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ABSTRACT 
 
Conduct disorder (CD) is among the most prevalent and burdensome disorders in early 
adolescence. Over the past decade, there has been growing interest in identifying reliable and 
localized neurobiological markers of conduct disorder (CD). However, recent meta-analyses have 
highlighted the weak reliability of these so-called markers, thereby limiting the ability to draw firm 
conclusions. Using normative network mapping (598 healthy subjects), we rather sought to 
investigate whether the heterogeneous findings across studies may map unto a common brain 
network. A meta-analysis of 38 fMRI studies involving adolescents with a CD (932 cases, 975 
controls) was first conducted and showed only a very weak spatial convergence in brain activity 
alterations in the anterior temporal lobe (5 out of 38 studies). In turn, network mapping revealed 
that findings across studies show a consistent connectivity pattern across the whole brain, with 
regional overlap reaching up to 94.7% (36 out of 38 studies). This network was primarily driven 
by functional connectivity of brainstem nuclei, subcortical structures (i.e., thalamus, ventral 
striatum), cingulate cortex (i.e., anterior to posterior midcingulate), superior temporal sulcus, and 
visual cortices. We further describe the neurochemicals and genetic markers of this CD-Network 
with emphasis on midbrain serotoninergic, dopaminergic and cholinergic projections. Our findings 
suggest that our understanding of the neurobiological markers of CD could be enhanced by 
viewing the brain as a complex interconnected system rather than reducing its complexity to a 
limited number of brain structures. More importantly, this CD-Network may serve as evidence 
that the various theories of CD can be reconciled rather than seen as conflicting. 
 
Keywords: Conduct Disorder; Neuroimaging; Network; Resting-state; Meta-analysis 
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Introduction 
 

Conduct disorder (CD) is generally defined as persistent patterns of severe antisocial behaviors 

including various aggressive and rule-breaking behaviors 1. Its global prevalence has been 

estimated to be around 5% 2  and is considered among the most burdensome psychiatric disorders 

in early adolescence 3. While this disorder continues to be defined exclusively by behavioral 

criteria, early theories posited that youths with CD may exhibit potential deficits in 

neuropsychological processes (e.g., verbal and executive functions, 4), attentional processes 5, 

reward processing 6, conditioning to distressing cues 7, 8, and under-arousal, as a marker of 

fearlessness 9 and/or stimulation-seeking 10, 11. Indeed, a bulk of psychological research now 

recognizes that youths with CD exhibit widespread impairments in interpersonal 12-14 and cognitive 

functioning 15, 16. In addition, significant progress has been made to identify the potential 

neurobiological mechanisms underpinning CD. For example, a variety of physiological (i.e., 

reduced heart rate, low skin conductance), neuroendocrine (i.e., decreased function of the 

hypothalamic-pituitary-adrenal axis), and neurochemical (i.e., decreased serotoninergic, 

noradrenergic, and dopaminergic systems) features have been associated to CD 17-20. In 

neuroimaging literature, however, the search for neurobiological markers of CD remains one of 

the biggest challenges in the field, underscoring both the complexity of brain-behavior 

relationships and the necessity for further integrative research. 

Literature reviews and meta-analyses of adolescents exhibiting severe conduct problems 

(including those diagnosed with a CD) highlighted aberrant brain activity during a wide range of 

neurocognitive domains including emotion processing, reinforcement learning, executive 

functions, and social cognition  2, 21-24. Most notable evidence indicate that the amygdala, the 

orbitofrontal cortex/ventromedial prefrontal cortex (OFC/vmPFC), the anterior insula (aINS) and 
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the anterior cingulate cortex (ACC) may be key regions involved in the pathogenesis of CD 2, 21. 

Indeed, lesion studies in humans also support the crucial role of specific brain regions in the 

emergence of conduct problems, and potentially CD. For example, Anderson and colleagues 25 

reported a case in which a patient suffered a trauma to the PFC (frontopolar, vmPFC/mOFC) at an 

early age and subsequently developing signs of CD including lying, shoplifting, runaway, abusive 

behaviors and limited prosocial emotions. Others have documented cases involved severe damage 

to the OFC 26 and tumors to the mesial temporal lobe 27 which were causally linked to emergence 

of aggressive behaviors during adolescence. In light of these findings, it is unsurprising that these 

regions have garnered significant attention in neuroimaging research on CD and related disorders 

2, 21, 28-30. However, findings from fMRI studies reveal a more complex story than what was initially 

assumed. 

 Most meta-analyses of fMRI studies in CP/CD have revealed small effect sizes and 

relatively weak statistical significance across most brain regions 22-24, 31, 32. While it is possible that 

robustness may be altered by the diverse sampling and methodological differences between studies 

(e.g., clinical heterogeneity, variability in fMRI tasks and statistical analyses, software used, 

statistical thresholding), it is noteworthy to mention that most regional effects are suspected to be 

driven primarily by a small subset of studies (≈ 25%) 33. As the field of functional neuroimaging 

struggles with a replicability crisis 34, 35, focusing solely on a limited number of brain regions to 

capture the mechanisms underpinning CD appears untenable. More importantly, this 

localizationist perspective is susceptible to biological reductionism 36 and does not align with 

current knowledge indicating that across time and conditions, the entire brain operates in concerto, 

through a modular organization of densely interconnected regions 37, 38. Indeed, cerebral blood 

flow and variability of blood oxygen level-dependent (BOLD) signal in local areas are associated 
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with their level of functional connectivity (i.e., node strength/degree centrality) 39-43, suggesting 

that local variability in BOLD signals may reflect information communication 44. These findings 

are coherent with the fact that regions with high degree centrality, especially those involved in 

cognitively demanding task demands (e.g., reading, memory, inhibition), may demand more 

energy given their degree of signalling (e.g., supplies in oxygen, glucose) 45, 46. Averaging BOLD 

signal across task conditions and subjects (study-level) would thus reduce the importance of non-

hubs regions (those with fewer connections), which are nevertheless essential for our 

understanding of psychopathologies. Recently, network mapping approaches have been carried 

out to address limitations generated by localizationist perspectives. For example, Darby and 

colleagues (2019) showed that heterogeneous locations of brain lesions temporally linked to 

antisocial behaviors may map onto a common functional connectivity network. These approaches 

were subsequently adopted in meta-analytic contexts, which were able to reveal, despite the use of 

heterogeneous peak coordinates, a specific whole-brain network for substance use disorder 47, 

unipolar depression 48, and emotion processing 49. Adopting a more distributed perspective of brain 

functioning, as opposed to reducing complex phenotypes to a limited set of brain regions, may be 

better suited to enhance our understanding of the neurobiological markers for various disorders 

and psychopathologies 50. 

In the current study, we aimed to investigate whether using a distributed approach (i.e., 

network mapping) may outperform common regional approaches in terms of spatial convergence. 

More precisely, we conducted activation network mapping to examine whether the heterogeneous 

brain locations found across 38 fMRI studies of adolescents diagnosed with a CD may map onto 

a common brain network. We subsequently investigated whether the resulting CD-Network 

spatially corresponded to specific mental functions (e.g., executive functions, social cognition), 
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neurotransmission systems (e.g., serotoninergic, noradrenergic and dopaminergic), and genetic 

markers (e.g., MAOA, COMT, SLC6A4) that were previously found to be associated with CD and 

related disorders 2. 

 
 
Methods 
 
Meta-analytic Approaches 

A subset of studies derived from the most recent meta-analyses of fMRI studies on youths 

exhibiting antisocial behaviors was included 23, 24, 51. These studies were included if they: 1) 

included a sample with an average of less than 18 years old, 2) included a sample with at least 60% 

of the participants with a formal diagnosis of CD according to a clinical interview; 3) included a 

case-control analytic approach; 4) reported the peak coordinates of the significant group-difference 

across the whole-brain coordinates. To reduce the impact of multiple experiments per study, we 

concatenated them to form a study-level map 52 

First, we conducted a coordinate-based meta-analysis on the included fMRI studies across 

tasks, irrespectively of the directionality of the effect (increased vs. negative), using the activation 

likelihood estimation algorithm (see Supplementary Method). Spatial convergence was established 

by using a threshold of p<0.001 at voxel-level and FWE-p<0.05 at a cluster-level with 5000 

permutations, as recommended 53, 54. This allowed us to establish how many studies contributed to 

findings at a regional level. 

Second, we conducted an activation network mapping of peak coordinates of the included 

studies. This method involves normative resting-state data to explore to what extent heterogeneous 

findings may be linked to a common network 47, 55. Briefly, a 4-mm sphere was created around 

each coordinate per each study to create a study-level mask. Then, we computed the normative 
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functional connectivity map of each study-level mask using resting-state data of 598 healthy 

children and adolescents (mean age=11.87, s.d.= 2.77, 71.6% boys) from the Autism Brain 

Imaging Data Exchange datasets, ABIDE-I 56, 57 and ABIDE-II 58 (see supplementary material). 

 For each study, the group-level connectivity map was computed by averaging the time course 

of voxels in the study-level mask to the time course of every other voxel in the brain for each of 

the 598 healthy subjects. Subsequently, group-level connectivity map (across the 598 subjects) 

was computed using a voxel-wise one-sample t-test. To evaluate replicability across studies, we 

first conducted Spearman correlation between study-level connectivity maps across voxels. We 

also investigate the level of replicability between studies by thresholding each study-level 

connectivity map at t>5, binarizing it, and combining them. Indeed, others previously found that 

in some regions, network approaches achieve replicability up to 100% 47, 55. Finally, we conducted 

a voxel-wise one-sample t-test using the unthresholded study-level maps to generate a CD-network 

map that was more consistent than expected by chance through permutation testing 59. Main 

connectivity hubs of this network were identified using cluster-based Threshold-Free Cluster 

Enhancement (TFCE) and Family-Wise Error corrections (pFWE<0.05). For a more precise 

description of the top regions characterizing the CD-Network map, several atlases were used 

including the Yale Brain Atlas 60, Automated anatomical labelling atlas (3rd version, 61,  Harvard 

Ascending Arousal Network Atlas 62 as well as amygdalar (provided by JuBrain Anatomy 

Toolbox, 63), hypothalamic 64 and striatal atlases 65. Subanalyses were conducted to explore the 

effect of resting-state fMRI studies, callous-unemotional traits (CU), comorbid attention-

deficit/hyperactivity disorder (ADHD) and medication on our findings. 

 

Functional Decoding: Mental Functions, Neurotransmission and Gene expression 
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Mental functions and Neurotransmission 

We compared the spatial associations between the CD-network and 13 meta-analytic maps 

of mental functions and 20 whole-brain receptor/transporter density maps (see 66) using JuSpace 

(version 1.4) 67.  

Whole-brain maps of mental functions were used from a data-driven summary of more 

than 1,347 neuroimaging meta-analyses aiming to derive an ontology of brain functions 68. 

Functions included affective (i.e., motivation, value-based decision-making), cognitive (i.e., 

language, cognitive control, multiple demand), memory, attention, social cognition (i.e., face 

perception, social inference, social representation), somatomotor processes (i.e., auditory, 

interoception, action) 68. Voxelwise spearman correlation was conducted between the input (CD-

Network) and target images (Mental functions). 

PET/SPECT density maps were distributed across 9 neurotransmitter systems including 

serotonin (i.e., 5-HT1A , 5-HT1B , 5-HT2A , 5-HT4 , 5-HT6 , 5-HTT), dopamine (i.e., D1 , D2 , DAT), 

norepinephrine (i.e., NET), Histamine (i.e., H3), acetylcholine (i.e., α4β2, M1, VAChT), 

cannabinoid (i.e., CB1), opioid (i.e., MOR, KOR), glutamate (i.e., NMDA, mGluR5) and GABA 

(i.e., GABAA/BZ). The mean values of 421 brain regions which included 400 parcels of the 7-

Network Schaefer atlas 69and additional 21 subcortical and cerebellar regions from the ASEG 70 

and Buckner Atlas 71 were extracted for the two images (i.e., CD-Network and target maps 

[density]). Partial correlation (Spearman’s rank correlation) adjusting for spatial autocorrelation 

(i.e., local grey matter probabilities) was then performed between the two sets of parcellated maps. 

Permutation-based p-values (with 5,000 permutations) were computed and corrected using false 

discovery rate (FDR).  
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1.1.1. Gene-Category Enrichment Analyses 

We investigated whether the CD-Network was significantly associated with gene 

expression patterns underlying psychiatric disorders (i.e., DisGeNET, 72). This was done with the 

ABAnnotate toolbox (see 73) which aims to perform gene-category enrichment analyses using 

volumetric maps. Brain-wide gene expression patterns were obtained via the Allen Human Brain 

Atlas 74, 75. For these analyses, the CD-network map and the mRNA expression data for 15,633 

genes were parcellated using the same parcellations as mentioned above (400 cortical and 21 

subcortical and cerebellar regions). Null maps of the CD-Network (5,000) were generated while 

preserving spatial autocorrelation. Spearman correlations between the CD-network map, the null 

maps and all the mRNA expression maps were calculated. Positive-sided p-values were then 

calculated from the comparisons between the “true” category scores with null distribution and 

were FDR-corrected. To explore the potential role of specific genes, gene-wise spatial associations 

were then conducted using top genes that characterized disorders associated with the CD-Network. 

 
- Insert Table 1 About Here -  
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Table 1. Summary of the Included fMRI Studies on Conduct Disorder (k=38) 

Included Studies 
(First Author, Year) 

Controls 
(N=) 

Sample characteristics 

% of 
Conduct 
Disorder 

Diagnostic 
Assessment 

Cases 
(N=) 

Mean 
Age Males 

(%) 

MED 
(%) 

Task 
Aghajani, 2021 76 31 100.0% K-SADS 19 16.4 100.0% 0.0% Emotional Recognition & Resonance 
Banich, 2007 77 12 75.0% DISC-IV  12 16.7 100.0% - Stroop Task 

Cao 2019 (A) 78 30 100.0% SCID-I/P 36 14.3 100.0% - Rest (ReHo) 
Cao 2019 (B) 78 30 100.0% SCID-I/P 32 14.8 100.0% - Rest (ReHo) 
Crowley, 2010 79 20 95.0% DSM-IV CD  20 16.5 100.0% 30.0% Colorado Balloon Game 
Crowley et al., 2015 
80 20 85.4% DSM-IV 41 16.3 49.0% 34.1% Decision-Making Behavioral Task 
Decety 2009 81 8 100.0% DSM-IV 8 16-18 NA - Empathy for Pain 
Dong, 2016 82 36 100.0% SCID-II 30 15.1 100.0% - Facial Expression (Pain) 
Ewbank, 2018 83 25 100.0% K-SADS-PL  24 18.1 100.0% - Facial Emotional Processing 
Fairchild, 2014 84 20 100.0% K-SADS  20 17.0 0.0% - Emotional Face Task 
Fehlbaum, 201885 39 100.0% K-SADS-PL 39 15.9 74.0% 89.7% Affective Stroop Task 
Finger, 2011 86 15 60.0% K-SADS-PL 15 14.1 60.0% 46.7% Probabilistic Reversal Task 
Gatzke-Kopp, 2009 
87 11 63.0% DISC 19 13.6 100.0% 52.6% Reward Processing 
Herpertz, 200888 22 100.0% K-SADS  22 14.7 100.0% - Passive-Viewing (Emotional) 
Hwang, 2016 89 28 88.9% K-SADS  18 14.6 56.0% 27.8% Affective Stroop Task 
Hwang 2018 90 29 73.7% K-SADS  19 14.8 68.4% 15.8% Social & Non-Social Rewards 
Klapwijk, 2016a 91 33 100.0% K-SADS-PL  23 16.6 100.0% 0.0% Empathic Emotional Face Task 
Klapwijk, 2016b 92 33 100.0% K-SADS-PL  32 16.8 100.0% 0.0% Dictator Game 
Lu, 2017 93 18 100.0% K-SADS-PL 18 16.1 NA 0.0% Rest (Short/Long Range Density) 

Lu, 2020 94 18 100.0% K-SADS-PL 18 17.1 100% 0.0% Rest (Static/Dynamic ALFF) 
Lu, 202195 18 100.0% K-SADS-PL 18 17.1 100.0% - Rest (dynamic ReHo) 
Mathur 202396 41 63.4% DSM 42 16.2 61.0% 26.2% Retaliation Task 
Menks et al., 2021 97 35 100.0% K-SADS-PL 23 16.7 58.3% - Emotional Face Processing 
Passamonti, 2010 98 40 100.0% K-SADS  27 17.1 100.0% - Emotional Face Task 
Rachle 2019 99 29 86.7% K-SADS  30 16.3 0.0% - Effortful Emotion Regulation Task 
Rubia, 2008 100 20 100.0% Maudsley DI  13 13.0 100.0% 0.0% Stop Task 
Rubia, 2009a 101 16 100.0% Maudsley DI  14 12.9 100.0% 0.0% Reward Continuous Performance 
Rubia, 2009b 102 20 100.0% Maudsley DI  13 12.8 100.0% 0.0% Simon Task 
Rubia, 2010 103 20 100.0% DSM-IV 14 12.6 100.0% 0.0% Visual-Spatial Switch Task 
White, 2012a104 19 94.1% K-SADS  17 15.5 76.0% 11.8% Eye Gaze Task 
White, 2012b105 17 73.3% K-SADS  15 15.7 80.0% 26.7% Emotion-Attention Bars Task 
White, 2013106 18 85.0% K-SADS  20 15.2 82.0% 10.0% Passive Avoidance Task 
White, 2014 107 15 73.3% K-SADS  15 14.4 73.0% 20.0% Doors Task 
White 2016 108 26 73.3% KSADS 30 15.0 63.3% 23.3% Social Fairness Game 

Wu 2017 109 28 100.0% SCID-I/P 28 14.8 100.0% 0.0% Rest (ReHo) 
Zhou 2015 110 18 100.0% K-SADS-PL 18 16.1 100.0% 0.0% Rest (ALFF) 
Zhang, 2015 111 40 100.0% DSM-IV-TR 29 15.1 100.0% - Go/Stop Task 

Zhang, 2023 112 77 100.0% DSM 101 15.9 56.70% 45.5% Passive Avoidance Task 
Note. KSADS = Kiddie Schedule for Affective Disorders and Schizophrenia; DISC = Diagnostic Interview Schedule for Children; ReHo = Regional 
Homogeneity; ALFF = Amplitude of Low Frequency Fluctuations 
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Results 

 
Activation Likelihood Estimation Meta-analysis 
 
A total of 38 fMRI studies was included in the current meta-analysis which comprised 932 cases 

versus 975 controls (see Table 1). Mean age was 15.5 years old (SD=1.37) and mainly included 

males (average of 82.2% per sample). The average rates of CD per sample was 91.8% (SD=12.9). 

Of the 25 studies that reported prevalence of participants receiving medications (average 18.41% 

of samples), 11 samples comprised unmedicated participants. the Spatial convergence across these 

studies revealed a significant peak in the anterior inferior temporal gyrus (x=56, y=-10, z=-22, 728 

mm3, see Figure 1) which was driven by only 5 studies out of 38 (13.15%). 

 

  - Insert Figure 1 About Here –  
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Figure 1. Spatial Convergence across neuroimaging studies on Conduct Disorder. A. Activation 
Likelihood Estimation meta-analysis was conducted on peak coordinates of 38 fMRI studies on 
Conduct Disorder which revealed a significant convergence anterior inferior temporal gyrus (5 
studies out of 38). B. Normative Network mapping approach was conducted to identify whether 
heterogeneous brain locations (peak coordinates) between studies may map onto a common 
functional connectivity map. Network mapping revealed that study-level maps strongly correlated 
with each other (average r=.71). C. Upper row displays of the overlap between peak coordinates 
across studies (4 mm sphere) showing low reliability (up to 13.15%). Lower row represents 
overlap between study-level maps that were binarized (T>|5|) which showed high reliability (up to 
97.4% of studies).  
 
 
 
 
Normative Network Mapping 

 
Next, for each study, we computed the resting-state functional connectivity map using their 

reported coordinates peaks as seeds (Figure 1B). Using unthresholded study-level maps, a 

voxelwise one-sample t-test was then conducted to generate an unbiased t-map that is greater than 

expected by chance. Analyses revealed significant effects in many regions, especially the pons, 

midbrain, thalamus, ventral striatum, posterior hippocampus, orbitofrontal cortex, cingulate 

cortices (i.e., posterior midcingulate to perigenual anterior), visual (i.e., V3) and parietal cortices 

(i.e., anterior superior temporal gyrus to angular gyrus) (Figure 1B, Table 2). Thresholding each 

study-level t-map at T>|5|, binarizing and summing them revealed that study converge onto a 

common network with highest voxel replicability reaching up to 94.7% (36 out of 38 studies) in 

the posterior midcingulate gyrus, posterior hippocampus and thalamus (see Figure 1C and 3A, 

Table 2). More importantly, using more stringent thresholds than T>|5| (Stubbs et al., 2023) did 

not impact the findings: T>|6| (overlap<92.1%, r=.98 with T>|5|), T>|7| (overlap<89.5%, r=.96), 

T>|8| (overlap<89.5%, r=.94), T>|9| (overlap<86.8%, r=.91), and T>|10| (overlap<81.5%, r=.88). 

Next, we examined whether our findings might be driven by a particular functional network 

(Figure 2B). Compared to the rest of the brain, CD-Network was primarily characterized by 
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functional connectivity of the subcortex (Cohen’s d=.84), visual (Cohen’s d=.80), followed by the 

default mode network (DMN) (Cohen’s d=.67). 

 

- Insert Table 2 About Here –  
 
 
Table 2. Reliability of regional overlap between studies using Normative Network Approach 

Regions 

MNI Coordinates  Statistics 

x y z  
Peak Overlap 

(out of 38) t-values 
pHippocampus 30 -32 -10  36 10.72 
pMCC -4 -4 34  36 11.79 
Thalamus 10 -22 12  36 10.43 
Precuneus -12 -42 44  35 9.53 
Cuneus (V3) 8 -74 28  35 6.72 
pHippocampus -22 -36 -8  35 9.11 
vPutamen -16 8 -16  34 9.88 
OFC (Fo3) 26 30 -14  34 10.32 
ventral Putamen 28 8 -12  33 8.78 
Superior Temporal Gyrus 60 -12 -2  33 9.74 
Angular Gyrus 42 -60 18  33 8.62 
IFG (BA 45) 56 32 14  33 9.63 
Thalamus 14 -28 -2  33 9.86 
Cerebellum (Dentate Nucleus) 16 -60 -36  32 10.49 
Cerebellum (Dentate Nucleus) -14 -60 -34  32 9.73 
Pons 4 -22 -24  32 10.29 
Amygdala -30 4 -18  32 7.89 
Superior Temporal Gyrus -52 -10 -4  32 8.69 
Angular Gyrus -50 -72 16  32 9.19 
posterior Insula 42 -24 10  31 7.30 
Supramarginal Gyrus 56 -42 18  31 6.84 
Middle Frontal Gyrus 26 34 38  30 7.06 
Note. pMCC = posterior Midcingulate Cortex; IFG = Inferior Frontal Gyrus;  

 
 

Subanalyses were then conducted to investigate the effects of CU traits, comorbid ADHD, and 

medication on CD-Network (p<0.001, 10 voxels). First, no significant effect was found for the 

severity of CU traits (see Supplementary Results for median split). Comorbid ADHD revealed a 

significant effect in the lateral prefrontal cortex (x=-22, y=40, z=14, t=3.8, 125 voxels) and caudate 

nucleus (x=-16, y=12, z=14, t=3.54, 14 voxels). Medication level was associated with functional 
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connectivity in the dorsolateral prefrontal cortex (x=-30, y=16, z=22, t=5.59, 64 voxels), and 

supplementary motor area (x=-15, y=-16, z=62, t=3.98, 24 voxels). However, none of these 

findings did not survive family-wise error correction (cFWE<0.05). Finally, removing resting-

state studies (k=7) did not impact our findings (voxelwise correlation r=.97). 

- Insert Figure 2 About Here –  

 

 

 

Figure 2. Description of the Conduct Disorder Network (CD-Network). A. Figures show top 
brainstem, subcortical and cortical regions involved in the CD-Network. B. Barplot demonstrates 
the importance of subcortex and somatomotor networks (i.e., Schaefer-7 Networks) in 
characterizing the CD-Network, compared to the rest of the brain (Cohen’s d). C. Subanalyses 
were conducted to investigate the effect of CU traits, comorbid ADHD and medication. Comorbid 
ADHD revealed small significant effect in the lateral prefrontal cortex (lPFC) and caudate nucleus 
(CAUD). Medication level was associated with functional connectivity in the dorsolateral 
prefrontal cortex (dlPFC), and supplementary motor area (SMA). None of these findings did not 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 3, 2024. ; https://doi.org/10.1101/2024.06.02.24308339doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.02.24308339
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 15 

survive family-wise error correction (cFWE<0.05) 
 

 
Functional Decoding: Mental Functions, Neurotransmission and Gene expression 

Given the distributed nature of the CD-Network, we sought to examine whether it spatially 

corresponded to specific mental functions, receptor density, and genetic markers.  

Voxelwise spatial correlations with mental functions maps showed that the CD-Network 

showed was primarily associated with motivation (r=.28), spatial memory (r=.27), and social 

inference (r=.26), value-based decision-making (r=.25) and social representation (r=.24). Using 

PET/SPECT density maps, CD-Network mainly correlated with Serotonin Transporter (5-

HTT/SERT)(z'=.48, pFDR<0.05), dopaminergic transporter (DAT)(z'=.37, pFDR<0.05), 

dopamine receptor D1 (z'=.28, pFDR<0.05), and Vesicular Acetylcholine Transporter (VAChT) 

(z'=.22, pFDR<0.05). 

Gene-Category Enrichment Analyses were conducted using postmortem gene expression data 

to identify psychiatric disorders enriched with genes associated with the CD-Network 

(DisGenNet). We found that the CD-Network map significantly correlated with gene expression 

patterns of 71 disorders after correction with 5,000 permutations. Top disorders included 

Psychosocial stressor (Z=3.22, p=1.3x10-7), sexual inhibition (Z=2.74, p=1.1x10-7), Impaired 

ability to form peer relationships (Z=2.44, p=3.2x10-7), Childhood disintegrative disorder (Z=2.17, 

p=2.3x10-6), and Psychological pseudocyesis (Z=2.16, p=3.07x10-6) (see Supplementary Table 1). 

More importantly, among these disorders, BDNF (39.4%), MAOA (28.2%), DRD2 (25.4%), 

COMT (19.7%), HTR1A (19.7%), HTR2A (18.3%), DRD4 (15.5%), and OXTR (15.5%) we the 

most frequently reported. From these, expression of NLGN4X (rho=.31, p=1.27x10-9), HTR2C 

(rho=.31, p=2.62x10-9), FAAH (rho=.20, p=1.57x10-4), and MAOA (rho=.28, p=2.47x10-4) 
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showed strongest gene-wise spatial correlation with the CD-Network (Figure 3B, Supplementary 

Table 2). 

- Insert Figure 3 About Here -  

 

 

 
Figure 3. Functional Decoding of the Conduct Disorder Network. A. Voxelwise distribution of 
the CD-Network mainly correlated with motivation, spatial memory, social inference, and value-
based decision-making, derived from the brain-behavior ontology of task-based fMRI studies 
(Dugré et Potvin, 2023). B. Top neurotransmission systems that spatially correlated with the CD-
Network involved serotoninergic, dopaminergic and cholinergic transporter, and dopamine 
receptor 1 (Dukart et al., 2020). Asterisks represent statistical significance after correcting for false 
discovery rate. C. Gene-Category Enrichment Analyses were conducted and identified 71 
disorders associated with CD-Network. Left panel show the top 10 disorders the correlated the 
most with CD-Network. Correlations were weighted for the number of gene in categories (i.e., 
log(number of genes+1), and standardized. Right panel represents gene-wise spatial correlation 
patterns of the most important genes across the identified disorders. 
 

 
Discussion 
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In the current meta-analysis, we sought to investigate the reliability of neuroimaging 

findings on CD using both local and diffused approaches. Of the 38 identified studies, spatial 

convergence in regional brain activity was observed in the inferior temporal gyrus. However, this 

finding was driven by only 5 studies (13%). In turn, network mapping yielded robust overlap 

between studies reaching up to 94.7% reliability, particularly in the posterior midcingulate cortex, 

posterior hippocampus and thalamus. We additionally observed prominent role of functional 

connectivity in the ascending arousal network (e.g., pontine reticular formation, dorsal raphe), 

midbrain, ventral striatum, parietal and occipital regions. Furthermore, the CD-Network showed 

main spatial correlations with socio-affective and reward-related processes, in addition to stronger 

concordance with density of serotoninergic, dopaminergic, and cholinergic transporters. Finally, 

gene-category enrichment analyses revealed that the CD-Network was genetically close to 

psychosocial stress, sexual inhibition and impaired ability to form peer relationships, possibly due 

to alterations in NLGN4X, HTR2C, FAAH, and MAOA genes expression. Taken together, the 

CD-Network approach may facilitate the integration of existing theories by providing a robust 

framework of neural functioning in CD, where distinct mechanisms are functionally intertwined. 

Over the past decades, several theorists attempted to describe pathogenesis of CD by 

proposing seemingly distinct mechanisms that could explain the emergence of antisocial 

behaviors. Among the most prominent theories, Integrated Emotion systems (IES) posits that the 

Violence Inhibition Mechanism (VIM) is usually activated by distressing cues, which results in 

autonomic activity and activation of the threat response system 7. Reduced VIM would thus impair 

stimulus-reinforcement associations between actions that harm others and consequences of such 

actions (e.g., amygdala, orbito/ventrolateral cortices), and interfere with socialization 113. Others 

rather suggested that CD symptoms may be better explained by alterations in executive functions 
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4 and attentional processes 5. For example, reduced affective response to threatening stimuli may 

be due to deficits in shifting the attention of CD individuals to cues that are secondary to their 

primary focus of attention (Newman, 1987) and/or to an exagerated  filtering out cues that are in 

periphery 114. While both emotion-based and cognitive-based accounts mainly rely on distinct 

neural correlates, they are likely intertwined. For instance, we found a prominent role of brain 

regions underpinning both reinforcement learning (e.g., amygdala, ventral striatum, OFC/vlPFC) 

and attentional/control processes (e.g., dACC, pMCC, lateral PFC), offerring partial support for 

both accounts. However, the emotion- and cognitive-based theories cannot fully account for the 

robust effects found in other brain regions including the brainstem/midbrain, posterior 

hippocampus, superior temporal sulcus and visual cortices.  

One of the earliest psychobiological theory of criminal and antisocial behaviors postulated 

that low cortical arousal would result in impaired behavioral conditioning, therefore increasing the 

proneness to stimulation seeking behaviors 10. Despite that it has long been proposed that low 

arousal would be associated with fearlessness in antisocial population 9, 115, 116, initial theories of 

personality rather linked low arousal to a mode of functioning primarily found in extraverted 

individuals 117, notably those with exaggerated reward seeking 6. According to this model, these 

individuals with low arousal would exhibit antisocial behaviors to produce shifts in motivational 

states. Coherently with this model, low arousal has been robustly linked to antisocial population 

including adolescents with elevated CP (and CD) 20, 118, 119, antisocial behaviors 120, psychopathy 

18 and criminal offending, especially violent behaviors 121, 122. Not only this arousal theory can 

provide additional neurobiological insights to CD symptoms but may also link conceptually both 

emotion- and cognitive accounts. Indeed, autonomic arousal is fundamental for many cognitive 

processes including attention, memory, language, and executive functions 123, 124  as well as 
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incentive learning 125. According to the Yerkes-Dobson Law, too much or too less arousal would 

alter cognitive performance. On a neurobiological level, Eysenck  117 already described the 

importance of the reticular formation 126, now known as the Ascending Arousal System, which is 

characterized by multiple neurotransmitter-specific projections (cholinergic, noradrenergic, 

dopaminergic, serotoninergic) from brainstem nuclei to the thalamus (dorsal pathway) and 

hypothalamus and basal forebrain (ventral pathway) 62, 127. This ascending arousal system further 

contribute to the coordination of cortical activity in many brain regions overlapping with those 

found in the CD-Network including the ACC, MCC, and fronto-insular cortex128.  

While the neurobiological correlates of arousal appears to overlap with those found in CD, 

it may not be sufficient to explain widespread deficits in emotion perception such as emotion 

recognition and emotional resonance. Indeed, findings also suggest that CD youths have 

particularly lower fixation to the eyes when processing negative facial expressions 97, 129-131 and 

deficits in emotional resonance 91, 132. While many researchers adopt an amygdala-centric view of 

the neural dysfunctions in youths with CD, evidence indicates “the amygdala is not essential for 

rapid, non-conscious detection of affective information.” (p.6, 133). For example, visual 

information about emotional stimuli appears to be processed by pulvinar/lateral geniculate, visual 

cortices (V1, V2) and inferotemporal cortex as fast as 60-85ms, followed by 100-200 ms for the 

amygdala 133. This visual processing is often described via a two-pathway model 134, including the 

dorsal ("Where") and ventral ("What") streams. However, Pitcher & Ungerleider 135 recently 

suggested the presence of a third visual pathway specific to social perception (e.g., calculating 

meanings and intentions of others), which relies on projections from early visual cortex to the 

anterior portion of the superior temporal sulcus via the posterior superior temporal sulcus 135. These 

are largely overlapping with brain regions found in the CD-Network, spanning from the angular 
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gyrus to the anterior superior temporal sulcus. Of importance, our perceptions are known to be 

shaped by the contextual information we gather when encountering particular stimuli (e.g., seeing 

other’s in distress). Evidence suggests that the retrieval of contextual representations is processed 

by the posterior hippocampus via the visual pathways and parahippocampal gyrus 136, 137, which 

were among the brain regions found to be the mostly replicated using the CD-network approach. 

In sum, it is thus possible that the neurobiological deficits regarding the perception of social cues 

may appear earlier in the temporal sequence than was previously assumed, as they involve both 

the perception and retrieval of contextual representations. Indeed, using a large sample of 

adolescents (n=1,416), we previously showed that severity of CP was significantly associated with 

functional connectivity of many brain regions found in the current study, providing additionnal 

evidence for a role of visual cortex, posterior hippocampus, angular gyrus, posterior temporal 

gyrus in CD 138. More research is needed to examine how the retrieval and integration of prior 

contextual knowledge may shape perception of social cues in youths with CD. Of importance, it 

is reported that only a limited number of youths with CD show poor emotion recognition skills 

(about 23%, 139), disentangling the heterogeneity of youths with CD should be a central goal in 

future neuroimaging studies.  

 

Limitations 
 

A few limitations need to be acknowledged. First, fMRI studies on CD differ on a wide 

range of methodological and clinical features. Despite our attempt to examine how these features 

may impact our results (e.g., resting-state, CU traits, ADHD comorbidity, medication), the 

relatively small sample size limits our ability to examine other features. Similarly, since CD it 

often described by Aggression and Rule-Breaking subdimensions, it remains unknown whether 
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some of our findings may be driven by one of these dimensions. Another limitation is the use of 

normative sample to characterize alterations in neural networks of CD. While normative 

approaches are powerful method to identify impairments, it is possible that youths with CD may 

show reorganization of the brain connectome 140 which may differ from normative expectations. 

Using mega-analytic approaches, such as in the ENIGMA-ASB Working Group, may help clarify 

to what extent CD youths show a brain reorganization compared to controls, respectively to our 

CD-Network. 

 

Conclusion 

Researchers often describe the neural correlates of CD using a limited set of brain regions, 

noticeably the amygdala and prefrontal regions. However, neuroimaging literature reveal a more 

complex story than originally assumed by showing very weak spatial convergence across fMRI 

studies using a traditional meta-analytical approach. Here, we demonstrated that the heterogeneous 

peaks across these studies are connected to an overarching circuit. This distributed network, 

labelled as the CD-Network, mainly overlaps with neurobiological correlates of arousal-

motivational and socio-affective processes which echo with prior work highlighting the 

importance of autonomic under-arousal and emotional perception in the emergence of antisocial 

behaviors. This CD-Network may serve as a template to study inter-individual differences in the 

neural processes that increase the risk for CD. 
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