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Supplementary Figures 

Supplementary Figure 1. Prominent inconsistency of embryo selection rank across 

PRS methods using a large-scale case–control simulated GWAS summary statistics. 

 
Same as Figure 1, but using simulated summary statistics for PRS construction. a, the rate 

at which two PRS methods chose the same embryo as the top-ranked in 500 simulations. b, 

the distribution of lowest ranks across all PRS methods for the embryo top-ranked by the 

PRS method in the x coordinate. c, same as b, but of the highest ranks for the bottom-ranked 

embryo. We excluded SBayesC because we observed a convergence issue and found 

markedly lower correlations with PRS calculated with other methods. PRS, polygenic risk 

score. C+T, clumping and thresholding. 
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Supplementary Methods 

Biobank Japan 

Biobank Japan is a hospital-based cohort of approximately 270,000 participants, all of whom 

were diagnosed with at least one of the main target diseases of Biobank Japan1. All the 

participants provided written, informed consent approved by ethics committees of the Institute 

of Medical Sciences, the University of Tokyo and RIKEN Center for Integrative Medical 

Sciences. Although a large subset of Biobank Japan (169,009 participants) was included in 

the discovery cohorts of the height GWAS2, we used the remaining participants for the 

embryo simulation. The participants were genotyped with the Illumina Infinium Asian 

Screening Array. We excluded individuals with a low call rate (<0.98) and outliers from the 

East Asian cluster based on a principal component analysis. We excluded the variants 

meeting the following criteria: (i) with a low call rate (<0.99); (ii) with low minor allele counts 

(<5); and (iii) with Hardy–Weinberg equilibrium test P values < 1.0 × 10-10. We statistically 

phased the genotype data using Shapeit43 and performed imputation with the combined 

reference panel of 1000 Genomes Project Phase 3 and whole-genome sequencing data of 

1,037 Japanese samples2 using Minimac44. After imputation, we retained variants with MAF 

larger than 0.01 and an info score larger than 0.7. We retained the participants in the 

Japanese Hondo (i.e., main islands) cluster by visual inspection of principal component 

analysis. We used king5 to exclude relatives within 2 degrees. Out of the 50,212 samples that 

passed the quality controls, we randomly selected and matched 1,000 samples to generate 

500 virtual mate pairs for embryo simulation. 

 

Simulation of embryo genotypes 

We simulated embryo genotypes by modeling recombination as a Poisson process. Briefly, 

we obtained genetic distance in cM from the HapMap genetic map and randomly assigned 

the positions of crossovers so that the number of crossovers matched the expectation from 
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the genetic distance. We leveraged an established code of embryo simulation6 

(https://bitbucket.org/ehudk/nembryo-pgs-selection/src/master/) to simulate ten embryo 

genotypes per mate pair. 

 

Polygenic risk scores (PRS) 

We calculated PRS with six PRS construction methods, Clumping and Thresholding (C+T), 

LDpred2-auto7, PRScs-auto8, SbayesC9, SbayesRC10, and MegaPRS11. These PRS 

construction methods use GWAS summary statistics and a linkage disequilibrium (LD) 

reference panel and do not require a tuning/validation cohort. The details of respective PRS 

construction methods are described below. We used the summary statistics from an East 

Asian-specific GWAS meta-analysis for height12 (N = 363,856) and a simulated case–control 

GWAS summary statistics. For the LD reference panel, we used East Asian participants (N 

= 504) of the 1000 Genomes Project Phase 3 to facilitate the reproducibility of our PRS 

construction. 

 

Clumping and Thresholding (C+T) 

C+T is a simple PRS construction method that aggregates raw effect sizes of selected 

variants. We retained variants with P < 5×10-8 and performed LD clumping using plink 

v1.90b6.1613 with the option “plink --clump --clump-kb 250 --clump-r2 0.1”. 

 

LDpred2-auto 

LDpred2, as well as the other PRS methods used here except for C+T, is a Bayesian 

approach that infers variants' posterior mean effect sizes7. LDpred2 assumes a non-

infinitesimal distribution of effect sizes and uses a point-normal mixture prior. LDpred2-auto 

is a mode of LDpred2 that automatically estimates the hyperparameters of LDpred2, 

specifically, heritability and sparsity of causal variants. We used LDpred2 implemented in the 
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bigsnpr R package v1.11.6 with the options recommended by the authors 

(https://privefl.github.io/bigsnpr/articles/LDpred2.html). Specifically, we used the 

snp_ldpred2_auto() function with the “vec_p_init = seq_log(1e-4, 0.2, length.out = 30), 

allow_jump_sign = FALSE, shrink_corr = 0.95” option. We also specified the heritability 

estimated by the LD score regression14 reimplemented in the bigsnpr R package as the 

heritability used for initialization. For the reference panel, we used the HapMap3+ variants, 

an extended set of approximately 1.4 million variants with better genome coverage than the 

HapMap3 variants15, of the East Asian participants of the 1000 Genomes Project phase 3. 

 

PRScs-auto 

PRScs is a Bayesian regression framework using continuous shrinkage priors to improve 

computational efficiency and accurately model local LD patterns8. In the default mode (i.e., 

PRScs-auto), the global shrinkage hyperparameter is automatically learned from GWAS 

summary statistics itself. We ran PRScs (version Apr 6, 2021) with the accompanying 

reference panel derived from the HapMap3 variants of the East Asian participants of the 1000 

Genomes Project phase 3. 

 

SBayesC 

SBayesC is a Bayesian approach using the same point-normal mixture prior as used in the 

LDpred2 method9. The height PRS for the East Asian population was calculated in the original 

GWAS article using SBayesC and is available publicly12. We note that the GWAS used for 

the SBayesC PRS included additional samples from 23andMe (N=472,730 in total), which 

were not included in the publicly available GWAS summary statistics used for the other PRS 

methods. We used SBayesC implemented in the GCTB software (v2.03 beta) for the 

simulated GWAS summary statistics; however, we observed a convergence issue and found 

markedly lower correlations with PRS calculated with other methods. Therefore, we excluded 
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the SBayesC PRS from the analyses using the simulated GWAS summary statistics. 

 

SBayesRC 

SBayesRC is an extension of SBayesR12, a Bayesian approach that models variant effect 

sizes using a flexible mixture of a point-mass Dirac distribution on zero and multiple Gaussian 

distributions with different variances10. SBayesRC incorporated functional annotations 

(specifically, general annotations curated by the BaselineLD v2.2 model16) to modulate the 

probability that every variant belongs to the individual effect size distributions. We used the 

SBayesRC R package v0.1.4 and the accompanied LD reference panel derived from the East 

Asian participants of the UK Biobank. 

 

MegaPRS 

MegaPRS is a suite of PRS methods that were reimplemented to model variant effect sizes 

with the BLD-LDAK heritability model, where variant effect sizes depended on minor allele 

frequency (MAF), local levels of linkage disequilibrium, and function annotations11. Among 

the PRS methods available in MegaPRS, the LDAK-BayesR-SS method, an implementation 

of SBayesR, was reported to produce the most accurate PRS11 and set as the software 

default. We used MegaPRS implemented in LDAK v5.2 and followed the authors’ 

recommendation for its options (https://dougspeed.com/). First, we estimated heritability 

partitioned by functional annotations with the BLD-LDAK model. Then, we applied the LDAK-

BayesR-SS method with the “--cv-proportion .1 –window-cm 1 –allow-ambiguous YES” 

option and specified the accompanying high LD region data. 

 

Simulation of case–control GWAS summary statistics 

We started with the haplotype data of the East Asian participants of the 1000 Genomes 

Project Phase 3. We restricted the variants used to simulate GWAS summary statistics to 
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those included in the height GWAS summary statistics and available in the Biobank Japan 

data. We partitioned the genome into the 1,445 non-overlapping LD blocks as reported 

previously17 and randomly chose one to three variants with MAF larger than 0.01 as causal 

variants per LD block. Consequently, we assigned 2,875 variants as causal in total. Following 

the GCTA model18, we simulated causal effect sizes assuming that the causal effect sizes of 

standardized genotypes were independent from each other and followed the Gaussian 

distribution with a mean of zero. We scaled the causal effect sizes so that the variance 

explained aggregated across all causal variants (i.e., heritability) matched to 0.8. We then 

used the simGWAS R package v0.2.0-419 per LD block to simulate case–control GWAS 

summary statistics with a large sample size (Ncase = Ncontrol = 5×106). Unlike other GWAS 

simulation tools, simGWAS skips assigning individual phenotypic values and directly simulate 

GWAS summary statistics with any sample size, although it supports only case–control 

GWAS simulation. We confirmed that most of the causal variants were significant (P < 5×10-

8) in the simulated GWAS summary statistics (2,405 / 2,875 = 83.7%). 
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