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ABSTRACT 

Patients with High-Grade Serous Ovarian Cancer (HGSOC) exhibit varied responses to treatment, 

with 20-30% showing de novo resistance to platinum-based chemotherapy. While hematoxylin-

eosin (H&E) pathological slides are used for routine diagnosis of cancer type, they may also contain 

diagnostically useful information about treatment response. Our study demonstrates that combining 

H&E-stained Whole Slide Images (WSIs) with proteomic signatures using a multimodal deep 

learning framework significantly improves the prediction of platinum response in both discovery 

and validation cohorts. This method outperforms the Homologous Recombination Deficiency 

(HRD) score in predicting platinum response and overall patient survival. The study sets new 

performance benchmarks and explores the intersection of histology and proteomics, highlighting 

phenotypes related to treatment response pathways, including homologous recombination, DNA 

damage response, nucleotide synthesis, apoptosis, and ER stress. This integrative approach has the 

potential to improve personalized treatment and provide insights into the therapeutic vulnerabilities 

of HGSOC. 
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0 Introduction 

20%–30% of HGSOC patients have treatment-refractory disease at diagnosis and have a poor 

prognosis 1. Patients with refractory disease experience the toxicity of platinum-based chemotherapy 

without benefit. Due to their rapid disease progression, such cases are commonly excluded from 

participating in clinical trials. Lack of mechanistic understanding significantly impedes developing 

treatment strategies to overcome first line treatment resistance. Conversely, improved prediction 

models for treatment resistance could significantly enhance clinical decision-making, allowing for 

more effective treatment approaches that minimize exposure to potentially non-effective therapies 

and side effects, while ensuring that patients who are likely to respond to a treatment are identified. 

Homologous recombination-deficiency (HRD) plays a major role in response to platinum-based 

treatments and PARP-inhibitors. Cases with HRD can be identified using mutational-signature 

based signatures utilizing next generation sequencing-based methods including the HRD-score 2, 

the FDA-approved methods (Myriad myChoice CDx3 and FoundationFocus CDxBRCA LOH4) and 

WGS-based HRDetect 5 or WES-retrained HRDetect 6 and functional assays. (e.g. RAD51 foci). 

Although recent publications investigated the possibility of predicting HRD-status using whole slide 

images 7,8 and predicting response to platinum-based treatments using WSI or proteomics data 9–11, 

their predictive power has not reached the level of clinical utility.  

Investigating the proteome is informative of how tumors respond to platinum-based treatments. 

Recent studies in proteogenomics have revealed that certain patterns of protein expression and 

modifications are linked to patient survival rates and outcomes in cases of High-Grade Serous 

Ovarian Carcinoma (HGSOC) 10,12,13. Additionally, Chowdhury et.al9 described a signature of 64 

proteins that can predict with high specificity which patients might develop resistance to initial 

platinum therapy. However, this approach captures only part of the complex interaction between 

cancer cells and treatment. The spatial organization of these cells within the tumor 

microenvironment, a key aspect that proteomic analyses often overlook, also significantly influences 

treatment response. Understanding the spatial distribution of proteins and their interaction with the 

tumor environment adds another layer of insight, potentially identifying mechanisms that drive 
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therapy resistance and efficacy. 

Recent advances in computational pathology demonstrate great potential for treatment response 

prediction using weakly supervised deep learning models. These computer vision algorithms can 

use H&E-stained Whole Slide Images (WSIs) to predict the outcomes of treatments like 

bevacizumab in ovarian cancer 14. Additionally, these models can determine Homologous 

Recombination Deficiency (HRD) status 7,8,15. This capacity to derive significant clinical insights 

directly from WSIs suggests that when combined with proteomic data, which offers a detailed 

molecular landscape of tumor behavior, we can significantly improve predictive models. 

Since WSI, proteomic signatures or DNA repair deficiency status are all predictive of various 

aspects of ovarian cancer biology, it is possible that their “fusion” may produce even superior 

predictive performance. 

Early and late fusion models are two approaches in multimodal data fusion and analysis. Early fusion 

is similar to a multidisciplinary consultation where an oncologist, radiologist, and genetic counselor 

collaborate from the start, pooling their expertise to quickly form a comprehensive view of a 

patient’s health. This approach is useful when the interplay among various medical data types is 

essential for accurate diagnosis and treatment planning. In contrast, late fusion is akin to sequential 

specialist consultations. Each expert examines the patient independently, contributing insights from 

their respective fields in detail and later integrate these findings. This method allows for in-depth 

analysis of each data type, ensuring that unique insights are captured before they are synthesized 

into a diagnosis or treatment plan. 

Our study evaluates early and late fusion models by benchmarking recent methodological advances 

in multi-modal integration of histopathology and omics data 16–20 . We compare these models across 

metrics of performance and interpretability. Furthermore, multi-modal fusion provides opportunities 

for automatically identifying biomarkers related to treatment resistance. The way these models 

combine different modalities is designed to be inherently interpretable. Therefore, the integration of 

biological knowledge into the models facilitates detailed investigations at the patient level into the 

significance of specific histopathology morphologies, pathways and proteins. 

Our study is the first to integrate proteomics and histopathological images and show that these 

modalities are synergistic for platinum response treatment. The complementarity between the 
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global, spatial context provided by WSIs and the mechanistic information. Furthermore, we show 

that these models can be probed to provide fine-grained interpretability to better understand tumor 

response at a mechanistic level. 

 

1 Results 

1.1 Combination of WSI with proteomics significantly increases the accuracy of response prediction 

Both the Cancer Genome Atlas Program (TCGA) 12 and Proteogenomic Translational Research 

Centers High-Grade Serous Ovarian Carcinoma (PTRC-HGSOC) 9 datasets included patients with 

paired H&E WSI and proteomics data, along with documented responses to platinum chemotherapy. 

This enabled an investigation into the effectiveness of multi-modal histology-proteomics deep 

learning compared to their unimodal counterparts for this task. 

We first trained a clustering-constrained attention multiple instance learning (CLAM) 21 model to 

predict response to platinum therapy in ovarian cancer based on WSI data alone. The models were 

trained on one of the data sets available (TCGA or PTRC-HGSOC, see methods for description of 

data sets) and validated on the other data set. As Table. 1 shows, the predictive power of this method 

using only pathological images was rather limited independent of whether primary or metastatic 

tumors were considered. Similarly, we trained a classical machine learning ensemble model based 

on the proteomics “Chowdhury Signature” 9 (methods 3.6.1) on one of the two data sets (TCGA-

OV or PTRC-HGSOC) and evaluated the predictive power on the other data set (full split 

descriptions in supplementary figure 3.a. The proteomics-based predictor performed better than the 

WSI-based predictor (Table. 1).  

Next, we asked whether we could derive a more accurate predictor if we combine patient-paired 

H&E WSIs and proteomics data using multi-modal deep learning frameworks 18–20. The model 

combining WSI and proteomic data results in a significant increase in model performance. (Table. 

1). Multi-modal benchmarks consistently outperformed both WSI-only and proteomics-only models 

predicting treatment resistance to platinum chemotherapy. This finding was robust across various 

training and testing setups (See methods section 3.1 and supplementary Figure. S3.a). This suggests 

that there exist multi-modal features invariant across cohorts that correlate well with tumor 

sensitivity to treatment. The test AUC results pertain solely to cohorts from held-out sites, ensuring 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 3, 2024. ; https://doi.org/10.1101/2024.06.01.24308293doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.01.24308293
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

 5 

the mitigation of potential biases and validating the generalization of discovered features 22. Table. 

1 presents the best performing PorpoiseMMF 18 model (supplementary section 3.5) performance for 

the multimodal model. Tables containing the results for all benchmarked models can be found within 

the supplementary material (supplementary Tables S1-S4). 

The results for primary samples shown in Table 1 demonstrate that overall, proteomics-only models 

slightly outperform WSI-only models. When training on PTRC-HGSOC 9 primary tumor samples 

and testing on TCGA samples, the multi-modal model achieves an AUC (Area Under the Curve) of 

0.752. This is a significant improvement over the proteomics-only model, which has an AUC of 

0.61. This represents a 14% increase (t=6.24, p=0.00336). When training on TCGA tumor samples 

and testing on PTRC-HGSOC primary tumor samples, the multi-modal model achieves an AUC of 

0.835. This represents a 13.6% increase over the proteomics-only model, which has an AUC of 

0.755 (t=4.14, p=0.0144). Finally, when training on the FHCRC+Mayo sub-cohorts (figure. 2.) of 

PTRC-HGSOC primary tumor samples and testing on UBC primary tumor samples, the multi-modal 

model achieves an AUC of 0.84. This represents a 19.9% increase over the proteomics-only model, 

which has an AUC of 0.558 (t=7.0, p=0.00219). 

Focusing on metastatic cases separately, Table 1 demonstrates that overall, proteomics-only models 

slightly outperform WSI-only models, and all test results are slightly lower than primary trained 

models, as TCGA samples are only from primary tumor sites. When training on PTRC-HGSOC 

metastatic tumor samples and testing on TCGA samples, the multi-modal model achieves an AUC 

of 0.704, representing an 8.2% increase over the proteomics-only model, which has an AUC of 0.54 

(t=2.63, p=0.058). Training on TCGA tumor samples and testing on PTRC-HGSOC metastatic 

tumor samples, the multi-modal model achieves an AUC of 0.698, representing a 13.7% increase 

over the proteomics-only model, which has an AUC of 0.566 (t=2.58, p=0.0614). Finally, when 

training on the FHCRC+Mayo sub-cohorts of PTRC-HGSOC metastatic tumor samples and testing 

on UBC metastatic tumor samples, the multi-modal model achieves an AUC of 0.798, representing 

a 16.5% increase over the proteomics-only model, which has an AUC of 0.665 (t=3.33, p=0.029). 

When modeling histopathology-proteomics data, the experimental setup involves selecting the 

model architecture, the proteomic input structure (methods 3.6), and the histopathology patch 

embeddings (methods 3.4). We evaluated how changes in each of these choices impacted the 

performance in predicting platinum response. 
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Comparing multimodal model architectures, we found that PorpoiseMMF 19 outperformed MCAT 
20 and SurvPath  19 in overall model performance. The former being a late fusion model and the latter 

two being early fusion models. In terms of proteomic groupings, Chowdhury signature (methods 

3.6.1) > CPTAC signature (methods 3.6.2) > RM pathways (methods 3.6.4) > PRG pathways 

(3.6.3).  Comparing pretrained histopathology image patch embedding networks, our SSL trained 

ovarian cancer-specific DINO-OV (supplementary Table S5 for pre-training data and 

supplementary section 3.8 for SSL details), UNI23 and CTransPath 24 performed similarly across the 

tasks (supplementary Tables S1-S4).  

Although primary and metastatic cancers show many similarities, they demonstrate large differences 

in response and prognosis. We found that training the models separately for the primary and 

metastatic cohorts yields better performance. Based on these findings we also recommend this 

practice for similar studies. 

 
1.2 WSI+proteomics compared to genetics-based models 

Loss of certain biological functions, such as the capacity of homologous recombination-based DNA 

repair, has been known to be associated with response to DNA damaging therapy in ovarian cancer 
25. We compared our WSI+proteomics-based model predictions against the predictive power of 

genomics-based methods of detecting homologous recombination deficiency status. The FDA-

approved Myriad HRD-score assesses genomic alterations to indicate the presence of HRD. The 

FoundationOne CDx test offers comprehensive genomic profiling, including TMB and genome-

wide LOH (loss of heterozygosity) status, which correlates with HRD status. Research tools like 

HRDetect 26 utilize whole-genome sequencing and lasso regression to predict HRD with high 

sensitivity. Finally, SigMA exposes notable mutational signatures associated with HRD where 

Signature 3 27 is of special interest. 

For our studied cohorts, the HRD-score, Signature 3 and HRDetect scores were available for 

n=98 TCGA cases. The WSI+proteomics model outperformed the HRD-score, HRDetect, and 

Signature 3 for the TCGA cohort in predicting tumor response to platinum-based therapy. We found 

that a linear combination of our WSI+proteomics model and HRD-score showed a significant 

increase in performance over the pure HRD-score model (DeLong test Z-statistic: -3.113, P-value: 

0.002) (See Figure 3.a, Figure 3.b, and supplementary Figure 4.c). Furthermore, our model 
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predictions were uncorrelated with the HRD-score predictions implying genomics-based and histo-

proteomics information is complementary containing little mutual information regarding therapy 

response prediction (See Figure 3.c). Performing a more granular investigation into model 

predictions over the cohorts, we visualize AUC scores for the cohorts distinguished by various 

clinical variables (See Figure 3.d) 

 

1.2.1 Predicting survival – Prognostic evaluation 

To further evaluate and validate the utility of our multi-modal WSI+proteomics model we conducted 

survival analysis, comparing the prognostic and predictive potential of the model to other, 

previously established measurements. In case of the TCGA-OV cohort Cox proportional hazard 

models were used to determine hazard ratios and compare survival (Overall Survival (OS), DSS, 

PFI, PFS) and HRD-score, HRDetect, WSI-only, proteomics-only, WSI+proteomics and ensembled 

models using median cutoff or best cutoff, and the plots  for and Kaplan-Meier analysis was 

performed with the survival R package and Overall Survival (OS), Disease-Specific Survival (DSS), 

Progression-Free Interval (PFI), Progression-Free Survival (PFS), and Cox proportional hazards 

models were utilized to determine Hazard Ratios for the validation and TCGA-OV cohort (See 

Figure 3.d). Our WSI+proteomics multi-modal model outperformed HRDetect for survival 

prediction its ability to separate risk groups. For OS, logrank HRDetect p=0.04 WSI+proteomics 

p=0.01. For PFS logrank HRDetect p=0.05 WSI+proteomics p=0.01. This is further shown by 

comparing C-Index values for PFS prediction across the models (Figure 3.b). Our models were 

trained to predict the response to treatment rather than individual survival or risk. Nonetheless, as 

the model demonstrates prognostic efficacy, it further validates its capacity to distinguish between 

patients with favorable and unfavorable responses accurately. The full analysis is shown in 

Supplementary Figure. S2. 

 

 
1.3 Neural network attention maps reveal interpretable spatial distributions from bulk proteomics 

As shown for the WSI in Figure. 4.a, the uni-modal WSI-only CLAM 21 allows us to visualize patch 

importances, or "attentions," on the WSI, creating an "attention heatmap" (Figure. 4.b). This 

visualization provides insight into the model's decision-making process. Patches with high attention 
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are crucial for classifying the entire slide. For instance, if tumor areas of the WSI are highlighted on 

the attention map for a task that relies on known tumor localized histopathological features, it may 

validate that the model aligns with pathologists' thinking. Additionally, when we lack documented 

histopathological features for a task, these heatmaps can help us discover important features the 

model considers significant. This is particularly relevant for predicting platinum response, where 

histopathology is not a primary biomarker for decision-making. 

Extending this concept into multimodal models, MCAT 20 and SurvPath 19 enable the visualization 

of more complex "co-attention heatmaps." For each biological pathway, the model generates one 

“gene-guided visual concept” 20for each patch in the WSI. These highlight important visual features 

integrated with proteomic data. The fact that the “co-attention heatmaps” in Figure 4.d can reveal 

spatial features may seem to be surprising at first sight. However, this is alike deep neural network’s 

ability to recognize objects in images after training without detailed annotations. For an intuitive 

description of how images are connected to proteomic features see supplementary section 4.2. 

A key strength of MCAT 20 and SurvPath 19architectures is the ability to visualize these pathway-

specific attention maps over WSIs, thereby potentially discovering important morphological 

features related to treatment sensitivity or resistance. While the critical role of the tumor 

microenvironment and stroma in treatment response and disease progression is widely recognized, 

routine histopathological assessments often overlook these components. We found that the stroma 

adjacent to tumor cells frequently attracts significant attention in numerous slides and cases, 

underscoring the presence of valuable information within the non-tumor regions of pathological 

slides. In Figure. 4 we showcase an example case study. Furthermore, we validate the robustness of 

these generated heatmaps with an ablation study (supplementary Figure. S4.a). 

 
1.4 Pathways and genes with high attention 

The MCAT 20 and SurvPath 19models are pioneering efforts in integrating multimodal data to 

enhance model interpretability within the domain of clinical outcomes. These models employ 

an early fusion technique that incorporates pathways; groups of proteins with interconnected 

functions, as fundamental components of their architecture. This approach leverages learnable 

embeddings to represent these pathways, generating a single value or "attention" that defines how 

specific pathways contribute to clinical endpoints. By incorporating pathway embeddings, these 
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models facilitate a method of ranking and visualizing the relative importance of different pathways in 

relation to a clinical outcome. This visualization is achieved through the analysis of pathway 

embeddings’ weights, offering insights into which pathways are most critical for the model’s 

predictions (Figure 4.c). 

Furthermore, the models assign "feature importances" to individual protein expression values 

within each pathway group. These importances are derived from integrated gradient values 28, a 

method detailed in the supplementary section.  Using both interpretability measures gives a two-tiered 

overview or "hierarchical explainability," where both the pathway level and the protein level within 

pathways are illuminated in terms of their contribution to the model’s decision-making process. 

To assess whole cohort trends in pathway and proteomic significance, we aggregate these feature 

importances across the PTRC-HGSOC cohort. This analysis is conducted separately for tumors 

classified as sensitive and refractory, providing a broad overview of unique proteomic and pathway 

dynamics across these two categories. The results, highlight the prominence of the HRD pathway 

in sensitive tumors. In refractory tumors, pathways related to DDR nucleotide synthesis, apoptosis, 

ER stress, and P53 signaling are identified as significantly influential. 

To further investigate the relative importance of individual domain-specific pathways related 

to HGSOC platinum response we found that the BIOCARTA ATR-BRCA 29 pathway was the most 

important in both sensitive and refractory cohorts (Figure. 5.a, 5.b). Non-homologous end joining 

was ranked second for refractory samples and Base excision repair was second highest for the 

sensitive cohort. Within the BIOCARTA ATR-BRCA 29 pathway, we found that ATR and CHEK1 

had the largest influence on model decision-making for sensitive tumors. For the refractory cohort, 

the models were most sensitive to CHEK1 and TP53 expression values. See Figure. 5 for the top 5 

pathways and top proteins for each tumor response cohort and supplementary Figure. S1 for the 

ranking of all pathways and proteins. 

 

2 Discussion 

Debulking surgery followed by platinum-based chemotherapy has been the standard of care of 

HGSOC. Patients responding to first-line platinum-based therapy often have a durable remission 

and the clinical benefit could also be further extended by the administration of targeted agents, such 
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as PARP inhibitors. However, platinum resistance, defined as disease recurrence within 6 months 

of first-line platinum-based chemotherapy, occurs in approximately 25% of cases and the prognosis 

of such cases is worse with a median survival of 9–12 months 30,31. Such cases may benefit from 

novel therapy such as the recently approved antibody drug conjugate Mirvetuximab Soravtansine 
32. Accurate prediction of resistance to platinum-based therapy may allow the early administration 

of other therapies, without waiting several months of failed platinum therapy. In principle, the 

surgical, debulking biopsy could be used to predict response to therapy to first-line platinum 

treatment, but no diagnostic method has reached the desired predictive accuracy so far. 

A great number of biomarkers have been evaluated to predict platinum sensitivity in HGSOC 33. 

Some of those biomarkers were derived from genomic or transcriptomic profiling of HGSOC of 

known clinical outcome and others, such as quantifying HR deficiency, were developed based on 

biological rationale. HR deficiency can be detected by various next generation sequencing based 

methods such as the HRD-score 34, and the FDA-approved Myriad myChoice CDx 3 and 

FoundationFocus CDxBRCA LOH 4, which are based on similar principles. However, the predictive 

power of these methods was only validated for PARP inhibitor therapy 35, and they are not used in 

the decision making for first line platinum treatment.  

Recently, digital pathology and associated deep learning-based computer vision algorithms emerged 

as an alternative diagnostic method to predict HRD status and platinum sensitivity. 7,8,15,36  

Since molecular profiling-based, biological pathway-based and digital pathology-based predictors 

all showed a certain level of predictive power but none of those had sufficiently high accuracy alone, 

we were wondering whether these methods all capture to a certain extent different aspects of 

platinum response/resistance and whether those could be combined. To test this hypothesis, we 

decided to integrate proteomics and histopathology. We found that our models can capture non-

mutual information that spans from molecular mechanisms to tissue-level manifestations of 

HGSOC. Proteomics provides the "what" in terms of molecular changes and potential targets, while 

histopathology provides the "where" and "how" these changes manifest in tissue architecture and 

the tumor microenvironment. Our results indicate that amalgamating information from these 

projections of the disease is beneficial for machine-learning models, similar to how an oncologist 

integrates multiple sources of information to make informed clinical decisions. Our results are 

concordant with other recent literature where multimodal deep learning has been shown to improve 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 3, 2024. ; https://doi.org/10.1101/2024.06.01.24308293doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.01.24308293
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

 11 

model performance in risk stratification of HGSOC using MRI, histopathology, and genomic 

signatures with a late fusion architecture 37,38. Furthermore, including clinical variables has also been 

shown to enhance model performance 39. 

Our models are validated not only by various train-test configurations but also by the rediscovery 

of pathways known to be of high importance for HGSOC platinum response, such as Homologous 

Recombination Repair. Additionally, tumor regions of WSIs gather high patch attention in the WSI-

only CLAM 21 model, validating the weakly supervised learning as a modeling decision for WSIs 

in this context.  

We chose to focus on combining proteomic data with WSI data because there was sufficient and 

appropriate data available for both training and validation. Proteomics is rarely used in the 

diagnostic setting although reverse-phase protein arrays (RPPA) may provide a diagnostically 

applicable method to quantify a few hundred proteins 40. Combining transcriptomics or epigenomic 

profiling with WSI by the strategy outlined in this paper is a logical next step that may be easier to 

incorporate into the existing diagnostic pipelines. It is encouraging, that the combined 

WSI/proteomics predictor in a linear combination of HRD measures produced a predictor with an 

accuracy that may merit further serious consideration in the clinical setting if verified by further 

independent cohorts.  

Variations in H&E staining routines, sample preservation, and imaging technologies across 

institutions pose additional challenges. We addressed these through pathology-specific self-

supervised learning pre-training 41, effectively normalizing across such variations and ensuring our 

models’ applicability to diverse clinical settings. Similarly, potential discrepancies in LC-MS/MS 

data arising from institutional protocol differences were mitigated by comprehensive distribution 

overlap analyses, confirming the consistency of our biological signal capture. 

 
3 Methods 

 
3.1 Patient cohorts 

This study aimed to predict response to platinum treatment in high-grade serous ovarian cancer by 

using supervised deep multi-modal learning to H&E WSIs and proteomic LC-MS/MS data. Based 

on literature search there were only 2 datasets with these data available: PTRC-HGSOC (158 
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patients 348 samples with all 3 data types) 9 and TCGA (127 patients 159 samples with all 3 data 

types)12 . Refractory cancers were defined as those that progressed or had stable disease within 6 

cycles of initial platinum/taxane therapy after initial debulking surgery9. Sensitive tumors were 

defined as those that responded to initial platinum/taxane therapy and did not progress within 2 

years. All samples were treatment-naive at the time of biopsy. 

 
3.2 Multimodal deep learning models 

In this study we benchmarked various experimental setups. These corresponded to three 

histopathology patch embedding networks (methods 3.4), five model architectures (supplementary 

section 3.2-3.5) and 4 proteomics grouping setups (methods 3.6.1-3.6.4). Each experiment was run 

over 5 patient stratified folds, and three training-validation split setups. Reported test accuracies 

were from the ensemble of the 5 trained models’ predictions. Error estimates are obtained through 

bootstrapping with 1,000 samples, providing an assessment of variability. 

The multimodal model accuracies for PorpoiseMMF 17 + Chowdhury signature 9 + CTransPath 24 

setup is presented in Table. 1 as well as for the more granular TCGA genomics analysis in section 

3. We investigated the MCAT 20 model + PRG (methods 3.6.3) + CTransPath 24 for deep exploration 

into WSI and proteomics interpretability (supplementary section 4.1-4.2). 
 

3.3 Whole slide images 

The PTRC-HGSOC dataset of 348 FFPE WSIs was downloaded from The Cancer Imaging Archive 

(TCIA) 42 [https://www.cancerimagingarchive.net/collection/ptrc-hgsoc/ representing 158 unique 

patients. The bookend FFPE slides were cut at 4 µm thickness using a microtome and mounted on 

glass slides (Leica Biosystems Cat 3800040) for H&E staining. Digital images of the H&E slides 

were recorded using a ScanScope AT Slide Scanner (Leica Aperio Technologies, Vista, CA, USA) 

under 20X objective magnification (0.4965 µm per pixel resolution). The 348 of the relevant WSIs 

of the TCGA-OV dataset that were part of the CPTAC-OV cohort were downloaded from The 

Cancer Imaging Archive (TCIA)42 https://www.cancerimagingarchive.net/collection/tcga-ov/ 

representing 175 unique patients TS1, TS2 (Fresh Frozen), DX1 and DX2 (FFPE) type slides. The 

TCGA-OV WSIs are heterogeneous in terms of scanner modalities, manufacturers, and acquisition 

protocols. In most cases, the images were acquired as part of routine care and not as part of a 

controlled research study or clinical trial. H&E slides were recorded under 20X objective 
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magnification (0.5040 µm per pixel resolution). 

 

3.4 Segmenting and embedding H&E WSIs 

The images were visualized to ensure quality, segmented to remove the slide background or scanner 

artifacts with the CLAM 21 WSI preprocessing pipeline, and patched into 224 X 224 pixel patches 

representing approximately 112 X 112µm. To reduce the dimensionality of these large gigapixel 

images, these patches were then packed into tensor "bags" with dimensions (n,3,224,224) where n 

is the number of patches generated for a WSI. These patches were then embedded by the three 

feature-extracting vision transformer networks to create three separate sets of embeddings covering 

all samples and cohorts. The CTransPath 24 embedding model was chosen as was it best performing 

over a large set of tasks 41. The UNI23 model was chosen as it was pre-trained on non-TCGA data. 

This ensures there is no possible data leak when testing downstream models on TCGA WSI data. 

Our DINO-OV model was also used as a third model to investigate if "same-domain" image 

embedders would provide a benefit for this task. Each model had an associated raw patch RGB 

space transformation and maps each patch dimensions (3, 224, 224) to a vector shaped (d) where 

d=1024 for UNI, d=384 for DINO-OV, and d=768 for CTransPath. The embedding stage was 

performed without stain normalization due to recent findings that this has little to no effect on 

downstream accuracy 41. 

 
3.5 Proteomic Data 

The TCGA MS proteomics data was downloaded from the Supplemental Information Table.3 of 

Zhang et al.12. Following pre-processing and validation from the original manuscript an average of 

7,952 proteins were measured per tumor. The PTRC-HGSOC proteomics data was downloaded 

from the deposited data table: Processed LC-MRM-MS data 9. After pre-processing 8,800 proteins 

were found in over 50% of the measured bio-specimens. 

The overlapping set of proteins from the TCGA and PTRC-HGSOC datasets were collected 

amounting to 7621 shared proteins. TCGA (CPTAC) and PTRC-HGSOC datasets were imputed 

with the scikit-learn KNNImputer 43, log normalized, and standard scaled to remove any batch effect 

present in the data. The alignment of datasets was validated by testing the overlap of distributions 

of each protein. We employed the nonparametric statistical test the Kolmogorov- Smirnov (KS) test, 
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to compare the distribution of each protein between the two independent datasets. We found that 

they do not show a statistically significant difference: Mean KS Statistic: 0.112, Mean P-Value: 

0.128. 

 
3.6 Methodologies for proteomics groupings in multi-modal models 

Deliberately selecting and structuring proteomics data to add to multi-modal deep learning models 

has an impact on final model performance as well as the inherent interpretability of the model once 

trained. We investigated proteomics selection with three high-level strategies. Signature-based, 

subtype-based, and pathways-based. A signatures-based strategy involves injecting only one fixed 

length 1d vector also known as a "proteomic signature" which is a subset of the proteomics data. 

This vector is found by feature selection methods and could be weights or unweighted. In our study, 

we investigated the unweighted "Chowdhury signature" (methods 3.6.1) proteomics signature. 

Subtypes-based grouping also offers another solution where non-overlapping protein "subtype" 

groups from structures (methods 3.6.2). Finally, pathways represent unique cellular functions, they 

constitute appropriate basic reasoning units suitable for interpretability. For multi-modal models, 

MCAT 20 and SurvPath 19data was organized into such groups (methods 3.6.3-3.6.4). We performed 

four different groupings to assess the importance and robustness of the multi-modal models to the 

groupings for this task. PorpoiseMMF models were trained with the same sets of proteins as these 

groups but not grouped instead as one vector input to be concatenated during model fusion. We 

experimented with two overlapping and two non-overlapping groupings to generate group-level 

tokens.  
 
 

3.6.1 Platinum-response protein signature (“Chowdhury Signature”) 

Chowdhury et.al 9 describe a 64-gene unweighted proteomic signature that predicts response to 

platinum treatment. This signature was identified by investigation of 22 pathways based on 31 years 

of literature 44 followed by nonlinear machine-learning-based feature selection. From these proteins, 

60 were measured in both our training and validation set. This signature was used as input to the 

PorpoiseMMF model. It was possible to group these proteins into 5 non-overlapping groups: Drug 

Metabolism & Biological Oxidation, Metabolic, Hypoxia, NK-kB as was described in Chowdhury 

et.al 9. These sub-groups were used in the MCAT and SurvPath architectures. 

 
3.6.2 CPTAC HGSOC subtypes (“CPTAC grouping”) 
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Zhang et.al 12 describe 1664 proteins clustered into 7 proteomic subtypes from the non-overlapping 

WGCNA- derived modules pathways based on the enrichment of KEGG and Reactome ontologies. 

These groups are labeled: ’DNA replication’, ’cell-cell communications’, ’cytokine signaling’, 

’erythrocyte and platelet’, ’ECM interaction’, ’complement cascade’, and ’metabolism’. This 

method aimed to inject subtype information into the model explicitly to see if it enhanced model 

accuracy. 

 
3.6.3 Platinum resistant genes and pathways (“PRG pathways”) 

 

Huang et.al 44 curated a list of >900 proteins associated with platinum resistance in cancer from 30 

years of literature. From these proteins, 587 were found for all patient samples in our studied cohorts. 

This is an appropriate list of pathways and genes to use when exploring HGSOC treatment responses 

as they cover a broad spectrum of biological processes implicated in drug resistance. Specifically, 

regulation of drug dynamics: the control over drug entry, exit, accumulation, sequestration, and 

detoxification within the cells, DNA damage response: enhanced capabilities for repairing and 

tolerating platinum-induced DNA damage, cell survival pathways: Alterations that allow cancer 

cells to avoid death despite chemotherapy, Pleiotropic processes: Changes in broad, multifunctional 

pathways that affect cancer cell behavior and finally, Tumor micro-environment: Variations in the 

cellular environment surrounding tumors that may contribute to drug resistance. 

3.6.4 Repair mechanism pathways (“RM pathways”) 

 To investigate the role of DNA repair mechanisms-related pathways in predicting response to 

platinum-treatment we utilized the 1664  DNA repair-related pathways from MSigDB and KEGG. 

These pathways are more mechanistic than the “PRG pathways” section 3.6.3 and are not 

constrained to the platinum response. See Figure. 5 for pathways and genes ranked by importance. 

 

3.7 Models 

3.7.1 Training 

For each experiment, we created a 5-fold split stratified on patient ID to ensure samples from the 

same patient were never found in the training and validation sets. Each learning task was set up as 
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a binary classification (Sensitive vs Refractory).  The proteomics-only baseline was an ensemble of 

ElasticNet, Random Forest, and XGBoost as described in Chowdhury et.al 9. 

We trained all the deep learning based binary classification models for 15 epochs with gradient 

descent and the ADAM optimizer and a learning rate of 10^−4. CLAM and multimodal models were 

trained with a used a binary cross-entropy loss. Models were checkpointed during training and the 

checkpoints with the lowest validation loss were used for evaluation on test sets. We used L2 

regularization with L = 10^−5 and weighted sampling to make sure models were not biased by class 

imbalances. We used a binary cross-entropy loss: 

          

Where: N is the number of samples, C is the number of classes, yi. C is a binary indicator of whether 

class label c is the correct classification for observation i, pi. c is the predicted probability that 

observation i is of class c, λ is the regularization parameter, M is the number of weights, and wj 

represents each weight parameter in the model. 

The full pipeline was trained on 3 Quadro RTX 8000 GPUS at the Budapest EMK server. The 

CLAM models were run with an SVM bag clustering loss. Metadata was checked for the PTRC-

HGSOC hospital hold-out experiments to see if platinum sensitivity could be predicted from this 

data. Random forest models were not able to predict the label with AUC=0.47 for the UAB hold-

out and AUC=0.55 for the Mayo hold-out experiment. This ruled out the learning of co-variate 

signals that could bias results or allow for shortcut learning.  

 
4 Data availability 

No new data was generated during this study. We release our splits of patients and cohorts in the 

supplementary information. 

 
5 Code availability 

The code to reproduce all results presented in the study is available at 

https://github.com/csabaiBio/HGSOC_platinum_response 
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Figure 1. Experiment overview. a. Training various multi-modal deep learning models on paired H&E whole slide 
images and proteomics measurements to predict High-Grade Serous Ovarian Cancer tumor sensitivity to platinum-based 
therapy. b. Local and global interpretability of learned features. Ranking of importance of pathways in platinum 
response. c. Visualization of learned co-attention between bulk proteomics and whole slide image patches. 

 
 

 

Figure 2. Data overview for the study. Three hospitals constitute the "discovery" cohort, named Proteogenomic 

Translational Research Centers High-Grade Serous Ovarian Carcinoma (PTRC-HGSOC). Proteomics from the CPTAC- 

OV study was used for the independent TCGA cohort. 
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Table 1. The table displays separated reported Area Under the Curve (AUC) scores for primary and metastatic tumors 
with the multimodal PorpoiseMMF 18 model + Chowdhury signature (methods 3.6.1). The histopathology model is the 
CLAM 21 architecture, and the proteomics model is from the “Chowdhury signature” trained with an ensemble model as 
described in Chowdhury et.al 9. Multimodal models outperform their unimodal counterparts. Test AUCs represent the 
mean AUC obtained from the ensembled predictions of the five models. Error estimates are obtained through 
bootstrapping with 1,000 samples, providing an assessment of variability. For validation scores, we report the average 
AUCs across the folds, with the standard deviation of these AUCs representing the reported errors.  
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Figure 3. Model performance compared to WES-based methods. a. ROC-AUC curve for patient aggregated scores in 
response prediction. Our WSI+proteomics model outperforms the FDA-approved Myriad HRD-score (LOH + TAI + 
LST) 34 and can be ensembled with this model for a significant improvement over both. b. C-Index for our models 
compared to geneomics models. c. HRD- score does not correlate with WSI+protemics predictions highlighting the 
independence of signal between WES vs Histopathological and Proteomic modalities in predicting platinum response. 
d. Survival curves for TCGA cohort. Our WSI+proteomics model significantly outperforms the use of bonified BRCA 
status, HRDetect in separating risk groups and predicting PFS and PFI of patients. e. WSI+proteomics model scores 
for clinical subgroupings of the TCGA-OV test set. 
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Figure 4. Model interpretability example for a WSI+proteomics pair. a. WSI with tumor areas segmented. b. The 
MCAT model assigns tumor histopathology patches high attention as well as some specific non-tumor or adjacent 
cellular stroma. c. Model ranking of pathway importance in the decision-making process for the model for this WSI 
Proteomics paired data. d. 4 out of the 80 MCAT model co-attention maps where the model projects the non-spatial 
proteomics data into the spatial domain on the WSI. 
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Figure 5. Cohort aggregated global interpretability visualized from the MCAT model. Sankey diagrams where weights 
connecting cohorts to the top 5 most important pathways are the mean model weights. Connections between pathways 
and proteins represent the four proteins in each given pathway with the largest integrated gradients. Wider connecting 
lines represent higher impertinences. This offers a hierarchic interpretability. See supplementary section 3.7 for the 
definition of integrated gradients 28. a. Sensitive pathways and proteins with high importance, b. Refractory pathways and 
proteins with high attention. See all pathways rankings in the Supplementary Figure S1.
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1. Supplementary Tables  
 

 
Table. S1. Testing on TCGA samples AUC scores. Bold values are the highest scores for a given feature extractor  
and architecture. Underlined are the second-highest scores. 
 

 
Table. S2. Testing on all HGSOC samples AUC scores. Bold values are the highest scores for a given feature 
extractor and architecture. Underlined are the second-highest scores. 

 
Table. S3. Testing on HGSOC-UAB samples AUC scores. Bold values are the highest scores for a given feature 
extractor and architecture. Underlined are the second-highest scores. 
 

 
Table. S4. Testing on HGSOC-Mayo samples AUC scores. Bold values are the highest scores for a given 
feature extractor and architecture. Underlined are the second-highest score
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Dataset Number of WSIs Micron per pixel slide type 
TCGA-OV 42 1481 0.5040 FFPE + Fresh frozen 

Bevacizumab response45  284 0.5 FFPE 
CPTAC 2 12 221 0.2501 FFPE 

UBC Ocean 42 538 0.5 FFPE 
PTRC-HGSOC 9 349 0.4965 FFPE 

Table S5. Opensource datasets used for OV-Dino ViT pre-training.
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2. Supplementary Figures 

 

 
 
Figure. S1. Global interpretability for entire cohorts for the MCAT model. Sankey diagrams where weights 
connecting cohorts to pathways are the mean model weights. Connections between pathways and proteins represent 
the four proteins in each given pathway with the largest integrated gradients. Wider connecting lines are higher 
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integrated gradients important. This offers a hierarchic interpretability. a. Sensitive pathways and proteins with high 
attention, b. Refractory pathways and proteins with high attention. 

 

 
Figure. S2. Survival analysis for OS, DSS, DFI, PFI, PFS for TCGA-OV as a test cohort with genetic data available. 
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Figure. S3. Data overview for the study. a. cohorts and splits used for experimental validation. b. Hierarchical clustering 
of 7567 proteomics measurements available for each patient  
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Figure S4. a. We retrained the MCAT model (same as in methods 3.7) with deliberately randomly mixed labels to 
assess how heatmaps would degrade with model performance. Heatmaps are dispersed in models trained with the 
deliberately mixed and therefore incorrect labels. They highlight meaningful areas of the WSI for trained models.  b. 
TSNE of UNI top 1 embeddings for each sensitive and refractory groups clustering indicated the model found distinct 
morphologies for sensitive (yellow points) and refractory (blue points) patients. c. AUC variation with varying mixing 
of HRDscore and our WSI + proteomics model to create the “Ensemble” linear combination model (Figure 3a, Figure 3.b). 
 

3. Supplementary methods  
 
 

3.1 Multiple instance learning 

Multiple instance learning (MIL) is a popular framework based on modeling set-based structures 

called "bags". Each bag has a label and "instances" inside this bag do not. A bag label is defined by 

the unknown labels of its containing instances. One or more instances in a bag define its label. The 

goal of classifying a bag from its instances is also known as “weakly supervised learning”. MIL is a 

natural modeling choice for WSIs which are gigapixel-sized images. Patching up the images into 

"instances" xi with dimensions (3×224×224) allows for the generation of bags with dimensions 

(n×3×224×224) where n is the number of patches in the whole slide image and 3 represents the RGB 

channels of the light microscopy high-resolution image. The objective of MIL is to learn a function 

that maps bags to labels with a model composed of instance-level functions that are aggregated with 

a symmetric, permutation-invariant aggregation function that pools the extracted features into a 
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| 

single bag-level feature embedding. This embedding can then be mapped to the WSI "bag" label 21. 

 
F (X) = ξ (ρ ({ϕ(xi) : xi ∈ X}))  

Where F is the function to learn, X is the bag data. ρ is the aggregation function and ϕ is the instance 

level function. ξ is a bag-level classifier that maps the whole WSI embedding to the clinical endpoint 

also known as the label in the learning task (sensitive or refractory in our case). 
 
 

3.2 Multi-modal deep learning 

The integration of multi-modal data such as Whole Slide Images (WSIs) and proteomics is achieved 

through the modeling of the joint probability distribution, P (WSIs, Proteomics). This framework 

underpins the ability to harness complementary and independent information from each modality, 

enhancing the predictive power of models. Specifically, by constructing a function f that leverages 

this joint distribution to map input data to a target variable Y, in our case treatment response (Y = f 

(WSIs, Proteomics)), we exploit the comprehensive insights provided by each data type. The 

modeling process involves probabilistic inference to estimate the posterior distribution P (Y WSIs, 

Proteomics), applying Bayes’ theorem to integrate prior knowledge with empirical data. This 

approach not only facilitates the extraction of nuanced, modality-specific features but also 

illuminates the complex interdependencies between different data types, advancing the precision 

and cross-modality interpretability of predictions in personalized medicine. The multimodal 

architectures we have used were built for WSI + RNAseq data but we have adapted them for WSI 

+ proteomics.  

 
3.3 Clustering-constrained Attention Multiple Instance Learning (CLAM) 

CLAM21 is a framework to perform WSI-only MIL (supplementary 3.1) with an attention-based 

pooling function in the place of ρ. 
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W1 is the first fully-connected layer that compresses each 1024-dimensional patch-level 

representation into a 512-dimensional vector. Ua is the first layer of the attention network, part of 

the attention backbone shared by all classes. Va is the second layer of the attention network, part of 

the attention backbone shared by all classes. Wa,1 to Wa,n are the n parallel attention branches in 

the attention network. Wc,1 to Wc,n are the n parallel, independent classifiers used to score each 

class-specific slide-level representation. α k,m is the attention score of the k-th patch for the m-th 

class. This model is also “fortified” with an Instance-level Clustering mechanism. This is designed 

to further encourage the learning of class-specific features. We used the SVM loss in our CLAM 

baseline. Full implementation can be found at https://github.com/mahmoodlab/CLAM .  

 
3.4 Pathology-Omics Research Platform for Integrative Survival Estimation (PorpoiseMMF) 

PorrpoiseMMF18,19 is a late fusion model that combines MIL and an omics vector channel to preform 

multimodal deep learning. WSI and Omics channels are encoded to fixed size internal 

representations. Then the Kronecker Product between WSI embeddings and proteomic embeddings 

is taken before the combined representation is passed through further layers. Full implementation can be 

found at https://github.com/mahmoodlab/PORPOISE.  

 
3.5 Multi-modal Co-Attention Transformer (MCAT)

 

MCAT20 is an early fusion model where patch embeddings and pathway embeddings are fused with 

a co-attention mechanism. This allows for sharing of information between various parts of the input 

early in the network. Unlike PorpoiseMMF, WSI patches and pathways may more directly interact 

and modulate one another. This is achieved by a cross-attention module to model the attention of 

histology patches (keys K, values V) toward gene sets (queries Q): 

 

Full implementation can be found at https://github.com/mahmoodlab/MCAT . 

 
3.6 Biological Pathways and Histology for Survival Prediction (SurvPath) 
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SurvPath19 is an early fusion model Early that can model dense multi-modal interactions between 

pathway and patch tokens. This model aims to build on MCAT. SurvPath allows for genes to patch 

interactions as well and patch to genes interactions as well as a more fine-grained tokenization 

process. This model employs a transformer attention 19 that can measure and aggregate pair-wise 

interactions between multi-modal tokens: 

 
 
 

Where A values are self-attention, QP and QH denote the subset of pathway and histology queries 

and keys.

Full implementation can be found at https://github.com/mahmoodlab/SurvPath . 

 
3.7 Integrated gradients for protein level importance 

We used the gradient-based feature attribution method of Integrated gradients 28 to understand which 

features (protein expression values) have the largest impact on the model output (tumor response). 

Larger values push to model to have larger outputs (more sensitive). We define x′ as the baseline 

input (zeros in the shape of the model input in our case) and x as the feature, F is the trained model. 

A "straight line path" from x′ to x is generated in steps α and we calculated all the gradients of F along 

this path. The Integrated gradients are defined as the path integral over all of these gradients 

accumulating them to generate an interpretable, sensitive, and implementation invariant importance 

value for each input. This method allows for further model interpretability and understanding of the 

learned importance of proteins as well as the extent to which they are implicated as relevant to the 

mechanism or pathway of tumor sensitivity. 

 
3.8 Feature extractors 
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3.8.1 SSL DINO-OV 

Intending to optimally extract Ovarian WSI patch features for downstream learning, we trained a 

patch embedding network based on 5 open-source Ovarian cancer H&E WSI datasets with Y total 

images at maximum magnification "level 0" (20X magnification) to create a diverse dataset of 16.2 

million images. These were used to train a ViT neural network with self-distillation with no labels 

(DINO) 46 in a self-supervised manner. DINO is an algorithm for visual representation working to 

distill knowledge from a teacher network to a student network by minimizing the Kullback-Leibler 

(KL) divergence between their predicted probability distributions for various augmentations (global 

and local) of the same input image. 
 

4. Supplementary discussion  
 

4.1 Co-attention heatmaps 

In a typical image recognition scenario, rather than being directly provided with a bounding box 

indicating the location of the animal, the machine learning model is given a collection of 

photographs with captions to learn to recognize different animals. Each photo might show an animal 

in various settings, and the caption briefly describes what’s happening in the image. During the 

training, from correlations between image features and captions, the model notices patterns. Every 

time the word "cat" appears in the caption, the photo features a furry creature with pointed ears and 

a tail. Over time, by associating words in the captions with visual features (textures, edges, corners, 

etc.) in the images, the model learns to identify cats in any photo, regardless of the setting or pose, 

without needing explicit annotations for "cat" within the image 47. 

In our study, we apply a similar approach to understand histopathology whole slide images of tissues 

stained with H&E, paired with corresponding proteomics data. Think of the histopathology images 

as the photographs and the proteomics data as the captions. The proteomics data describe the 

molecular "story" of the tissue, such as which proteins are present and in what abundance, indicating 

which molecular pathways are active. By training a multimodal AI network on these paired datasets, 

the network learns to associate specific visual patterns in the histopathology images (like the 

arrangement and characteristics of cells and tissues) with the active molecular pathways described 

by the proteomics data. Over time, just as a simple model learned to identify cats by their visual 

features from photos with captions, the AI learns to "see" which molecular pathways are active in 

different parts of the tissue by analyzing its visual features. The attention maps generated by the AI 
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model are akin to highlighting the "cats" in our analogy; they color-code the tissue images to indicate 

where and which pathways are active, allowing us to visually interpret complex molecular activities 

in the context of tissue structure and morphology. 

 
4.2  Extended discussion: Early vs late fusion?  

To decide between early vs late fusion as the optimal choice, late fusion with a pre-defined 

proteomic signature seems to perform best, however early fusion models still perform very well and 

have the added benefit of a fully comprehensive interpretability analysis. In terms of how the input 

structured and model architectures can be chosen, these modeling choices are all interrelated and 

have complex effects on one another. For example, the choice of protein input and patch 

featurization model affects the number of model parameters. These covariances make it difficult to 

conclude the best choice of architecture, protein input, and embedding beyond pure empirical study.  

However, our results indicate that a proteomics machine-learning-based feature selection followed 

by the simplest late fusion concatenation model PorpoiseMMF led to the overall most robust 

performance. This may be as late fusion facilitates a more tailored feature extraction and 

representation learning for each separate modality. This may ensure that the model can leverage the 

strengths of each data source better handling disparities in the dimensionality, scale, and quality 

across modalities, leading to a more robust and accurate synthesis of information for decision-

making. This finding is contrary to the publications of the methods 19. However, early fusion may 

outperform late fusion in the larger data regime. This is where the models were benchmarked at over 

1000 samples per class, almost an order of magnitude larger scale than the available HGSOC 

response data we studied. Despite having lower AUC scores in our study, early fusion MCAT and 

SurvPath models as they allow for the in-depth interpretability analysis we present. Such 

interpretability advantages may help comply with GDPR-related tests that need to take place before 

clinical deployment. 
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