6.5mm2,
with data including 10x Genomics™ Space Ranger v3.0.0 outputs and a corresponding
H&E image scanned at a high resolution of 0.3µm/pixel. The tissue regions originate
from 7 patients with metastatic melanoma each characterized by one of the following
immune subtypes: immune desert, immune excluded, or inflamed. The ground truth
annotations were obtained using histopathology software (HALO AI™ (Indica Labs,
Corrales, NM, USA)), classifying the spots into one of the following categories: tumor,
stroma, normal lymphoid, and blood/necrosis. Following this, a pathologist manually
reviewed the model predictions (Fig. 3A). We consider this dataset to be a valuable
reference benchmark for evaluating the performance of spatial transcriptomics mod-
els, particularly in terms of their ability to integrate morphology effectively.

On this dataset, AESTETIK achieved a 79% increase in ARI (0.59±0.03) over
previous state-of-the-art methods, demonstrating effective use of the morphology
modality (Fig. 2A). While both stLearn (ARI 0.33±0.02) and MUSE (ARI 0.20±0.02)
use the same pre-trained Inception v3 [25] for extracting morphology features, they
fall short in effectively leveraging this information (Fig. 3B). On the other hand,
AESTETIK not only produced accurate cluster assignments (Fig. 3B), but also iden-
tified a hemorrhage region in the upper left of the H&E image, that was overlooked
during annotation (black box in Fig. 3A, B, S3).

Next, we qualitatively explore the latent representations and the identified spatial
domains by focusing on slice MACEGEJ-2-2 (Fig. 3A). We visualized the latent space
using UMAP [30] with randomly sampled morphology spot representations (Fig. 3C).
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Fig. 3 AESTETIK effectively incorporates the morphology modality revealing biolog-

ically relevant spatial organization of cancer tissue.

A: Histology image and pathology annotation of slice MACEGEJ-2-2 from the Tumor Pro-
filer dataset. B: Comparison of cluster assignments for slice MACEGEJ-2-2. C: UMAP plot
of the AESTETIK ’s latent space with randomly sampled spot images. D: Most representa-
tive cluster spots based on the obtained representations. E: Euclidean distance in latent space
of each spot to the tumor centroid plotted in spatial space. Most representative spots are
located in the middle of the tumor formations. F: Spatial marker gene expression of TYRP1.
G: Pathway analysis of the identified clusters using decoupler [29]. H Spatial activation of
MAPK pathway.

We observe an aggregation of tumor spots (cluster 4) on the bottom-right side, show-
casing similarities in their characteristics. On the lower left side, there are areas with
blood and necrosis. While clusters 1 and 3, representing normal lymphoid tissue and
stromal cells, are positioned in the upper part, a closer inspection reveals discernible
differences in their underlying structures. Besides, for enhanced explainability of the
spot representations, we selected the most representative spots per cluster (Fig. 3D).
Visually, tumor cells within cluster 4 exhibit distinct characteristics; they appear sig-
nificantly larger, displaying irregular shapes, and possessing enlarged nuclei. Stromal
cells (cluster 3) have an elongated morphology and are noticeably more scattered [31]
compared to the normal lymphoid cells (cluster 1), which are generally smaller and
denser [32].
Furthermore, to illustrate the effect of encoding spatial information in latent space,
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we computed the Euclidean distance of each spot to the tumor centroid and visualized
it spatially (Fig. 3E). While stromal cells are the furthest, we observed that tumor
cells close in latent space are clustered spatially, with the most representative spots
located in the middle of the tumor formations.

To provide additional insights, we found TYRP1 and TKTL1 among the top tumor
marker genes in the tumor cluster, confirming the model predictions for the spatially
resolved identification of melanoma cells (Fig. 3F, S4). TYRP1 gene is involved in
melanocyte pigmentation, associated with melanoma progression and is a target for
oncological immunotherapy [33–35]. The second highly upregulated gene, TKTL1, is
implicated in the progression of melanoma and contributes to the increased invasion of
melanoma cells [36]. Further, we performed a pathway analysis of the tumor clusters
using decoupler [29] (Fig. 3G) which revealed increased activity of the MAPK path-
way in the cancer cluster (Fig. 3H), known for promoting cell proliferation, invasion,
metastasis, migration, survival, and angiogenesis [37–39]. Furthermore, we observed
that hypoxia signatures were predominant in areas of necrosis and hemorrhage and
JAK-STAT inflammatory signaling was predominant in the cancer microenviron-
ment clusters 1 and 3. These pathway-level analyses underline the robust associations
of the spatially resolved clustering results achieved by AESTETIK and support
interpretation in the context of the underlying biology.

2.4 AESTETIK improves cluster assignment in single-cell
spatial transcriptomics

CosMx NanoString™ released a liver dataset with single-cell resolution, encompassing
two tissue regions from normal and cancer patients and capturing 1000 genes. It offers
valuable insights into liver biology and cancer characteristics. More specifically, using
these datasets, we assess the models’ effectiveness at single-cell resolution by compar-
ing the clusters they produce with the cell types reported by NanoString™. In both
normal and cancer liver tissue, AESTETIK exhibited outstanding performance, sub-
stantially outperforming the other models by 39% and 21%, with ARI of 0.46±0.02 and
0.23±0.00, respectively (Fig. 2A, S5, S5). The second best model, stLearn, attained a
score of 0.33±0.00 and 0.19±0.00, followed byGraphST with 0.24±0.00 and 0.14±0.00.
Overall, the clustering accuracy on the cancer tissue is lower compared to the normal
sample. However, the relative trend in the ranking of the models remained consistent.

2.5 Joint integration of multi-modal data enhances
computational analysis

To pinpoint the benefit of the spatial modality in the LIBD Human DLPFC and
Tumor Profiler datasets, we systematically varied the grid’s window size, ranging from
1 (w/o spatial information) to 11, and measured the change in ARI (Fig. 4A). The
grid size determines the number of spatially adjacent spots to consider. Local spatial
information proved important, preserving local details and spot-to-spot variability.
However, incorporating a more extensive global context through a larger window size
(e.g., 11) introduced noise and hampered performance, which was likely due to signal
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over-smoothing and the loss of spot-specific details.

Similarly, we studied the contribution of each modality by varying the morphology
weight (0 - no morphology; 1.5 - equal weight between transcriptomics and morphol-
ogy; 3 - only morphology). As expected, we found that the transcriptomics modality
in the brain dataset is informative given the provided ground truth annotations, rely-
ing on known cytoarchitecture and marker genes [21]. In contrast, the ground truth
for the Tumor Profiler, derived from histopathology software, was morphology driven
(Fig. 4A). Furthermore, to underscore the significance of methods incorporating all
data modalities, we present a scenario illustrating the necessity of both modalities to
reveal ground truth annotations (Fig. 4B). Following the approach of [11], we simu-
lated data where both modalities are essential for accurate cluster identification. Our
ablation study demonstrated that the optimal ARI was achieved when accounting
for both modalities, thus emphasizing the critical significance of multi-modal data
integration (Fig. 4C).

Additionally, the multi-triplet loss demonstrated an enhancement in loss stability
during training compared to the single triplet loss (Fig. 4D). The refined positioning
of clusters in latent space, considering multiple positive and negative spots, becomes
crucial, especially when dealing with datasets containing numerous clusters. Lastly,
the runtime per tissue slice for our model, incorporating all three modalities (∼8
min), was either lower or comparable to that of other models (Fig. 4E). For example,
BayesSpace, MUSE, and STAGATE, incorporating only two modalities, required ∼28
min, ∼17 min, and ∼13 min, respectively. Moreover, we demonstrate that AESTETIK
is well-suited for analyzing large spatial transcriptomics datasets, scaling to millions
of spots (Fig. S7).

3 Discussion

In this work, we propose AESTETIK, a method that jointly integrates spatial, tran-
scriptomics, and morphology information to learn accurate spot representations. Our
results consistently showed superior performance to state-of-the-art methods across
structured tissues (e.g., brain) and cancer tissues with heterogeneous cell popula-
tions (e.g., breast, melanoma, liver) across widely adopted spatial transcriptomics
technologies (e.g., 10x Genomics™, Visium, CosMx NanoString™). We systematically
demonstrated the significance of jointly integrating multi-modal data to improve
spatial transcriptomics analysis and yield more precise spot annotations.

This improvement in spot representation resulted from modeling the spatial
transcriptomics modalities as a grid encoding the spatial spot neighborhood and
channels as transcriptomics and morphology modalities. Our approach framed the
machine-learning problem as image pattern recognition and compression, where
convolution filters jointly learn the importance of neighboring spots and channels.
This proved beneficial in both structured and heterogeneous tissues. In contrast, the
GNNs, employed by SpaGCN, GraphST and STAGATE demonstrated variations in
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Fig. 4 Joint integration of multi-modal data enhances computational analysis

A: Ablation study on the influence of window size and morphology weight on the ARI. The
y-axis represents the ARI, normalized by dataset.B: UMAP visualization of single (transcrip-
tomics, morphology) and combined (AESTETIK ) modality representations on a simulated
tissue slice, colored by the 10 ground truth annotations. C: Cluster assignments based on
only a single modality (transcriptomics, morphology) and AESTETIK ’s joint representa-
tions. D: Comparing the stability of the single and multi-triplet loss on the loss function of
AESTETIK across datasets. The number, following the dataset name, is the median num-
ber of clusters present. The y-axis represents the standard deviation computed on the loss
difference over successive training epochs. E: Runtime for the evaluated clustering methods.
The y-axis represents the time in minutes. Models are ordered based on their relative rank
across the datasets.

their performance relative to the other methods across tissue types and spatial tran-
scriptomics technologies. This could be attributed to the inherent susceptibility of
GNNs to noise [19, 20]. The graph structure ensures connectivity among neighboring
spots, which is useful in structured tissues (e.g., brain) with coherent spatial patterns.
However, it presents challenges in samples of lower sequencing quality or tissues
with higher heterogeneity (e.g., cancer cell populations), where noise, introduced
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through node perturbations and edge alterations, might affect the graph structure.
Consequently, this undermines the robustness and performance of current GNNs in
downstream applications.

Further, in our ablation study on the brain dataset, we quantitatively demon-
strated the significance of the spatial modality in identifying the brain layer structure.
We discovered that a relatively small grid’s window size (5-7) sufficiently captures
the desired spatial signal. Opting for a larger neighborhood (e.g., window size 11)
offers no extra value. Unlike the global tissue context, the local environment better
preserves spot-specific signals and nearby variability. Ultimately, our ablation results
underscore 1) the importance of jointly integrating the available spatial transcrip-
tomics data modalities for accurate spot representation, and 2) the necessity for
external knowledge to prioritize the signal of interest, depending on the particular
research question at hand.

Several paths to further improve model accuracy appear promising. 1) We
employed the pre-trained Inception v3 [25] to extract morphology features. How-
ever, adopting a model tailored to a specific task (e.g., cell nuclei segmentation and
classification) would likely yield more informative spot features, potentially leading
to improved overall performance. 2) AESTETIK randomly selects the positive and
negative pairs for each anchor point during training. We believe this process can be
improved by utilizing a smarter strategy for triplet mining, which would eventually
improve the performance, and robustness to noise.

In the future, AESTETIK could be effectively applied to fine-map cell populations
in spatial transcriptomics datasets [40–42], to systematically analyze the interplay
between different modalities by varying their contribution and to gain a multi-modal
understanding of key biological processes. To foster these downstream applications,
we have released the code for AESTETIK along with examples demonstrating its
usage. Moreover, we anticipate that upon its release, the 10x Genomics™, Visium
dataset from the Tumor Profiler study will serve as a valuable reference benchmark
for assessing spatial transcriptomics model performance and explainability. Thus, we
hope that our model, together with this dataset, will stimulate further improvements
in computational spatial transcriptomics analysis.

4 Methods & Materials

4.1 Data preprocessing

AESTETIK takes in spatial, transcriptomics, and morphology information. We apply
the same preprocessing pipeline across datasets and sequencing technologies. For
simplicity, we refer to both spot and cell as a spot (a single spot can contain 1 cell).
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4.1.1 Transcriptomics modality

Starting with raw counts, genes expressed in fewer than 10 spots are removed. Then,
the scanpy function highly variable genes computes normalized variance in Seurat v3
style, removing genes with variance below 1 [23, 43]. Each spot undergoes normal-
ization by total counts over all genes, followed by log1p transformation and scaling.
Subsequently, PCA is applied to the preprocessed counts, extracting the first 15 PCs
[10].

4.1.2 Morphology modality

The raw RGB image for each tissue slice is divided into tails, each representing a spot
and its defined neighborhood based on the spot diameter. Following the default pre-
processing steps of Inception v3 [25], the tiles are resized to 299, their center is cropped
and the RGB channels are normalized. Morphology features are then extracted from
the last network layer (with 2,048 dimensions) of the pre-trained on Imagenet [24]
deep-learning model Inception v3. Finally, PCA reduces the feature dimension from
2,048 to 15.

4.1.3 Grid construction

To begin, each spot is represented by two vectors containing the first nd1 and nd2 PCs
obtained via PCA from the preprocessed transcriptomics and morphology modalities,
along with their spatial coordinates. For simplicity, we assume nd1 = nd2 = npca, but
the following workflow holds also for nd1 ̸= nd2. These vectors are concatenated and
scaled in the range [0, 1]. Then, a square grid for each spot is constructed with the
number of spatial neighbors, Ngrid, chosen as an odd number to ensure the center
position of the selected spot in the window. This results in a tensor of size:

spoti = (Ngrid, Ngrid, 2 ∗ npca) (1)

which can be interpreted as Ngrid x Ngrid image with 2 ∗ npca channels. For missing
or located on the borders spots, we apply padding by taking the median expression
over each channel in spoti.

4.1.4 Clustering

The default clustering algorithm is Bayesian Gaussian Mixture with a diagonal covari-
ance matrix from the sklearn package, but we also support K-Means, Leiden, and
Louvain. Once the cluster labels are obtained, an additional preprocessing step can be
applied. A K-Neighbors Classifier is fitted using spatial coordinates and the already
obtained clusters to refine the cluster assignments in spatial space through majority
voting.
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4.2 Model architecture

AESTETIK utilizes a convolutional deep-learning autoencoder with a standard
encoder-decoder architecture and a bottleneck layer. The encoder comprises a convo-
lutional layer, max-pooling layer, batch normalization, ReLU activation, and linear
layer. Default hyperparameters include 64 convolutional kernels (size 7), dropout
(p = 0.3), max-pooling (stride 3), and a linear layer (size 16). The decoder follows a
mirrored architecture, concluding with a sigmoid function to constrain output values
in the range [0, 1]. AESTETIK is a Python package implemented in PyTorch.

4.2.1 Autoencoder ensemble

To improve the network stability, we employ ensemble architectures for both the
encoder and decoder, utilizing random LeCun [44] initialization. The ensemble’s out-
put is determined by taking the median over predictions. We train an ensemble with
3 encoders and decoders. The final representation is computed by dropout sampling
1,000 times and taking the median value.

4.2.2 Reconstruction loss

We employ a reconstruction loss to ensure that the latent space effectively captures
the biological complexity of the morphology and transcriptomics modalities. We define
it as:

Lrec = α ∗ Lrecm + (3− α) ∗ Lrectr , (2)

where α ∈ [0,3] is a hyperparameter for the morphology weight. Lrec[m,tr]
is the stan-

dard L1 reconstruction loss withm for morphology and tr for transcriptomics modality.
We use L1 loss due to the input-output range being [0, 1].

4.2.3 Multi-triplet loss

We apply triplet loss to preserve the structure across modalities. Its primary objective
is to learn a spot representation in which similar instances are closer together, while
dissimilar instances are farther apart. Define an anchor point A with label li, then we
draw at random a positive point P with label li and a negative point N with label lj
such as li ̸= lj , then the single triplet loss is defined as:

Ltriplet(A,P,N) = max(0, ||f(A)− f(P )||2 − ||f(A)− f(N)||2 +margin)

In spatial transcriptomics, multiple classes and high noise ratios are typical. Using just
one positive and negative point can lead to unstable representation and increase the
training time due to alternations. To improve the spot representation robustness, we
propose the multi-triplet loss motivated by [45]. Let L be the number of unique labels
in the dataset. Define an anchor point A with label li, then we draw, with replacement,
L − 1 positive points {P1, P2, . . . , PL−1} with label li. Additionally, for each label lj
where j ̸= i, we draw a single negative point, resulting in {N1, N2, . . . , NL−1}. Then
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the multi-triplet loss for a single modality can be defined as:

Lmulti triplet(A) =
1

L− 1

L−1∑
k=1

Ltriplet(A,Pk, Nk)

which when extended to all spots:

Lmulti triplet =
1

Nspots

Nspots∑
l=1

Lmulti triplet(Al)

The modality-weighted multi-triplet loss is defined as:

Lmulti triplet = α ∗ Lmulti tripletm + (3− α) ∗ Lmulti triplettr (3)

with α defined as in equation 2.

4.2.4 Loss function

The overall loss function for training combines reconstruction loss to ensure accurate
latent representation and multi-triplet loss for preserving structure across modalities.
Formally, it is defined as:

LAESTETIK = Lrec + Lmulti triplet,

which can be rewritten as:

LAESTETIK = α ∗ (Lrecm + Lmulti tripletm) + (3− α) ∗ (Lrectr + Lmulti triplettr ) (4)

4.2.5 Training details

The model is trained for 100 epochs using Adam [46] with a weight decay of 1e-
6, a learning rate of 1e-3, and a batch size corresponding to the number of spots
in a tissue slice. The run time is approximately 8 minutes on a GPU, with infer-
ence time under a minute. Computational data analysis was performed at Leonhard
Med (https://sis.id.ethz.ch/services/sensitiveresearchdata/) secure trusted research
environment at ETH Zurich.

4.2.6 Evaluation

We propose reversed leave-one-out cross-validation for model evaluation to avoid
hyperparameter tuning on test samples. We utilize a single sample and its replicates
to select hyperparameters through a grid search, aiming to maximize the median ARI.
Subsequently, the optimal hyperparameters are applied to the remaining test samples.
For state-of-the-art methods, we consider hyperparameter values suggested by the
authors, as well as those discussed in the corresponding paper. Hyperparameter values
are provided in the supplement. To ensure comparable conditions across models, the
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number of clusters is pre-defined based on the provided ground truth. Performance is
assessed using the ARI between ground-truth labels and cluster assignments. We boot-
strap 10,000 times from the median ARI across the test folds and report the resulting
median ARI and its standard error. For most datasets, we generated all possible sam-
ple combinations (folds). However, for the larger CosMx NanoString™ Liver dataset
we use each FOV to select the hyperparameters, but we evaluate on randomly selected
20 FOVs, not adjacent to the FOVs used for optimization.

4.2.7 Ablation study

In the ablation study on AESTETIK, we adhere to the procedure described in 4.2.6,
where we fix the value for the hyperparameter of interest and assess its impact on the
ARI. To ensure comparability across datasets, we compute an ARI z-score.

4.3 Downstream applications

4.3.1 Marker genes

For marker genes, we employ the rank genes groups function from scanpy using the
Wilcoxon signed-rank test. Significant marker genes (adjusted p-value < 0.05) are
selected and sorted by their average log-fold change. The top 15 marker genes per
cluster are reported.

4.3.2 Pathway analysis

For pathway analysis, we utilize the multivariate linear model from the decoupler
package [29] to compute regulatory pathway activities from the PROGENy database
[47].

4.3.3 Cluster centroids in latent space

To determine the centroid for each cluster in the latent space, we employed a method
minimizing the sum of Euclidean distances among all samples within that class.
Subsequently, we computed the top N spots near each cluster centroid.

4.4 Data availability

The LIBD Human DLPFC dataset is available
at https://github.com/LieberInstitute/HumanPilot and
http://research.libd.org/spatialLIBD; Human Breast Cancer - Zenodo
https://doi.org/10.5281/zenodo.4739739, Human Liver Normal and Cancer -
https://nanostring.com/products/cosmx-spatial-molecular-imager/human-liver-rna-
ffpe-dataset/. The metastatic melanoma dataset with 18 tissue slices from Tumor
Profiler samples sequenced using Visium from 10x Genomics™ will be made available
upon acceptance of publication.

4.5 Code availability

The open-source implementation of AESTETIK along with a tutorial is available at:
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• www.github.com/ratschlab/aestetik

The Snakemake pipeline for reproducing the results is available at:

• www.github.com/ratschlab/st-rep
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