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Abstract 87 

Identifying risk protein targets and their therapeutic drugs is crucial for effective cancer 88 

prevention. Here, we conduct integrative and fine-mapping analyses of large genome-wide 89 

association studies data for breast, colorectal, lung, ovarian, pancreatic, and prostate 90 

cancers, and characterize 710 lead variants independently associated with cancer risk. 91 

Through mapping protein quantitative trait loci (pQTL) for these variants using plasma 92 

proteomics data from over 75,000 participants, we identify 365 proteins associated with 93 

cancer risk. Subsequent colocalization analysis identifies 101 proteins, including 74 not 94 

reported in previous studies. We further characterize 36 potential druggable proteins for 95 

cancers or other disease indications. Analyzing >3.5 million electronic health records, we 96 

uncover five drugs (Haloperidol, Trazodone, Tranexamic Acid, Haloperidol, and Captopril) 97 

associated with increased cancer risk and two drugs (Caffeine and Acetazolamide) linked to 98 

reduced colorectal cancer risk. This study offers novel insights into therapeutic drugs 99 

targeting risk proteins for cancer prevention and intervention.  100 
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Introduction 101 
 102 

Human genetic research has not only advanced our understanding of disease 103 

mechanisms but has also significantly contributed to drug discovery and development. Drugs 104 

supported by genetic evidence exhibit enhanced therapeutic validity compared to those 105 

lacking such support, highlighting the importance of incorporating genetic evidence in drug 106 

development initiatives1,2. Common risk variants implicated in diseases can dysregulate 107 

nearby gene or protein expression, which can mimic the effects of therapeutic drugs on the 108 

targetable proteins. These proteins could serve as potential targets for therapeutic 109 

intervention3. Thus, concerted efforts for cancer prevention based on proteins influenced by 110 

common polymorphisms that modulate cancer risk, are urgently needed4. To date, genome-111 

wide association studies (GWAS) have identified several hundred common genetic risk loci 112 

for each of three prevalent cancer types: breast, colorectal, and prostate5-8, and several 113 

dozen risk loci have been identified for other cancers, such as cancer of lung, pancreas, and 114 

ovarian9-13.  Previous research, including our work, has identified hundreds of putative 115 

cancer susceptible genes potentially regulated by these risk variants, using methods such as 116 

expression quantitative trait loci (eQTL) analysis8-12,14-20 and transcriptome-wide association 117 

studies (TWAS)7,19,21-29.  However, most dysregulated gene expression has not been 118 

thoroughly investigated at the protein level. 119 

 120 

To deepen the understanding of causal mechanisms and enhance drug discovery 121 

endeavors, it is imperative to explore data from transcriptomic to proteomic studies. Proteins, 122 

the ultimate products of mRNA translation, play critical roles in cellular activities and 123 

represent promising therapeutic targets, as evidenced by successful drug targeting of 124 

enzymes, transporters, ion channels, and receptors30. Recent studies include protein 125 

quantitative trait loci (pQTL) mapping and Mendelian randomization (MR) analysis by 126 

integrating cancer GWAS and blood proteomics data to identify potential risk proteins. 127 

However, only a few dozen of cancer risk proteins have been reported, with a false 128 

discovery rate < 0.0531-36. Most reported proteins have not been directly linked to the GWAS-129 

identified risk variants in common cancer types. Furthermore, research is lacking in 130 

integrating multiple population-scale proteomic studies like the recent emerging UK Biobank 131 

Pharma Proteomics Project (UKB-PPP)37, which offers an unprecedented opportunity to 132 

establish extensive pQTL databases, accelerating therapeutic drug discovery for therapeutic 133 

prevention and intervention in human cancers. 134 

 135 

Traditional drug discovery faces numerous challenges, including escalating costs, 136 

lengthy timelines, and high failure rates38. Drug repurposing presents a promising strategy 137 
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by identifying new applications for existing drugs, leveraging their well-documented 138 

characteristics39. With the widespread adoption of modern electronic health record (EHR) 139 

systems, vast amounts of real-world patient data are available to augment pre-clinical 140 

outcomes and facilitate drug repurposing screening. Recently, drug repurposing using EHRs 141 

has successfully discovered repurposing hypotheses for preventing Alzheimer’s Disease40, 142 

reducing cancer mortality41,42, treating COVID-1943,44, and coronary artery disease45. 143 

However, for therapeutic drugs that have been used for a long term to treat disease 144 

indications with evidence of affecting the expression of cancer risk proteins, their potential 145 

association with the risk of human cancers remains largely unclear. Some of these drugs 146 

may be linked to an increased cancer risk due to long-neglected side effects. 147 

 148 

In this work, we integrate large GWAS data for breast, colorectal, lung, ovarian, 149 

pancreatic, and prostate cancers and population-scale proteomics data from over 75,000 150 

participants combined from Atherosclerosis Risk in Communities study (ARIC)46, deCODE 151 

genetics47, and UKB-PPP to identify risk proteins associated with each cancer. We further 152 

characterized therapeutic drugs based on druggable risk proteins targeted by approved 153 

drugs or undergoing clinical trials for cancer treatment or other indications. We further 154 

evaluate the effect of cancer risk for those drugs approved for the indications, using over 3.5 155 

million EHR database at Vanderbilt University Medical Center (VUMC). Findings from this 156 

study offer novel insights into therapeutic drugs targeting risk proteins for cancer prevention 157 

and intervention. 158 

 159 

Results 160 

Overall analysis workflow 161 

In Figure 1, we outlined several main steps of a comprehensive integrative analysis 162 

of GWAS, pQTLs, druggable proteins, and EHR data. First, we examined previously 163 

identified risk loci from six cancer types based on the most recent GWAS in breast (N = 164 

247,173), ovary (N = 63,347), prostate (N = 140,306), colorectum (N = 254,791), lung (N = 165 

85,716), and pancreas (N = 21,536). Through additional fine-mapping analysis using 166 

SuSiE48, we characterized the most significantly associated variants (the lead variants) with 167 

independent association signals at each risk locus for each cancer (Fig. 1a; Online 168 

Methods). Second, we analyzed cis-pQTL results for the lead variants using proteomics 169 

data from individuals of European descent from ARIC46, deCODE47, and UKB-PPP37. We 170 

conducted fixed-effect meta-analyses of summary statistics cis-pQTLs from ARIC46 and 171 

deCODE47 through the same SOMAscan® platform (covering > 4,500 proteins) . We 172 
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combined them with the pQTL results from UKB-PPP through the Olink platform to identify 173 

potential risk proteins. For proteins that satisfied the significance threshold after multiple 174 

testing corrections, we further performed colocalization analyses to determine cancer risk 175 

proteins with high confidence through evaluating the likelihood of shared causal variants 176 

between pQTLs and GWAS (Fig. 1a). Third, these risk proteins with evidence of 177 

colocalization were further annotated based on drug-protein information from four 178 

drugs/compounds databases (DrugBank49, ChEMBL50, the Therapeutic Target Database51 179 

(TTD) and OpenTargets52 (Fig. 1b). We next identified druggable proteins that are 180 

therapeutic targets of approved drugs or undergoing clinical trials for cancer treatment or 181 

other indications. Finally, we focused on drugs approved for other indications. We built 182 

emulation of treated-control drug trials under the Inverse Probability of Treatment weighting 183 

(IPTW) framework53  through the analysis of over 3.5 million EHRs at VUMC. In these 184 

emulations, we used the Cox proportional hazard model for each trial to evaluate the hazard 185 

ratio (HR) of the specific cancer risk between the treated focal drug and the control drug. 186 

The significance of each focal drug (HR and P value) was derived from a random-effects 187 

meta-analysis of results across its balanced trials (Fig. 1c, Online Methods). 188 

 189 

Characterizing lead variants for breast, ovarian, prostate, colorectal, lung, and 190 

pancreas cancers 191 

To characterize lead variants at each locus for each cancer type, we collected the 192 

reported risk variants from previous fine-mapping or GWAS. Using breast cancer as an 193 

example, we included 196 lead variants with independent association signals at loci from a 194 

previous fine-mapping study based on conditional association analysis54 and additional 32 195 

genetic variants identified from a recent GWAS6. We then performed additional fine-mapping 196 

analysis using SuSiE48 based on summary statistics of GWAS (N = 247,173) from the Breast 197 

Cancer Association Consortium (BCAC, Supplementary Table 1). After integrating the 198 

previous results with new fine-mapping efforts, we identified 227 lead variants with 199 

independently associated with cancer risk at each locus through several processing steps, 200 

which included lead variant selection (P < 1 x 10-6 in European populations) and evaluating a 201 

linkage disequilibrium (LD) (r2 < 0.1) among the identified risk variants (Extended Data Fig. 202 

1; Online Methods). Similarly, we characterized lead variants from previous GWAS and our 203 

fine-mapping studies for colorectal55 and other cancers (Extended Data Fig. 1; 204 

Supplementary Table 1; Online Methods). In our analysis, we identified 710 lead variants, 205 

including 227 for breast cancer, 213 for colorectal cancer, 213 for prostate cancer, 26 for 206 

lung cancer, 13 for ovarian cancer and 18 for pancreatic cancer (Fig. 2 and Supplementary 207 

Tables 2 and 3; Online Methods).   208 

 209 
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Identifying cancer risk proteins from pQTLs mapping and colocalization analyses 210 

We mapped the 710 lead variants to cis-pQTLs to identify cancer risk proteins. At a 211 

Bonferroni-corrected P < 0.05, we identified a total of 459 pQTL association signals 212 

(corresponding 365 proteins after combined proteins unique for each cancer) for 222 lead 213 

variants across six cancer types, including 74 for breast, 127 for colorectal, 37 for lung, 5 for 214 

ovarian, 9 for pancreatic, and 113 for prostate cancer (Fig. 2; Supplementary Table 4). 215 

Notably, 312 of the identified proteins (85.4% of 365) among these cancer types have not 216 

been reported in previous proteomics-based MR studies32-36,56,57 (Supplementary Table 5). 217 

Furthermore, through analysis of the identified proteins commonly observed in multiple 218 

cancers, we found that 60 proteins were commonly observed in at least two of these six 219 

cancers. In particular, we observed that several well-known cancer-related proteins, such as 220 

HLA-A and HLA-E, were linked to lead variants located in major histocompatibility complex 221 

(MHC) in breast, colorectal and lung cancers, highlighting the potential role of these proteins 222 

in cancer pleiotropy and shared cancer risk mechanisms (Fig. 2). 223 

 224 

A further colocalization analysis identified 101 proteins after combined proteins 225 

unique for each cancer that showed strong evidence supported by either colocalization or 226 

SMR+HEIDI analysis (Online Methods). Specifically, we identified 23 proteins for breast, 38 227 

proteins for colorectal cancer, 7 proteins for lung, 2 for ovarian, 2 for pancreatic and 29 for 228 

prostate cancer, respectively (Fig. 3a-b, Supplementary Table 6). Of these, 74 proteins 229 

(73.2% of 101) have not been previously linked to cancer risk (Supplementary Table 7). Of 230 

note, 71 proteins were only assayed by either SOMAscan® (n=32) or Olink platform (n=39). 231 

For the remaining 22 significant proteins commonly assayed, all showed a pQTL significance 232 

signal with a minimal nominal P < 1 x 10-5 in both ARIC+deCODE and UKB-PPP (r = 0.66, P 233 

= 2x10-4; Fig. 3c). In particular, seven proteins were highlighted as cancer-driver proteins58,59 234 

and Cancer Gene Census (CGC)60, including ALDH2, HLA-A and SUB1 for breast cancer, 235 

ALDH2 and HLA-A for colorectal cancer, NT5C2 for lung cancer, and NT5C2, RNF43, 236 

TYRO3 and USP28 for prostate cancer.  237 

 238 

Cancer risk proteins supported by functional genomics analyses  239 

Of the identified 101 proteins among the six cancers, we next examined whether they 240 

are supported by functional genomics analyses. Specifically, we first evaluated xQTL (i.e., 241 

eQTLs, alternative splicing - sQTLs, and alternative polyadenylation - apaQTLs) results in 242 

their respective target tissues and whole blood samples (Online Methods). We found 63 243 

proteins that were supported by at least one xQTLs at a nominal P < 0.05, including12 for 244 

breast (52% of 23), 22 for colorectal (57% of 38), 5 for lung (71% of 7), 2 for ovarian, 2 for 245 

pancreatic, and 20 (68% of 29) for prostate cancer (Supplementary Table 7).  Second, we 246 
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used functional genomic data generated in their cancer-related tissues/cells (i.e., promoter 247 

and enhancer) to characterize putative functional variants that are in strong LD (r2 > 0.8 in 248 

the European population) with the lead variants (Online Methods) Our results showed that 249 

17 genes were likely regulated by the closest putative regulatory variants with either 250 

promoter and/or enhancer activities (Supplementary Table 8). We further investigated the 251 

potential distal regulatory effects of putative functional variants on these genes by analyzing 252 

chromatin-chromatin interaction data (Online Methods). We found that 39 genes were 253 

regulated distally by putative functional variants through long-term promoter-enhancer 254 

interactions (Supplementary Table 9). Lastly, we examined differential protein expression 255 

between normal and tumor tissues available for breast, colon, lung and pancreatic cancers 256 

using data from Clinical Proteomic Tumor Analysis Consortium (CPTAC). We showed 257 

evidence of the 18 identified proteins with consistent association directions supported by 258 

significantly differential expression at a nominal P < 0.05, including 3 for breast cancer, 10 259 

for colorectal cancer, 4 for lung cancer and 1 for pancreatic cancer. Similarly, we showed 260 

evidence of the 40 identified proteins supported by significantly differential mRNA expression 261 

using data from The Cancer Genome Atlas Program (TCGA), including 6 for breast cancer, 262 

15 for colorectal cancer, 3 for lung cancer, 1 for pancreatic cancer and 15 for prostate 263 

cancer. Taken together, our analysis provided additional evidence that most of the identified 264 

proteins partially or wholly supported by functional genomics analyses (Supplementary 265 

Table 10). 266 

 267 

Identifying druggable proteins 268 

Using data from DrugBank49, ChEMBL50, the Therapeutic Target Database51 (TTD) 269 

and OpenTargets52, we comprehensively annotated our proteins as therapeutic targets of 270 

approved or clinical-stage drugs (Online Methods). Of the 101 proteins among the six 271 

cancers, we identified 36 druggable proteins potentially targeted by 404 approved drugs or 272 

undergoing clinical trials for cancer treatment or other indications (Fig. 4, Supplementary 273 

Table 11). Specifically, we found 19 proteins targeted by 133 drugs either approved or under 274 

clinical trials to treat cancers (Fig. 5, Supplementary Table 12).  Our results also provide 275 

evidence that the remaining draggable proteins are targeted by 197 drugs used for treating 276 

indications other than cancer (Extended Data Fig. 3).  277 

 278 

Evaluating associations of drugs approved for indications with cancer risk 279 

We next evaluated the effect on cancer risk of therapeutic drugs that have been used 280 

long-term to treat indications based on real-world EHRs from the VUMC Synthetic Derivative 281 

(SD) database. Given a focal drug, we first emulated its trials by building control patient 282 

groups who were exposed to similar treated drugs under the same ATC-L2 category (Online  283 
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Methods; Supplementary Table 13). To mimic randomized controlled trials (RCT) to 284 

evaluate the focal drug’s effect, we applied the Inverse Probability of Treatment Weighting 285 

(IPTW) framework61 to create a pseudo-population wherein confounding variables are evenly 286 

distributed between the treated and control groups (Online Methods). After discarding the 287 

trials with less than 500 eligible patients in either of the groups, we analyzed 14 treated 288 

drugs with 335 balanced trials. Our analysis revealed that five drugs were linked to an 289 

increased risk of cancer: Haloperidol (HR = 1.76; P = 1.6 x 10-23; targeting HLA-A protein) 290 

and Trazodone (HR = 1.32; P = 2.3 x 10-12; targeting HLA-A protein) for breast cancer; 291 

Tranexamic Acid (HR = 1.53; P = 1.1 x 10-3; targeting PLG protein) and Sirolimus (HR = 292 

1.71; P = 1.1 x 10-28; targeting TYRO3 protein) for prostate cancer; and Haloperidol (HR = 293 

2.62, P = 6.6 x 10-20, targeting HLA-A protein) and Captopril (HR = 1.65; P = 2.2 x 10-9; 294 

targeting TF protein) for colorectal cancer (Fig. 6). In contrast, we also found that two drugs 295 

associated with a decreased risk of colorectal cancer: Caffeine (HR = 0.74, P = 9.3 x 10-5, 296 

targeting ALDH2 protein) and Acetazolamide (HR = 0.72; P = 1.1 x 10-20; targeting HLA-A 297 

protein) (Fig. 6). 298 

 299 

Discussion 300 

In this study, we conducted a comprehensive investigation of cancer risk proteins by 301 

integrating lead variants and pQTLs for six common cancer types using large-scale GWAS 302 

and population-based proteomics data. Through pQTL mapping and subsequent 303 

colocalization analysis, we identified 101 risk proteins across the six cancer types, with over 304 

three-quarters of them not previously linked to cancer susceptibility. Moreover, most of the 305 

proteins we identified are supported by functional genomics analyses. Our findings not only 306 

significantly expand the pool of known cancer risk proteins but also offer new insights into 307 

the biology and susceptibility of common cancers. 308 

 309 

Through analysis of drug-protein interaction databases, we identified 36 druggable 310 

proteins potentially targeted by 404 therapeutic drugs. Among these, 30 drugs have already 311 

received approval for cancer treatment, while 73 are currently undergoing clinical trials for 312 

cancer treatment. These findings offer genetic evidence supporting the effectiveness of 313 

certain drugs and suggest potential opportunities for repurposing them to treat additional 314 

cancers that share common risk proteins. However, it's crucial to acknowledge that while the 315 

cancer risk proteins identified in our study hold promise as therapeutic targets for cancer 316 

treatment, drugs may also have adverse effects, potentially exacerbating cancer 317 

development through these targets (i.e., depending on their inhibitory or promotive effects)62. 318 
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Additionally, our analysis characterized 197 drugs used for indications other than cancer, 319 

which may influence cancer risk due to their interactions with cancer-risk proteins. Overall, 320 

our findings have the potential to accelerate therapeutic drug discovery for the prevention 321 

and intervention of human cancers. 322 

 323 

We uncovered five non-cancer drugs associated with increased cancer risk: 324 

Tranexamic Acid (PLG), Sirolimus (TYRO3), Haloperidol (HLA-A), Trazodone (HLA-A), and 325 

Captopril (TF). Our genetic evidence or previous pharmacological studies further support 326 

these findings. Specifically, Tranexamic Acid, an antifibrinolytic agent used to block the 327 

breakdown of blood clots and prevent bleeding, was associated with an increased risk of 328 

prostate cancer. Our findings suggest its potential inhibition of the protein expression of 329 

human plasminogen (PLG), based on data from the ChEMBL database. Our GWAS and 330 

pQTL results indicate that PLG may serve as a potential tumor suppressor, supported by 331 

evidence of the risk allele C of rs9347480 being associated with increased prostate cancer 332 

risk (P = 1.41 x 10-07) and decreased protein expression (P = 4.57 x 10-33). Additionally, this 333 

protein also shows notable evidence of decreased gene expression (P = 0.038) in prostate 334 

tumor samples compared to normal samples, as observed in data from TCGA. The drug 335 

Sirolimus, primarily used to treat immune system and eye diseases, can potentially affect 336 

receptor tyrosine kinases, TYRO3, a known protein important for prostate cancer 337 

development63,64.  In breast and colorectal cancers, we identified two candidate drugs 338 

(Haloperidol and Trazodone) targeting the major histocompatibility complex, HLA-A, an 339 

essential protein for the immune system's defense against cancer development. 340 

Interestingly, our analysis suggests that Haloperidol, a type of antipsychotic treatment, is 341 

highly likely to increase the risk of both breast and colon cancer. Haloperidol, the first-342 

generation antipsychotics, has been reported to be a carcinogenic compound65 and its 343 

exposure of five years or more was associated with an increased risk of breast cancer in a 344 

Finland nationwide study62.  Consistently, another prior study showed its notably increased 345 

risks of colorectal cancer in patients with schizophrenia who take antipsychotic 346 

medications66. We also found that Captopril, originally for cardiovascular diseases and 347 

promisingly repurposed for cancer treatment in clinical trials and several studies67-70, has the 348 

potential to increase the risk of colorectal cancer, aligning with a previous study71.  349 

 350 

Conversely, our study also identified two non-cancer drugs (Caffeine and 351 

Acetazolamide) associated with a reduced risk of colorectal cancer. Acetazolamide, 352 

prioritized by the risk protein named TF, exhibited a notable effect in preventing colorectal 353 

cancer development (HR = 0.72, P = 1.1 x 10-20). In line with our findings, prior studies 354 

demonstrated its role in inhibiting cell viability, migration, and colony formation ability of 355 
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colorectal cancer cells72, as well as its ability to suppress the development of intestinal 356 

polyps in Min Mice73.  In addition, Caffeine, a drug prioritized by the risk protein ALDH2 in 357 

colorectal cancer, has been shown to exert a protective effect on colorectal cancer by prior 358 

studies74,75. However, such low-risk association may vary by colon subsites76 and specific 359 

populations77.  Of note, a clinical trial (NCT05692024) is undergoing the recruitment phase to 360 

evaluate the effects of instant coffee on the gut microbiome, metabolome, liver fat, and 361 

fibrosis in colorectal cancer patients. 362 

 363 

Although the larger sample size of the European-ancestry study available for both 364 

GWAS and proteomics enabled us to identify a larger number of association signals for risk 365 

protein discovery based on colocalization analysis, our study was primarily limited to 366 

individuals of European ancestry and further investigations are needed to assess the 367 

relevance of these proteins in non-European populations. Millions of EHRs provide an 368 

unprecedented opportunity to systematically evaluate non-cancer drugs’ effect on risk of 369 

cancer development. Especially these therapeutic drugs have been used for a long time to 370 

treat diseases other than cancers, which can provide appropriate statistical power for the 371 

analysis. While this approach is limited in only examining the cancer risk of common 372 

approved drugs, it serves as an efficient complementary method to the pre-clinical data 373 

analysis for cancer prevention and treatment.  Despite the supportive evidence of 374 

Acetazolamide in vitro and in vivo, it remains necessary to evaluate the effects of our 375 

reported candidate drugs through both in vitro and in vivo assays in future investigations.  376 

 377 

Online Methods  378 

Data resources 379 

The GWAS summary statistics data of European descendants for breast, prostate, 380 

ovarian, and lung cancers were downloaded and compiled from their corresponding 381 

consortia, including the Breast Cancer Association Consortium (BCAC)6 (N = 247,173, 382 

133,384 cases and 113,789 controls), the Transdisciplinary Research of Cancer in Lung of 383 

the International Lung Cancer Consortium (TRICL-ILCCO) and the Lung Cancer Cohort 384 

Consortium (LC3)13 (N = 85,716, 29,266 cases and 56,450 controls), the Ovary Cancer 385 

Association Consortium (OCAC)11 (N = 63,347, 22,406 cases and 40,941 controls ), and the 386 

Pancreatic Cancer Case-Control Consortium (PanC4)10 (N = 21,536, 9,040 cases and 387 

12,496 controls), and the Prostate Cancer Association Group Investigate Cancer Associated 388 

Alterations in the Genome (PRACTICAL)78 (N = 140,306, 79,194 cases and 61,112 389 

controls). For colorectal cancer, we included GWAS data of 125,487 subjects from the 390 

European population.19,79,80 In addition, the GWAS data (N = 254,791) consisting of 100,204 391 
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colorectal cancer cases and 154,587 controls from European and Asian populations7 were 392 

also used in our analysis.  393 

The large-scale cis-protein quantitative trait loci (cis-pQTLs) among European-394 

ancestry populations were analyzed based on three proteomics datasets: UKB-PPP37 (N = 395 

34,557, 2,922 plasma proteins), ARIC44 (N = 7,213, 4,657 plasma proteins) and deCODE 396 

genetics45 (N = 35,559, 4,907 plasma proteins). Detailed descriptions of sample collection 397 

and processes of the cis-pQTL analyses from the above proteomics datasets have been 398 

described in previous studies37,46,47.  399 

 400 

We utilized the synthetic derivative (SD) database at Vanderbilt University Medical 401 

Center (VUMC)81. This VUMC SD database contains de-identified clinical information 402 

derived from Vanderbilt’s electronic medical record The SD has longitudinal clinical data for 403 

over 3.5 million individuals, including patient demographics, medical history, laboratory 404 

results, and medication history.  405 

 406 

Characterization of lead variants in six types of cancer 407 

In breast cancer, we included 196 strong independent association signals at P < 1 x 408 

10-6 from a fine-mapping study54 and 32 risk variants from a GWAS6. We first combined the 409 

reported lead variants from these two studies after removing those variants in LD (r2 < 0.1 in 410 

European populations). We further included additional lead variants from SuSiE fine-411 

mapping analysis on GWAS (N = 247,173)48, with fine-mapping windows of 500 kilobases 412 

(kb) and allowed a maximum of five causal variants. LD reference was based on the British-413 

ancestry UK Biobank samples (N = 337,000)82. We identified a credible set of causal 414 

variants with a 95% posterior inclusion probability (95% PIP) for each independent risk 415 

signal and a lead variant was represented by the variant with the minimum P.  We included 416 

additional lead variants from our SuSiE analysis with LD r2 < 0.1 in European populations 417 

with the above set of lead variants for those with independent risk-associated signals at 418 

GWAS P < 5 x 10-8 and located in GWAS loci with independent risk-associated signals at P 419 

< 1 x 10-6 in European populations.  420 

 421 

For colorectal cancer, we analyzed 238 lead variants from our recent fine-mapping 422 

study55 based on the GWAS data from 254,791 participants in both European and Asian 423 

populations. We characterized 233 lead variants with independent risk-associated signals at 424 

minimal P < 1 x 10-6 in European populations, from the analysis based on GWAS from trans-425 

ancestry and European populations, respectively. For prostate cancer, we first identified lead 426 

variants with independent risk-associated signals at GWAS P < 5 x 10-8 from our SuSiE fine-427 
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mapping analysis on GWAS summary statistics (N = 140,306). We next included additional 428 

GWAS-identified risk variants with P < 1 x 10-6 in European populations from the previous 429 

trans-ancestry GWAS8 and r2 < 0.1 with any lead variants from the above set in the fine-430 

mapping analysis. Similarly, we used the above strategy to characterize lead variants from 431 

fine-mapping analysis for ovarian cancer (N = 63,347) and pancreatic cancer (N = 21,536). 432 

We next included additional risk variants that are missed in the above set of lead variants 433 

from previous GWAS for ovarian11 and pancreatic cancer10.  For lung cancer, we included 26 434 

risk variants at P < 1 x 10-6 in European populations from the trans-ancestry GWAS9. 435 

 436 

Identification of putative target proteins for lead variants 437 

To identify potential cancer risk proteins, we mapped GWAS lead variants to cis-438 

pQTLs (+/- 500Kb region of a gene) results from three studies among European populations: 439 

UK Biobank Pharma Proteomics Project37, Atherosclerosis Risk in Communities study44 and 440 

deCODE genetics45. To increase the power of pQTLs, we combined cis-pQTLs from the 441 

ARIC and the deCODE (both assayed through SOMAscan® platform) via a a fixed-effects 442 

meta-analysis using META83. Cis-pQTLs from the UKB-PPP (assayed through Olink 443 

platform) were independently analyzed. In few cases where the lead variant did not overlap 444 

with any cis-pQTLs, we substituted it with the correlated variant exhibiting the strongest 445 

association signal. Putative cancer risk protein was defined based on pQTL significance at a 446 

Bonferroni threshold of P < 0.05 (nominal P = 2.3 x 10-5, corresponding to 2,164 variant-447 

protein tests for UKB-PPP; nominal P = 3.8 x 10-5, corresponding to 1,322 variant-protein 448 

tests for ARIC+deCODE).  449 

 450 

Colocalization analyses between pQTL and GWAS signals  451 

To identify cancer risk proteins, we conducted colocalization analysis using two 452 

approaches: Bayesian method coloc 84 and summary data-based Mendelian Randomization 453 

(SMR)85. For the SMR approach, a followed HEIDI test is performed on significant SMR 454 

results to determine if the colocalized signals can be explained by one single causal variant 455 

or by multiple causal variants in the locus. For each protein, SNPs with P < 0.5 from GWAS, 456 

MAF > 0.01, and within 50 kb of the lead variant were included. To estimate the posterior 457 

probability (PP) of colocalization, we utilized the default priors and coloc.abf function. In our 458 

study, we particularly focused on the assumption that one genetic variant is simultaneously 459 

associated with both two traits, which was quantified by PP.H4. We considered a protein to 460 

host one shared causal variant from GWAS and pQTLs if its coloc PP.H4 > 0.5. Additionally, 461 

we also performed SMR+HEIDI analysis for significant cis-pQTL with default parameter 462 

settings. Specifically, significant SMR+HEIDI results were defined as a tested locus with 463 

Bonferroni-adjusted SMR P < 0.05 and HEIDI P ≥ 0.05 (no obvious evidence of 464 
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heterogeneity of estimated effects or linkage). The above analyses were only conducted in 465 

European populations available for both GWAS and proteomics in European populations. 466 

 467 

Functional genomic analyses 468 

For our identified cancer risk proteins, we examined their xQTLs, including eQTLs, 469 

sQTLs, and apaQTL using the resource from the GTEx (version 8). We collected eQTLs and 470 

sQTLs from six normal tissues and whole blood from GTEx studies, and we collected 471 

apaQTLs from Li’s work86. A nominal P value < 0.05 for at least one xQTL in either tissue or 472 

blood samples was considered supportive of the pQTL results. 473 

 474 

We identified putative regulatory variants in strong linkage disequilibrium (LD) (r2 > 475 

0.8 in European population) for lead variants with significant colocalization between GWAS 476 

and cis-pQTL signals. Using the HaploReg tool87, we annotated these variants with a variety 477 

of epigenetic annotations, including regulatory chromatin states based on DNAse and 478 

histone ChIP-Seq from Roadmap Epigenomics Project, histone marks for promoter and 479 

enhancer, binding sites of transcription factors, and gene annotation from the GENCODE 480 

and RefSeq. We denoted variants as “Proximal” if they overlapped with these functional 481 

annotations near the closest target gene. We analyzed a variety of chromatin-chromatin 482 

interaction data, from 4D genome88, FANTOM589, EnhancerAtlas90, and super-enhancer91. 483 

We examined the overlap between putative regulatory variants and enhancer elements in 484 

corresponding cell lines or tissues of these six cancer types. We further determined 485 

enhancer-promoter loops after combining these data with ChIP-seq data of the histone 486 

modification H3K27ac (an active enhancer mark). We focused on interacted loops in which a 487 

fragment overlapped an H3K27ac peak (enhancer-like elements). In contrast, the other 488 

fragment overlapped the promoter of a gene (defined as a region of upstream 2kb and 489 

downstream 100bp around transcript start site). We denoted variants as “Distal” if they 490 

overlapped with these chromatin-chromatin variants. 491 

 492 

For our identified cancer risk proteins, we assessed the statistical significance of their 493 

differential protein expression between tumor and normal tissue in breast, colorectal, lung, 494 

ovarian, and pancreatic cancer samples using data from CPTAC, accessed through the 495 

UALCAN website92,93. Similarly, we analyzed their differential gene expression between 496 

tumor and normal tissue using data from TCGA, also through the UALCAN website.  497 

 498 

Inclusion of patients for a focal drug and its control drugs  499 

To evaluate the impact of a focal drug on cancer development, we conducted 500 

comparisons between its effects and those of its control drugs. To minimize potential 501 
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confounding factors associated with a drug prescription, we selected control drugs that 502 

belong to the same second-level Anatomical Therapeutic Chemical classification category 503 

(ATC-L2) as the focal drug. We formulated emulation trials, each containing one treated 504 

patient group (taking the focal drug) and one control patient group (taking the control drug). 505 

One focal drug may have multiple trials, depending on the number of potential control drugs 506 

belonging to the same ATC-L2 category. Next, we enrolled patients for the treated group and 507 

the control group from the VUMC SD based on the following criteria: 1) patients aged ≥ 40 at 508 

the time of the latest EHRs or  the initial diagnosis of cancer; 2) availability of at least one 509 

year of EHRs before the first prescription of the treated/control drug (index date); 3) for 510 

cancer patients, a minimum of two exposures to the treated or control drug during the follow-511 

up period (from the index date to the three months before cancer diagnosis); 4) for non-512 

cancer individuals, a minimum of two exposures to control drugs during the follow-up period 513 

(from the index date to the date of the latest EHRs). Finally, we precluded patients who were 514 

prescribed both treated and control drugs and discarded the trials with less than 500 eligible 515 

patients in either patient group40. 516 

 517 

Emulation of treated-control drugs balanced trials 518 

In the IPTW framework61, individuals are assigned weights based on the inverse of 519 

their propensity scores (PS), which represent their probability of being exposed to risk 520 

factors or a specific intervention, such as a treated drug, based on their baseline 521 

characteristics. In this study, we followed Zang’s work40 and trained a logistic regression 522 

propensity score (LR-PS) model with L1 or L2 regularization on patients' treatment 523 

assignments 𝑍 and covariates, including age, gender, comorbidities, etc. (Supplementary 524 

Table 14). We trained and selected the logistic model (Eq.1) with the highest area under 525 

curve (AUC) using a 10-folder cross-validation. We used the selected model to calculate all 526 

patient’s stabilized weights (Eq. 2). These weights are used to calculate the standardized 527 

mean difference (SMD, Eq.3) of the covariate’s prevalence in treated and control groups. A 528 

covariate 𝑑 is defined as unbalanced if 𝑆𝑀𝐷(𝑑) > 0.1 in IPTW framework (Eqs. 3, 4). A trial 529 

is balanced if it contains ≤10% unbalanced covariates (Eq. 5). 530 

 531 

The logistic regression is defined as follows:  532 

log (
𝑃(𝒁 = 1)

1 − 𝑃(𝒁 = 1)
) =  𝛽0 + 𝛽1𝑿1 + 𝛽2𝑿2 + ⋯ + 𝛽𝑛𝑿𝑛 

𝑃(𝒁 = 1) =  
1

1 +  𝑒−(∑ 𝛽𝑗𝑿𝑗+𝛽0)
 

1 
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where 𝒁 refers to treatment assignment (1 for treated patient group and 0 for control patient 533 

group) and 𝑿(𝑿1, 𝑿2, … , 𝑿𝑛) for baseline covariates. The propensity score is defined as 534 

𝑃(𝒁 = 1| 𝑿) and the stabilized IPTW of each individual is calculated as follows:  535 

𝐰 =
𝒁 × 𝑃(𝒁 = 1)

𝑃(𝒁 = 1| 𝑿)
+ 

(1 − 𝒁) × (1 − 𝑃(𝒁 = 1))

1 −  𝑃(𝒁 = 1| 𝑿)
 

2 

 536 

Standardized mean difference is calculated as following: 537 

𝑆𝑀𝐷(𝒙𝑡𝑟𝑒𝑎𝑡 − 𝒙𝑐𝑜𝑛𝑡𝑟𝑜𝑙) =  
|𝝁𝑡𝑟𝑒𝑎𝑡 − 𝝁𝑐𝑜𝑛𝑡𝑟𝑜𝑙|

√(𝑺𝑡𝑟𝑒𝑎𝑡
2 +  𝑺𝑐𝑜𝑛𝑡𝑟𝑜𝑙

2 )/2

 
3 

𝒙𝑡𝑟𝑒𝑎𝑡, 𝒙𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ∈ 𝑅𝐷 , representing vectors  of  𝐷 number of covariates of treated group and 538 

control group respectively; 𝝁𝑡𝑟𝑒𝑎𝑡, 𝝁𝑐𝑜𝑛𝑡𝑟𝑜𝑙 are their sample means,  and 𝑺𝑡𝑟𝑒𝑎𝑡
2 ,  𝑺𝑐𝑜𝑛𝑡𝑟𝑜𝑙

2  are 539 

their sample variances. In IPTW framework, the weighted sample mean 𝝁𝑤 and sample 540 

variance 𝑺𝑤
2  are calculated as following:  541 

𝝁𝑤 =  
∑ 𝒘𝑖𝒙𝑖

∑ 𝒘𝑖
 

𝑺𝑤
2 =  

∑ 𝒘𝑖

(∑ 𝒘𝑖)2 − ∑ 𝒘𝑖
2 ∑ 𝒘𝑖(𝒙𝑖 −  𝝁𝑤)2 

4 

 542 

Number of unbalanced covariates are calculated as following:  543 

𝑛 = ∑ 𝟙[𝑆𝑀𝐷(𝑑) > 0.1]

𝐷

𝑑=1

 5 

𝑤ℎ𝑒𝑟𝑒 𝐷 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙, 𝑑 𝑖𝑠 𝑜𝑛𝑒 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒 544 

 545 

Logistic regression propensity score (LR-PS) hyperparameter selection and model 546 

training 547 

To select the optimal regulation penalty weight (𝜆), we applied 10-fold cross-548 

validation on a list of lambda elements 𝜆 ∈ [0.005, 0.01, 0.05, 0.1, 0.5]. Specifically, the 549 

logistic model was trained on 9 training folders, and learnable parameters (𝛽) were 550 

estimated through minimizing the binary cross-entropy loss with L1 (Eq. 6) or L2 penalty (Eq. 551 

7). On the left-one out validation folder (k), we calculated 𝑆𝑀𝐷𝑘 (Eq. 3) values for 552 

𝐷  covariates based on individuals’ weights (Eq. 2) as well as the number unbalanced 553 

covariates 𝑛𝑘 (Eq. 5). In addition, we evaluated trained model’s prediction performance 554 

using area under curve (𝐴𝑈𝐶𝑘) on the validation dataset. The same processes were 555 

repeated 10 times. We defined the optimal hyperparameter value is the value generates the 556 

smallest averaged 𝑛𝑘. For two hyperparameter values generate approximate 𝑛𝑘, the one 557 

with larger averaged 𝐴𝑈𝐶𝑘 is the optimal.  Finally, we trained LR-PS model’s learnable 558 
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parameters (𝛽) on all subjects with the optimal hyperparameter and leveraged this trained 559 

model to compute weights and the proportion of imbalanced covariates to pinpoint balanced 560 

trials.  561 

 562 

Binary cross-entropy loss function with LASSO (L1) penalization: 563 

𝑎𝑟𝑔𝑚𝑖𝑛𝜷( 𝐿𝑜𝑠𝑠) = − 
1

𝑛
(∑ 𝑧𝑖 log(𝑃(𝑧𝑖 = 1)) + (1 − 𝑧𝑖) log(1 − 𝑃(𝑧𝑖 = 1))

𝑛

𝑖=1

) +  𝜆1 ∑|𝛽𝑗|

𝑏

𝑗=1

 

6 

Binary cross-entropy loss function with ridge (L2) penalization: 564 

𝑎𝑟𝑔𝑚𝑖𝑛𝜷( 𝐿𝑜𝑠𝑠) = − 
1

𝑛
(∑ 𝑧𝑖 log(𝑃(𝑧𝑖 = 1)) + (1 − 𝑧𝑖) log(1 − 𝑃(𝑧𝑖 = 1))

𝑛

𝑖=1

) +  𝜆2 ∑ 𝛽𝑗
2

𝑏

𝑗=1

 

 

7 

Calculation of overall hazard ratio for cancer risk drug on cancer development risk 565 

We evaluate subjects’ hazard of developing/preventing cancer in balanced treated-566 

control trials through survival analyses. We applied weighted Cox proportional hazard 567 

model94 using the lifelines 0.28.0 Python package to systematically evaluate the hazard ratio 568 

of developing cancer for patients taking treated drug vs patients taking control drugs (time-569 

to-event). The time windows utilized in this study start from the earliest date in EHRs for 570 

prescription of the treated/control drug to patients and end at the date of the diagnosis of 571 

cancer (event) or the end of EHRs records (censored). We included unbalanced covariates 572 

(if exist) into Cox models. For a treated drug, its overall hazard ratio and p-value were 573 

obtained by applying a random effect meta-analysis on the hazard ratios from its eligible 574 

trials using the meta 7.0 R package (Supplementary Table 15). We reported that a treated 575 

drug has a significantly increasing or decreasing risk of cancer development, contrasting to 576 

its control drugs, if the overall hazard ratio has a P < 0.05 after Bonferroni correction 577 

(nominal P = 3.5 x 10-3 corresponding to 14 tests).  578 

 579 

Data availability 580 

Supplementary Table 1 provides the download information for the summary statistics of 581 

GWAS data for the six common cancers, including breast, ovary, prostate, colorectum, lung, 582 

and pancreas. Metadata and pQTL summary statistics from UKB-PPP can be downloaded 583 

from Synapse: Project SynID: syn51364943; pQTL from ARIC46 and deCODE genetics47 can 584 

be accessed through previous publications (PMID: 34857953 and PMID: 35501419). 585 

Functional genomic data includes: TCGA and CPTAC differential expression results 586 

accessible through https://ualcan.path.uab.edu/index.html;  4DGenome: 587 

https://4dgenome.research.chop.edu/; Depmap  : https://depmap.org/portal/; FANTOM5: 588 

http://fantom.gsc.riken.jp/5/. HaploReg: https://pubs.broadinstitute.org/mammals/haploreg/.  589 
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GTEx: https://gtexportal.org/home/. GENCODE (v26.GRCh38) was downloaded from 590 

https://www.gencodegenes.org/human/release_26.html. National Cancer Institute can be 591 

accessed through https://www.cancer.gov/about-cancer/treatment/drugs; CGC can be 592 

accessed accessed via COSMIC website: https://cancer.sanger.ac.uk/census. Drugs and 593 

compounds data can be downloaded from the following URLs: ChEMBL: 594 

https://www.ebi.ac.uk/chembl/; Therapeutic Target Database: https://db.idrblab.net/ttd/; 595 

Open Targets: https://www.opentargets.org/; DrugBank: https://go.drugbank.com/. The EHR 596 

data, containing de-identified clinical information, can be accessed through the VUMC SD 597 

database. Data is available through restricted access for approved studies and researchers 598 

who agree to specific conditions of use. 599 

 600 

Code availability 601 

The developed pipeline and main source R codes that are used in this work are available 602 

from the GitHub website of Xingyi Guo’s lab: https://github.com/XingyiGuo/PQTL_EHR/  603 
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Figures 841 

Fig. 1: Overview of the Analytical Framework.  842 

a, An illustration depicting the identification of proteins associated with the risk of the six 843 

major cancers: breast, lung, colorectal, ovarian, pancreatic, and prostate. Population-based 844 

proteomics data (for pQTLs) and GWAS data resources (for identifying lead variants) utilized 845 

in this study are shown in the left panels. Meta-analyses of cis-pQTLs from ARIC and 846 

deCODE, conducted through the SOMAscan® platform, were combined with pQTL results 847 

from the UKB-PPP to identify potential risk proteins, as depicted in the middle panels. 848 

Colocalization analyses between GWAS summary statistics and cis-pQTLs were performed 849 

to identify cancer risk proteins with high confidence, as illustrated in the right panel. b, The 850 

proteins with evidence of colocalization annotated based on drug-protein information from 851 

four databases: DrugBank, ChEMBL, TTD, and OpenTargets. c, The framework for 852 

evaluating the effects of drugs approved for indications on cancer risk. The Inverse 853 

Probability of Treatment weighting (IPTW) framework was utilized to construct emulations of 854 

treated-control drug trials based on millions of patients' Electronic Health Records stored at 855 

VUMC SD (left pane). In these emulations, the Cox proportional hazard model was 856 

conducted for each trial to assess the hazard ratio (HR) of cancer risk between the treated 857 

focal drug and the control drug (right panels). 858 

 859 

Fig.2: Genome-wide distribution of lead variants and putative risk proteins among six 860 

types of cancer. Proteins identified for each cancer are represented by different colors. 861 

Each circle represents a single lead variant-protein pair. Proteins marked with an asterisk (*) 862 

denote multiple proteins associated with the lead variants. A dashed box highlights several 863 

well-known cancer-related proteins, such as HLA-A and HLA-E, which are linked to lead 864 

variants located in the major histocompatibility complex (MHC).  865 

 866 

Fig. 3: Identification of 101 cancer risk proteins through pQTL and colocalization 867 

analysis 868 

a, Number of proteins showing evidence of colocalizations between pQTLs and GWAS 869 

association signals for six cancer types. b, Percentage of proteins showing evidence of 870 

colocalizations between pQTLs and GWAS summary statistics for six cancer types. 871 

c, A plot illustrating the high consistency of pQTL p-values for 22 cancer risk proteins 872 

between the ARIC+deCODE and the UKB-PPP (proteins commonly assays from 873 

SOMAscan® and Olink platforms). 874 

 875 

Fig. 4: A circular plot showing 36 druggable proteins potentially targeted by 404 876 

approved drugs or undergoing clinical trials for cancer treatment or other indications 877 
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Presented from inner to outer layers are cancer types, proteins, and drugs. Each drug-878 

protein interaction is annotated by DrugBank, ChEMBL, TTD, and OpenTargets, with lines in 879 

different colors representing each database. Interactions where proteins are annotated by 880 

two databases are linked to drugs with thick lines. 881 

 882 

Fig. 5: A circular plot showing 19 druggable proteins potentially targeted by 133 883 

approved drugs or undergoing clinical trials for cancer treatment. Presented from inner 884 

to outer layers are cancer types, proteins, drugs and cancers. Drugs approved and 885 

undergoing clinical trials for cancer treatment are highlighted on green and gray, 886 

respectively. Drug approved indications are formatted in bold, while indications under clinical 887 

trial are in regular font. 888 

 889 

Fig. 6: Drugs approved for treated indications showing significant effects on cancer 890 

risk  891 

a, A table showing cancer risk alleles of lead variants, risk proteins, and drug name 892 

approved for indications. Positive associations are indicated by upward arrows, while 893 

negative associations are indicated by downward arrows. b, Boxplots showing differentially 894 

expressed proteins between normal and tumor colon tissues using data from CPTAC. 895 

c, An illustration of drugs linked to specific cancers based on the risk proteins targeted by 896 

the drugs. d, Survival plots depict the statistically significant difference in the probability of 897 

being cancer-free for patients in the treated group (taking a focal drug, shown in green) 898 

compared to control groups (shown in purple). The shaded area represents the 95% 899 

confidence interval. The overall hazard ratio and P-value for the focal drug, determined 900 

through Cox proportional hazard models, are presented in the top right corner of each panel. 901 
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Extended Data Fig. 1: A flowchart for characterizing lead variants with independent 903 

risk signals in six cancer types. The analysis for each of the six major cancers: breast, 904 

lung, colorectal, ovarian, pancreatic, and prostate is separated by dashed lines. The detailed 905 

protocols of new efforts from our additional fine-mapping analysis using SuSiE and a 906 

collection of previously identified risk variants from GWAS or fine-mapping studies are 907 

indicated in Box A, Box B and Box C, respectively. 908 

 909 

Extended Data Fig. 2: Common cancer risk proteins identified across six cancer types 910 

a, A Venn plot showing common proteins in breast, colorectal, lung and prostate cancer. b, 911 

A heatmap showing common proteins observed from at least two of six types of cancer. 912 

 913 

Extended Data Fig. 3: A circular plot showing 28 druggable proteins potentially 914 

targeted by 197 approved drugs or undergoing clinical trials for treated indications 915 

rather than cancers. Presented from inner to outer layers are cancer types, proteins, drugs 916 

and cancers. Drugs approved and undergoing clinical trials for cancer treatment are 917 

highlighted on blue and gray, respectively. Drug approved indications are formatted in bold, 918 

while indications under clinical trial are in regular font. 919 
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Study III: UK Biobank
N=34,557, Proteins: 2,922 

Risk proteins: 
Breast cancer: 23 
Colorectal cancer: 38
Lung cancer: 7
Ovarian cancer: 2 
Pancreatic cancer: 2 
Prostate cancer: 29

a

b

Drugs/compounds Databases:
Therapeutic Target Database
Open Targets
ChEMBL
DrugBank

Proteins (drug targets): 
Breast cancer: 9 
Colorectal cancer: 15
Lung cancer: 3
Ovarian cancer: 1  
Prostate cancer: 12

c

Treated group
Control group

Breast Lung Colorectal Ovary Pancreas Prostate
   N=247173,  85716,  254791,  63347,  21536,  140306   

VUMC SD EHR 
database

Time (months)
The drug prescription date

Confounder

Treatment Outcome

Propensity score

Pseudo-randomized trial

Stabilized IPTW

Censored
Event (Cancer diagnosis)

Cox regression analysis
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r = 0.66, P = 2x10-4

Breast Colorectal Lung Ovarian Pancreatic Prostate

a                                                                                                       b 
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Therapeutic Target Database
OpenTargets
ChEMBL
DrugBank
OpenTargets & ChEMBL 
ChEMBL & DrugBank
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Drugs approved to treat cancers
Drugs under clinical trials to treat cancers
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Cancer Protein Lead variant Risk allele Drug
HLA-A rs79309050 T 1.13 -0.47 Haloperidol
HLA-A rs79309050 T 1.13 -0.47 Trazodone

PLG rs9347480 C 1.06 -0.12 Tranexamic Acid
TYRO3 rs11561564 G 1.06 0.14 Sirolimus
ALDH2 rs3858704 G 1.04 -0.04 Caffeine
HLA-A rs2517671 G 1.04 0.83 Haloperidol
HLA-A rs2517671 G 1.04 0.83 Acetazolamide

TF rs4854776 C 1.04 -0.04 Captopril

OR (GWAS) Beta (pQTL)

Breast
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HR = 1.76
P = 1.6 x 10-23

HR = 1.32
P = 2.3 x 10-12

HR = 0.74
P = 9.3 x 10-5

HR = 2.62
P = 6.6 x 10-20

HR = 1.65
P = 2.2 x 10-9

HR = 0.72
P = 1.1 x 10-20

HR= 1.53
P = 1.1 x 10-3

HR = 1.71
P = 1.1 x 10-28

Haloperidol                                                        Trazodone 

Caffeine                                                       Haloperidol                                                   Acetazolamide                                            Captopril 

Aggregated Cancer-free Probability (Control drugs) Aggregated Cancer-free Probability (Focal drug)95% CI (Control drugs) 95% CI (Focal drug)

a

b

d

Breast cancer Tranexamic Acid                                          Sirolimus
Prostate cancer

Colorectal cancer

c

Breast 
cancer

Prostate
cancer

Colorectal
cancer

HLA-A

Haloperidol  

Trazodone 

PLG

TYRO3

Tranexamic Acid
 

Sirolimus

Captopril 

Caffeine 
Haloperidol 

Acetazolamide

ALDH2

HLA-A

TF
Normal 
(N=100) 

Primary tumor
(N=97) 

Normal 
(N=100) 

Primary tumor
(N=97) 

Normal 
(N=100) 

Primary tumor
(N=97) 

ALDH2
P = 3.9 x 10-4 

HLA-A
P = 8.2 x 10-6 

TF
P = 8.1 x 10-27 
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Study I (fine-mapping): 196 

lead variants with strong 

independent association 

signals, at P < 1 x 10-6 (Fachal 

et al., Nature Genetics, 2020) 

Our fine-mapping analysis 

using SuSiE based on 

GWAS data in European 

populations (N=247,173)

1. Combining lead variants from study I and II, after removing    

    those in linkage disequilibrium (LD) (r2 ≥ 0.1 in European   

    populations). 

2. Including additional lead variants from our SuSiE analysis with LD 

     r2 < 0.1 in European populations with the above set of lead 

     variants)

    -- those with independent risk-associated signals at P < 5 x 10-8 

    -- those located in GWAS loci with independent risk-associated  

       signals at P < 1 x 10-6 

Identified 227 lead variants

Colorectal cancer

Our recent fine-mapping study: 

238 lead variants (Chen et al., 

Nature Communications, 2024) 

Box 1

Only including lead variants with P < 1 x 10-6 

from analysis in European populations or Trans-

ancestry GWAS.

Identified 213 lead variants

Study II (GWAS): 32 

risk variants (Zhang et 

al., Nature Genetics, 

2020)

Breast cancer

Box 2 – SuSiE analysis:

Including lead variants with independent risk-

associated signals 

-- those with P < 5 x 10-8 

-- those with P < 1 x 10-6, located in GWAS loci      

   (i.e., within a 1Mb region)

Box 3 – previous GWAS

Including additional GWAS-identified risk variants 

with P < 1 x 10-6 in European populations from 

the GWAS study, and LD r2 < 0.1 in European 

populations with the above set of lead variants

Lung cancer

Trans-ancestry GWAS: 36 

risk variants (Byun et al., 

Nature Genetics, 2022)

Identified 26 lead variants

Prostate cancer

Identified 213 lead variants

GWAS data in European 

populations (N=140,306)

Trans-ancestry 

GWAS (N =234,253)

(Conti et al., Nature 

Genetics, 2021)

Box 2

Ovarian cancer

Identified 13 lead variants

GWAS data in European 

populations (N = 63,347)

European population 

GWAS (Phelan et al., 

Nature Genetics, 2017)

Pancreatic cancer

Identified 18 lead variants

GWAS data in European 

populations (N = 21,536)

European population 

GWAS (Klein et al., 

Nature Communication, 

2018)

Box 1 Box 1

Box 3

Box 2

Box 3

Box 2

Box 3
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Colorectal cancer Lung cancer

Prostate cancerBreast cancer
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Common proteins identified in at least two cancers

Prostate cancer

Pancreatic cancer

Ovarian cancer

Lung cancer

Colorectal cancer

Breast cancer

a

b
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Drugs approved to treat diseases
Drugs under clinical trials to treat diseases

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 31, 2024. ; https://doi.org/10.1101/2024.05.29.24308170doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.29.24308170

