Screening for Breast Cancer - Appendices Update 2024

Table of Contents

Appendix 2 - Database search strategy
Appendix 3 – Completed PRESS assessment. 15 Appendix 4 – Portal submission. 24 Appendix 5 – Grey literature search. 34 Appendix 6 – DistillerSR screening forms 35
Appendix 4 – Portal submission
Appendix 5 – Grey literature search
Appendix 6 – DistillerSR screening forms
Appendix 7 – Data extraction form
oppendix 8 – GRADE summary of findings tables and forest plots40
Table 1: Breast cancer mortality (RCTs, short-case accrual, stratified by age, over 10 years)
Table 2: Breast cancer mortality (RCTs, long-case accrual, stratified by age, over 10 years)
Table 3: Breast cancer mortality (Observational studies, stratified by age, adherence to screen analysis over 10 years)
Table 4: Breast cancer mortality (Observational studies, stratified by age, stop screening analysis)
Table 5: Breast cancer mortality (Observational case-control studies, stratified by age)
Table 6: Breast cancer mortality (Quasi-experimental, sub-groups) 55
Table 7: All-cause mortality (RCTs, stratified by age, over 10 years)
Table 8: Stage at diagnosis (RCTs, all ages) 61
Table 9: Stage at diagnosis (Observational studies, all ages) 64
Table 10: Stage distribution of Breast Cancer (Quasi-experimental, Sub-groups)65
Table 11: Overdiagnosis over 10 years (RCTs, stratified by age)68
Table 12: Overdiagnosis (Observational studies, stratified by age) 72
Table 13: Interval cancers (Intervention arm only - descriptive data of RCTs)
Table 14: Treatment-related morbidity (RCTs, all ages) 81
Table 15: Treatment-related morbidity (Observational studies, all ages, adherence to screen analysis)
Table 16: Treatment-related morbidity (Observational studies, by age subgroup, stop screening analysis) 84
Table 17: Additional imaging (no cancer) 89

Appendix 9 – Cohort and RCT forest plot	93
Appendix 10 - Final Working Group Thresholds for GRADE	94
Appendix 11 - Working group survey for patient values and preferences towards screening for breast cancer	95
Appendix 12 – Baseline and lifetime risk calculations	102
Appendix 13 – List of excluded studies	104
Appendix 14 – Study characteristics table	120
Appendix 15 – Summary characteristics of RCTs (taken from previous 2017 review)	131
Appendix 16 – Risk of bias summary tables	132
Appendix 17 – Breast cancer mortality findings summary for exploratory analyses	137
Appendix 18 - Sensitivity analysis by RoB - Breast cancer mortality RCTs	139
Appendix 19 – Sensitivity analysis: Overdiagnosis RCTs removing high risk of bias trials	144
Appendix 20 – Supplementary data on additional imaging (no cancers)	147
Part A: Additional imaging (no cancer) resolved by imaging or biopsy per 1,000 screens from provincial sources	147
Part B: Additional imaging and biopsy (no cancer), per 1,000 screens	149
Part C: Additional imaging with or without biopsy (No Cancer) rate using 2019-2020 CPAC data, ages 40-49	150
Part D: Additional imaging with or without biopsy (No Cancer) using 2019-2020 CPAC data, ages 50-74	150
Part E: Additional imaging example calculations	150
Appendix 21 – Sensitivity analysis: Observational studies	152
Appendices References	154

Appendix 1 – PRISMA checklist

Section and Topic	ltem #	Checklist item	Location where item is reported
TITLE			
Title	1	Identify the report as a systematic review.	1
ABSTRACT			
Abstract	2	See the PRISMA 2020 for Abstracts checklist.	3
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of existing knowledge.	7
Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.	7
METHODS			
Eligibility criteria	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.	9
Information sources	6	Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.	11
Search strategy	7	Present the full search strategies for all databases, registers, and websites, including any filters and limits used.	Appendix
Selection process	8	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.	11
Data collection process	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.	12
Data items	10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.	13
	10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.	13
Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.	12
Effect measures	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.	13
Synthesis methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)).	14
	13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.	14
	13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	14
	13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.	14

Section and Topic	ltem #	Checklist item	Location where item is reported
	13e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta- regression).	15
	13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	15
Reporting bias assessment	14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).	15
Certainty assessment	15	Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome.	13
RESULTS			
Study selection	16a	Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram.	20
	16b	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.	Appendix
Study characteristics	17	Cite each included study and present its characteristics.	20
Risk of bias in studies	18	Present assessments of risk of bias for each included study.	22
Results of individual studies	19	For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.	Appendix
Results of	20a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.	25-34
syntheses	20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.	25-34
	20c	Present results of all investigations of possible causes of heterogeneity among study results.	24
	20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.	24
Reporting biases	21	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.	22
Certainty of evidence	22	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.	25-34
DISCUSSION			
Discussion	23a	Provide a general interpretation of the results in the context of other evidence.	34
	23b	Discuss any limitations of the evidence included in the review.	39
	23c	Discuss any limitations of the review processes used.	39
	23d	Discuss implications of the results for practice, policy, and future research.	39
OTHER INFORM	ATION		
Registration and protocol	24a	Provide registration information for the review, including register name and registration number, or state that the review was not registered.	5
	24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.	5

Section and Topic	ltem #	Checklist item	Location where item is reported
	24c	Describe and explain any amendments to information provided at registration or in the protocol.	18
Support	25	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.	2
Competing interests	26	Declare any competing interests of review authors.	2
Availability of data, code and other materials	27	Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review.	2

From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71

For more information, visit: <u>http://www.prisma-statement.org/</u>

Appendix 2 - Database search strategy

CTFPHC – Breast Cancer – Harms & Benefits Final Strategy 2023 Jul 8

Ovid Multifile

Database: Embase Classic+Embase <1947 to 2023 July 07>, Ovid MEDLINE(R) ALL <1946 to July 06, 2023>, EBM Reviews - Cochrane Central Register of Controlled Trials <June 2023> Search Strategy:

2 ((breast* or mamma or mammar*) adj3 (cancer* or carcinoid* or carcinoma* or carcinogen* or adenocarcinoma* or adeno-carcinoma* or malignan* or neoplasia* or neoplasm* or sarcoma* or tumour* or tumor*)).tw,kw,kf. (1093944)

- 3 exp Carcinoma, Intraductal, Noninfiltrating/ (13607)
- 4 intraductal carcinoma*.tw,kw,kf. (3402)
- 5 (ductal carcinoma in situ or DCIS).tw,kw,kf. (26073)
- 6 or/1-5 [BREAST CANCER] (1309330)
- 7 exp Breast Neoplasms/di, pc (142043)
- 8 exp Mass Screening/ (464018)
- 9 screen*.tw,kw,kf. (2475388)
- 10 "Early Detection of Cancer"/ (51154)
- 11 ((early or earlier or earliest) adj3 (detect* or diagnos* or identif* or recogni*)).tw,kw,kf. (857194)
- 12 exp Breast Neoplasms/dg [diagnostic imaging] (28712)
- 13 exp Mammography/ (103519)
- 14 (mammograph* or mammogram*).tw,kw,kf. (90372)
- 15 exp Magnetic Resonance Imaging/ (1784668)

16 (fMRI or fMRIs or MRI or MRIs or NMRI or NMRIs or MR imaging or NMR imaging or magnetic resonance imag* or magnetic resonance tomograph* or MR tomograph*).tw,kw,kf. (1437177)

17 (chemical shift imaging or proton spin tomograph* or zeugmatograph*).tw,kw,kf. (2731)

- 18 (ultrasound* or ultrason* or echograph* or echotomograph* or echo-tomograph* or sonograph*).tw,kw,kf. (1304950)
- 19 (echomammogra* or echo-mammogra*).tw,kw,kf. (95)
- 20 Imaging, Three-Dimensional/ (183178)
- 21 ((3D or "3-D") adj3 imag*).tw,kw,kf. (70567)
- 22 (("3" or three) adj dimension* adj3 imag*).tw,kw,kf. (46838)
- 23 tomosynthes*.tw,kw,kf. (5567)
- 24 or/7-23 [SCREENING] (6686083)
- 25 6 and 24 [BREAST CANCER SCREENING] (327407)
- 26 exp Infant/ not (exp Adult/ and exp Infant/) (1984574)
- 27 exp Child/ not (exp Adult/ and exp Child/) (4012787)
- 28 Adolescent/ not (exp Adult/ and Adolescent/) (1432274)

¹ exp Breast Neoplasms/ (1031502)

- 29 or/26-28 (5072306)
- 30 25 not 29 [CHILD-ONLY REMOVED] (325404)
- 31 exp Animals/ not (exp Animals/ and Humans/) (17644214)
- 32 30 not 31 [ANIMAL-ONLY REMOVED] (272302)
- 33 (comment or editorial or news or newspaper article).pt. (2472356)
- 34 (letter not (letter and randomized controlled trial)).pt. (2543284)
- 35 32 not (33 or 34) [OPINION PIECES REMOVED] (257499)
- 36 (Case Reports not (Case Reports and Randomized Controlled Trial)).pt. (2343931)
- 37 (case adj (series or study or studies or report or reports)).ti. (955591)
- 38 35 not (36 or 37) [CASE STUDIES/SERIES REMOVED] (243638)
- 39 limit 38 to yr="2014-current" (114748)
- 40 (controlled clinical trial or randomized controlled trial or pragmatic clinical trial).pt. (687633)
- 41 clinical trials as topic.sh. (238023)
- 42 (randomi#ed or randomly or RCT\$1 or placebo*).tw. (4183310)
- 43 ((singl* or doubl* or trebl* or tripl*) adj (mask* or blind* or dumm*)).tw. (806676)
- 44 trial.ti. (1110226)
- 45 or/40-44 (4818073)
- 46 39 and 45 [RCTs] (10185)
- 47 controlled clinical trial.pt. (95362)
- 48 Controlled Clinical Trial/ or Controlled Clinical Trials as Topic/ (600612)
- 49 (control* adj2 trial).tw,kw,kf. (1180360)
- 50 Non-Randomized Controlled Trials as Topic/ (14974)
- 51 (nonrandom* or non-random* or quasi-random* or quasi-experiment*).tw,kw,kf. (186551)
- 52 (nRCT or non-RCT).tw,kw,kf. (1327)
- 53 Controlled Before-After Studies/ (252993)
- 54 (control* adj3 ("before and after" or "before after")).tw,kw,kf. (14017)
- 55 Interrupted Time Series Analysis/ (246419)
- 56 time series.tw,kw,kf. (100272)
- 57 (pre- adj5 post-).tw,kw,kf. (408710)
- 58 ((pretest adj5 posttest) or (pre-test adj5 post-test)).tw,kw,kf. (39051)
- 59 Historically Controlled Study/ (263364)
- 60 (control* adj2 study).tw,kw,kf. (1072731)
- 61 Control Groups/ (126139)
- 62 (control* adj2 group?).tw,kw,kf. (1818179)
- 63 trial.ti. (1110226)
- 64 or/47-63 (4979231)
- 65 39 and 64 [nRCTs] (11142)
- 66 exp Cohort Studies/ (3738436)
- 67 cohort?.tw,kw,kf. (2424497)
- 68 Retrospective Studies/ (2360506)
- 69 (longitudinal or prospective or retrospective).tw,kw,kf. (4620303)
- 70 ((followup or follow-up) adj (study or studies)).tw,kw,kf. (151254)

- 71 Observational study.pt. (143681)
- 72 (observation\$2 adj (study or studies)).tw,kw,kf. (441671)
- 73 ((population or population-based) adj (study or studies or analys#s)).tw,kw,kf. (60358)
- 74 ((multidimensional or multi-dimensional) adj (study or studies)).tw,kw,kf. (354)
- 75 Comparative Study.pt. (1912764)
- 76 ((comparative or comparison) adj (study or studies)).tw,kw,kf. (360187)
- 77 exp Case-Control Studies/ (1677569)
- 78 ((case-control* or case-based or case-comparison or case-compeer or case-referrent or case-referent) adj3 (study or studies)).tw,kw,kf. (337507)
- 79 Multicenter Study.pt. (335633)
- 80 ((multicenter or multi-center or multicentre or multi-centre) adj (study or studies)).tw,kw,kf. (229129)
- 81 or/66-80 (10499257)
- 82 39 and 81 [OBSERVATIONAL STUDIES] (39698)
- 46 or 65 or 82 [RCTs, nRCTs, OBSERVATIONAL STUDIES, 2014-PRESENT] (47568)
- 84 exp Mass Screening/ae [Adverse Effects] (1118)
- 85 exp Mass Screening/mo [Mortality] (85)
- 86 "Early Detection of Cancer"/ae [Adverse Effects] (361)
- 87 "Early Detection of Cancer"/mo [Mortality] (99)
- 88 exp Mammography/ae [Adverse Effects] (965)
- 89 exp Mammography/mo [Mortality] (26)
- 90 exp Diagnostic Errors/ (256455)
- 91 exp Neoplasms, Radiation-Induced/ (22415)
- 92 Mortality/ (1016691)
- 93 ((avoid* or declin* or decreas* or lessen* or lower* or prevent* or reduc*) adj5 (death* or fatal* or morbidit* or mortalit*)).tw,kw,kf. (748202)
- 94 ((avoid* or declin* or decreas* or lessen* or lower* or prevent* or reduc*) adj5 (advanced stage? or (advanc* adj3 cancer?) or biopsy or biopsies or chemotherap* or chemo-therap* or disfigur* or exacerbat* or incidental finding? or progress* stage? or progression* or late? stage? or stage? III or stage? 3 or stage? IV or stage? 4)).tw,kw,kf. (282238)
- 95 ((avoid* or declin* or decreas* or lessen* or lower* or prevent* or reduc*) adj5 (adverse* or harm* or impair* or injur* or invasiv* or side-effect* or sideeffect* or undesirabl* or un-desirabl*)).tw,kw,kf. (718080)
- 96 ((avoid* or declin* or decreas* or lessen* or lower* or prevent* or reduc*) adj5 (alarm* or anxiet* or anxious* or distress* or emotion* or feeling* or psycholog* or uncertain* or un-certain*)).tw,kw,kf. (242773)
- 97 (misdiagnos* or mis-diagnos* or misdetect* or mis-detect* or misidentif* or mis-identif*).tw,kw,kf. (124301)
- 98 (miss\$3 adj3 (detect* or diagnos* or identif*)).tw,kw,kf. (34711)
- 99 ((undetected or un-detected or ("not" adj3 detect*) or undiagnos* or un-diagnos* or ("not" adj3 diagnos*) or unidentif* or un-identif* or ("not" adj3 identif*)) adj3 (cancer* or carcinoid* or carcinoma* or carcinogen* or adenocarcinoma* or adeno-carcinoma* or lump or lumps or malignan* or neoplasia* or neoplasm* or sarcoma* or tumour* or tumor*)).tw,kw,kf. (21197)
- 100 (overdiagnos* or over diagnos*).tw,kw,kf. (17948)
- 101 (false adj (negative* or positive*)).tw,kw,kf. (223512)
- 102 ((error* or false\$2 or wrong\$3) adj3 (alarm* or detect* or diagnos*)).tw,kw,kf. (71561)
- 103 exp Medical Overuse/ (23414)
- 104 overtreat*.tw,kw,kf. (17805)
- 105 ((medical or health service? or procedur* or therap* or treatment*) adj3 (overuse? or overusing or overutilis* or overutiliz*)).tw,kw,kf. (2405)

106 ((inappropriate* or unnecessar*) adj3 (followup or follow-up or health care or healthcare or procedur* or therap* or treatment*)).tw,kw,kf. (44277)

107 (inappropriate* or unnecessar* or safe or adverse or adversely or undesirabl* or un-desirabl* or unintend* or un-intend* or unintent* or unsafe* or unsafe* or unwanted or un-wanted or harm* or injurious* or risk or risks or side-effect* or sideeffect* or reaction* or complication*).ti,kw,kf. (3614192)

108 ((adverse* or undesirabl* or un-desirabl* or unintend* or un-intend* or unintent* or un-intent* or unwanted or un-wanted or harm* or toxic or injurious* or serious* or fatal) adj5 (affect or affected or affecting or affects or consequence* or effect* or reacts or reacted or reacting or reaction* or side-effect* or sideeffect* or event* or outcome* or incident*)).tw,kw,kf. (2394363)

109 ((adverse* or inappropriat* or unnecessar* or undesirabl* or un-desirabl* or unintend* or un-intend* or unintent* or un-intent* or unwanted or un-wanted or injurious* or serious*) adj5 (alarm* or anxiet* or anxious* or distress* or emotion* or feeling* or psycholog* or uncertain* or uncertain*)).tw,kw,kf. (34213)

- 110 exp Neoplasm Metastasis/ and (avoid* or declin* or decreas* or lessen* or lower* or prevent* or reduc*).ti. (16969)
- 111 (benefit* or beneficial*).ti,kw,kf. (244174)
- 112 or/84-111 [BENEFITS/HARMS] (8596924)

113 83 and 112 [nRCTs, OBSERVATIONAL STUDIES, 2014-PRESENT - BENEFITS AND HARMS] (15099)

- 114 113 use medall [MEDLINE RECORDS] (5656)
- 115 exp breast cancer/ (942993)

116 ((breast* or mamma or mammar*) adj3 (cancer* or carcinoid* or carcinoma* or carcinogen* or adenocarcinoma* or adeno-carcinoma* or malignan* or neoplasia* or neoplasm* or sarcoma* or tumour* or tumor*)).ti,kw,kf. (753136)

- 117 intraductal carcinoma*.ti,kw,kf. (1516)
- 118 (ductal carcinoma in situ or DCIS).ti,kw,kf. (10454)
- 119 or/115-118 [BREAST CANCER] (1108734)
- 120 exp breast cancer/di, pc [diagnosis, prevention] (123365)
- 121 mass screening/ or cancer screening/ (311545)
- 122 screen*.ti,kw,kf. (621693)
- 123 early cancer diagnosis/ (13353)
- 124 ((early or earlier or earliest) adj3 (detect* or diagnos* or identif* or recogni*)).ti,kw,kf. (116845)
- 125 exp mammography/ (103519)
- 126 (mammograph* or mammogram*).ti,kw,kf. (46531)
- 127 breast magnetic resonance imaging/ (614)

128 (fMRI or fMRIs or MRI or MRIs or NMRI or NMRIs or MR imaging or NMR imaging or magnetic resonance imag* or magnetic resonance tomograph* or MR tomograph*).ti,kw,kf. (630153)

- 129 (chemical shift imaging or proton spin tomograph* or zeugmatograph*).ti,kw,kf. (1194)
- 130 (ultrasound* or ultrason* or echograph* or echotomograph* or echo-tomograph* or sonograph*).ti,kw,kf. (603624)
- 131 (echomammogra* or echo-mammogra*).ti,kw,kf. (73)
- 132 three-dimensional imaging/ (197470)
- 133 ((3D or "3-D") adj3 imag*).ti,kw,kf. (14230)
- 134 (("3" or three) adj dimension* adj3 imag*).ti,kw,kf. (13339)
- 135 tomosynthes*.ti,kw,kf. (4357)
- 136 or/120-135 [SCREENING] (2375020)
- 137 119 and 136 [BREAST CANCER SCREENING] (204028)
- 138 male/ not female/ (6570826)

- 139 137 not 138 [MALE-ONLY REMOVED] (201333)
- 140 exp adolescent/ not exp adult/ (1432463)
- 141 exp child/ not exp adult/ (4012787)
- 142 or/140-141 (4551929)
- 143 139 not 142 [CHILD-ONLY REMOVED] (200552)
- 144 (exp animal/ or exp animal experimentation/ or exp animal model/ or exp animal experiment/ or nonhuman/ or exp vertebrate/) not (exp human/ or exp human experimentation/ or exp human experiment/) (13235119)
- 145 143 not 144 [ANIMAL-ONLY REMOVED] (197599)
- 146 editorial.pt. or (letter.pt. not randomized controlled trial/) (3978550)
- 147 conference abstract.pt. (4813001)
- 148 145 not (146 or 147) [OPINION PIECES, CONFERENCE ABSTRACTS REMOVED] (175534)
- 149 (case report/ or exp case study/) not randomized controlled trial/ (5444300)
- 150 (case adj (series or study or studies or report or reports)).ti. (955591)
- 151 148 not (149 or 150) [CASE STUDIES/SERIES REMOVED] (160868)
- 152 limit 151 to yr="2014-current" [DATE LIMITS APPLICABLE TO OBSERVATIONAL STUDY SEARCH] (67507)
- 153 exp randomized controlled trial/ or controlled clinical trial/ (1716372)
- 154 clinical trial/ (1656994)
- 155 exp "controlled clinical trial (topic)"/ (274165)
- 156 (randomi#ed or randomi#ation? or randomly or RCT? or placebo*).ti,kw,kf. (1511469)
- 157 ((singl* or doubl* or trebl* or tripl*) adj (mask* or blind* or dumm*)).ti,kw,kf. (323173)
- 158 trial.ti. (1110226)
- 159 or/153-158 (4044688)
- 160 152 and 159 [RCTs] (5131)
- 161 controlled clinical trial/ (582481)
- 162 "controlled clinical trial (topic)"/ (14151)
- 163 (control* adj2 trial).ti,kw,kf. (875614)
- 164 (nonrandom* or non-random* or quasi-random* or quasi-experiment*).ti,kw,kf. (25241)
- 165 (nRCT or non-RCT).ti,kw,kf. (23)
- 166 (control* adj3 ("before and after" or "before after")).ti,kw,kf. (872)
- 167 time series analysis/ (38799)
- 168 time series.ti,kw,kf. (26963)
- 169 pretest posttest control group design/ (707)
- 170 (pre- adj5 post-).ti,kw,kf. (19926)
- 171 ((pretest adj5 posttest) or (pre-test adj5 post-test)).ti,kw,kf. (7574)
- 172 controlled study/ (10136653)
- 173 (control* adj2 study).ti,kw,kf. (688045)
- 174 control group/ (130398)
- 175 (control* adj2 group?).ti,kw,kf. (27359)
- 176 trial.ti. (1110226)
- 177 or/155-170 (4151332)
- 178 152 and 177 [nRCTs] (5316)
- 179 cohort analysis/ (1389236)

- 180 cohort?.ti,kw,kf. (472993)
- 181 retrospective study/ (2627466)
- 182 longitudinal study/ (363170)
- 183 prospective study/ (1559366)
- 184 (longitudinal or prospective or retrospective).ti,kw,kf. (1067953)
- 185 follow up/ (2132289)
- 186 ((followup or follow-up) adj (study or studies)).ti,kw,kf. (62193)
- 187 observational study/ (480181)
- 188 (observation\$2 adj (study or studies)).ti,kw,kf. (102330)
- 189 population research/ (134718)
- 190 ((population or population-based) adj (study or studies or analys#s)).ti,kw,kf. (22545)
- 191 ((multidimensional or multi-dimensional) adj (study or studies)).ti,kw,kf. (139)
- 192 exp comparative study/ (3627289)
- 193 ((comparative or comparison) adj (study or studies)).ti,kw,kf. (223839)
- 194 exp case control study/ (1677569)
- 195 ((case-control* or case-based or case-comparison or case-compeer or case-referrent or case-referent) adj3 (study or studies)).ti,kw,kf. (107167)
- 196 major clinical study/ (5118942)
- 197 multicenter study/ (725450)
- 198 ((multicenter or multi-center or multicentre or multi-centre) adj (study or studies)).ti,kw,kf. (127846)
- 199 or/179-198 (13854212)
- 200 152 and 199 [OBSERVATIONAL STUDIES] (32240)
- 201 160 or 178 or 200 [RCTs, nRCTs, OBSERVATIONAL STUDIES, 2014-PRESENT] (34489)
- 202 mass screening/ae [adverse drug reaction] (971)
- 203 exp mammography/ae [adverse drug reaction] (965)
- 204 exp diagnostic error/ (256455)
- 205 mortality/ (1016691)
- 206 cancer mortality/ (108053)
- 207 exp radiation induced neoplasm/ (22415)

208 ((avoid* or declin* or decreas* or lessen* or lower* or prevent* or reduc*) adj5 (death* or fatal* or morbidit* or mortalit*)).ti,kw,kf. (51730) 209 ((avoid* or declin* or decreas* or lessen* or lower* or prevent* or reduc*) adj5 (advanced stage? or (advanc* adj3 cancer?) or biopsy or biopsies or chemotherap* or chemo-therap* or disfigur* or exacerbat* or incidental finding? or progress* stage? or progression* or late? stage? or stage? III or stage? 3 or stage? IV or stage? 4)).ti,kw,kf. (24097)

210 ((avoid* or declin* or decreas* or lessen* or lower* or prevent* or reduc*) adj5 (adverse* or harm* or impair* or injur* or invasiv* or sideeffect* or sideeffect* or undesirabl* or un-desirabl*)).ti,kw,kf. (89663)

211 ((avoid* or declin* or decreas* or lessen* or lower* or prevent* or reduc*) adj5 (alarm* or anxiet* or anxious* or distress* or emotion* or feeling* or psycholog* or uncertain* or un-certain*)).ti,kw,kf. (22890)

- 212 (misdiagnos* or mis-diagnos* or misdetect* or mis-detect* or misidentif* or mis-identif*).ti,kw,kf. (18034)
- 213 (miss\$3 adj3 (detect* or diagnos* or identif*)).ti,kw,kf. (4039)

214 ((undetected or un-detected or ("not" adj3 detect*) or undiagnos* or un-diagnos* or ("not" adj3 diagnos*) or unidentif* or un-identif* or ("not" adj3 identif*)) adj3 (cancer* or carcinoid* or carcinoma* or carcinogen* or adenocarcinoma* or adeno-carcinoma* or lump or lumps or malignan* or neoplasia* or neoplasm* or sarcoma* or tumour* or tumor*)).ti,kw,kf. (1185)

215 (overdiagnos* or over diagnos*).ti,kw,kf. (4106)

216 (false adj (negative* or positive*)).ti,kw,kf. (21412)

217 ((error* or false\$2 or wrong\$3) adj3 (alarm* or detect* or diagnos*)).ti,kw,kf. (13968)

218 exp medical overuse/ (23414)

219 overtreat*.ti,kw,kf. (2587)

220 ((medical or health service? or procedur* or therap* or treatment*) adj3 (overuse? or overusing or overutilis* or overutiliz*)).ti,kw,kf. (815)

221 ((inappropriate* or unnecessar*) adj3 (followup or follow-up or health care or healthcare or procedur* or therap* or treatment*)).ti,kw,kf. (2472)

222 (inappropriate* or unnecessar* or safe or adverse or adversely or undesirabl* or un-desirabl* or unintend* or un-intend* or unintent* or un-intent* or unsafe* or un-safe* or unwanted or un-wanted or harm* or injurious* or risk or risks or side-effect* or sideeffect* or reaction* or complication*).ti,kw,kf. (3614192)

223 ((adverse* or undesirabl* or un-desirabl* or unintend* or un-intend* or unintent* or un-intent* or unwanted or un-wanted or harm* or toxic or injurious* or serious* or fatal) adj5 (affect or affected or affecting or affects or consequence* or effect* or reacts or reacted or reacting or reaction* or side-effect* or sideeffect* or event* or outcome* or incident*)).ti,kw,kf. (300180)

224 ((adverse* or inappropriat* or unnecessar* or undesirabl* or un-desirabl* or unintend* or un-intend* or unintent* or un-intent* or unwanted or un-wanted or injurious* or serious*) adj5 (alarm* or anxiet* or anxious* or distress* or emotion* or feeling* or psycholog* or uncertain* or uncertain*)).ti,kw,kf. (3394)

exp metastasis/ and (avoid* or declin* or decreas* or lessen* or lower* or prevent* or reduc*).ti. (16969)

226 (benefit* or beneficial*).ti,kw,kf. (244174)

227 or/202-226 [BENEFITS/HARMS] (5283049)

228 201 and 227 [RCTs, nRCTs, OBSERVATIONAL STUDIES, 2014-PRESENT - BENEFITS AND HARMS] (7917)

229 228 use emczd [EMBASE RECORDS] (5434)

230 exp Breast Neoplasms/ (1031502)

231 ((breast* or mamma or mammar*) adj3 (cancer* or carcinoid* or carcinoma* or carcinogen* or adenocarcinoma* or adeno-carcinoma* or malignan* or neoplasia* or neoplasm* or sarcoma* or tumour* or tumor*)).ti,ab,kw. (1079601)

- exp Carcinoma, Intraductal, Noninfiltrating/ (13607)
- 233 intraductal carcinoma*.ti,ab,kw. (3376)
- 234 (ductal carcinoma in situ or DCIS).ti,ab,kw. (26006)
- 235 or/230-234 [BREAST CANCER] (1303998)
- 236 exp Breast Neoplasms/di, pc (142043)
- 237 exp Mass Screening/ (464018)
- 238 screen*.ti,ab,kw. (2457803)
- 239 "Early Detection of Cancer"/ (51154)
- 240 ((early or earlier or earliest) adj3 (detect* or diagnos* or identif* or recogni*)).ti,ab,kw. (849461)
- 241 exp Breast Neoplasms/dg [diagnostic imaging] (28712)
- 242 exp Mammography/ (103519)
- 243 (mammograph* or mammogram*).ti,ab,kw. (90191)
- 244 exp Magnetic Resonance Imaging/ (1784668)

245 (fMRI or fMRIs or MRI or MRIs or NMRI or NMRIs or MR imaging or NMR imaging or magnetic resonance imag* or magnetic resonance tomograph* or MR tomograph*).ti,ab,kw. (1421280)

- 246 (chemical shift imaging or proton spin tomograph* or zeugmatograph*).ti,ab,kw. (2696)
- 247 (ultrasound* or ultrason* or echograph* or echotomograph* or echo-tomograph* or sonograph*).ti,ab,kw. (1295110)

- 248 (echomammogra* or echo-mammogra*).ti,ab,kw. (95)
- 249 Imaging, Three-Dimensional/ (183178)
- 250 ((3D or "3-D") adj3 imag*).ti,ab,kw. (68464)
- 251 (("3" or three) adj dimension* adj3 imag*).ti,ab,kw. (44442)
- 252 tomosynthes*.ti,ab,kw. (5513)
- 253 or/236-252 [SCREENING] (6654665)
- 254 235 and 253 [BREAST CANCER SCREENING] (325365)
- exp Infant/ not (exp Adult/ and exp Infant/) (1984574)
- exp Child/ not (exp Adult/ and exp Child/) (4012787)
- 257 Adolescent/ not (exp Adult/ and Adolescent/) (1432274)
- 258 or/255-257 (5072306)
- 259 254 not 258 [CHILD-ONLY REMOVED] (323374)
- 260 conference proceeding.pt. (222693)
- 261 259 not 260 [CONFERENCE ABSTRACTS REMOVED] (322140)
- 262 limit 261 to yr="2014-current" (148543)
- 263 exp Mass Screening/ae [Adverse Effects] (1118)
- 264 exp Mass Screening/mo [Mortality] (85)
- 265 "Early Detection of Cancer"/ae [Adverse Effects] (361)
- 266 "Early Detection of Cancer"/mo [Mortality] (99)
- 267 exp Mammography/ae [Adverse Effects] (965)
- 268 exp Mammography/mo [Mortality] (26)
- 269 exp Diagnostic Errors/ (256455)
- 270 exp Neoplasms, Radiation-Induced/ (22415)
- 271 Mortality/ (1016691)

272 ((avoid* or declin* or decreas* or lessen* or lower* or prevent* or reduc*) adj5 (death* or fatal* or morbidit* or mortalit*)).ti,ab,kw. (747649)

273 ((avoid* or declin* or decreas* or lessen* or lower* or prevent* or reduc*) adj5 (advanced stage? or (advanc* adj3 cancer?) or biopsy or biopsies or chemotherap* or chemo-therap* or disfigur* or exacerbat* or incidental finding? or progress* stage? or progression* or late? stage? or stage? III or stage? 3 or stage? IV or stage? 4)).ti,ab,kw. (282054)

274 ((avoid* or declin* or decreas* or lessen* or lower* or prevent* or reduc*) adj5 (adverse* or harm* or impair* or injur* or invasiv* or sideeffect* or sideeffect* or undesirabl* or un-desirabl*)).ti,ab,kw. (712155)

275 ((avoid* or declin* or decreas* or lessen* or lower* or prevent* or reduc*) adj5 (alarm* or anxiet* or anxious* or distress* or emotion* or feeling* or psycholog* or uncertain* or un-certain*)).ti,ab,kw. (242462)

- 276 (misdiagnos* or mis-diagnos* or misdetect* or mis-detect* or misidentif* or mis-identif*).ti,ab,kw. (124214)
- 277 (miss\$3 adj3 (detect* or diagnos* or identif*)).ti,ab,kw. (34526)

278 ((undetected or un-detected or ("not" adj3 detect*) or undiagnos* or un-diagnos* or ("not" adj3 diagnos*) or unidentif* or un-identif* or ("not" adj3 identif*)) adj3 (cancer* or carcinoid* or carcinoma* or carcinogen* or adenocarcinoma* or adeno-carcinoma* or lump or lumps or malignan* or neoplasia* or neoplasm* or sarcoma* or tumour* or tumor*)).ti,ab,kw. (21184)

- 279 (overdiagnos* or over diagnos*).ti,ab,kw. (17939)
- 280 (false adj (negative* or positive*)).ti,ab,kw. (222230)
- 281 ((error* or false\$2 or wrong\$3) adj3 (alarm* or detect* or diagnos*)).ti,ab,kw. (69859)
- 282 exp Medical Overuse/ (23414)
- 283 overtreat*.tw,kw,kf. (17805)

284 ((medical or health service? or procedur* or therap* or treatment*) adj3 (overuse? or overusing or overutilis* or overutiliz*)).ti,ab,kw. (2132)

((inappropriate* or unnecessar*) adj3 (followup or follow-up or health care or healthcare or procedur* or therap* or treatment*)).ti,ab,kw. (44061)

286 (inappropriate* or unnecessar* or safe or adverse or adversely or undesirabl* or un-desirabl* or unintend* or un-intend* or unintent* or unsafe* or un-safe* or unwanted or un-wanted or harm* or injurious* or risk or risks or side-effect* or sideeffect* or reaction* or complication*).ti. (2809297)

287 ((adverse* or undesirabl* or un-desirabl* or unintend* or un-intend* or unintent* or un-intent* or unwanted or un-wanted or harm* or toxic or injurious* or serious* or fatal) adj5 (affect or affected or affecting or affects or consequence* or effect* or react or reacts or reacted or reacting or reaction* or side-effect* or sideeffect* or event* or outcome* or incident*)).ti,ab,kw. (2352653)

288 ((adverse* or inappropriat* or unnecessar* or undesirabl* or un-desirabl* or unintend* or un-intend* or unintent* or un-intent* or unwanted or un-wanted or injurious* or serious*) adj5 (alarm* or anxiet* or anxious* or distress* or emotion* or feeling* or psycholog* or uncertain* or uncertain*)).ti,ab,kw. (34102)

289 exp Neoplasm Metastasis/ and (avoid* or declin* or decreas* or lessen* or lower* or prevent* or reduc*).ti. (16969)

- 290 (benefit* or beneficial*).ti,kw,kf. (244174)
- 291 or/263-290 [BENEFITS/HARMS] (7968699)
- 292 262 and 291 [BREAST CANCER SCREENING BENEFITS/HARMS 2014-PRESENT] (33482)
- 293 292 use cctr [CENTRAL RECORDS] (973)
- 294 114 or 229 or 293 [ALL DATABASES] (12063)
- 295 limit 294 to yr="2020-current" (5322)
- 296 remove duplicates from 295 (4277)
- 297 limit 294 to yr="2016-2019" (4658)
- remove duplicates from 297 (3772)
- 299 294 not (295 or 297) (2083)
- 300 remove duplicates from 299 (1684)
- 301 296 or 298 or 300 [TOTAL UNIQUE RECORDS] (9733)
- 302 301 use medall [MEDLINE UNIQUE RECORDS] (5635)
- 303 301 use emczd [EMBASE UNIQUE REORDS] (3503)
- 304 301 use cctr [CENTRAL UNIQUE REORDS] (595)

Appendix 3 – Completed PRESS assessment

Reference: McGowan J, Sampson M, Salzwedel DM, Cogo E, Foerster V, Lefebvre C. PRESS Peer Review of Electronic Search Strategies: 2015 guideline statement. *J Clin Epidemiol* 2016;75:40-6. Available: <u>http://www.jclinepi.com/article/S0895-4356(16)00058-5/pdf</u>.

Search submission: This section to be filled in by the searcher

Searcher: Becky Skidmore	Email:	becky.skidmore.rls@gmail.com
Date submitted: 2023 Jul 5	Date rec	quested by: 2023 Jul 7

1. Systematic Review Title

Screening for breast cancer: An evidence review to inform the update the Canadian Task Force on Preventive Health Care guideline

2. This search strategy is ...

Х	My PRIMARY (core) database strategy — First time submitting a strategy for search question and database
	My PRIMARY (core) strategy — Follow-up review NOT the first time submitting a strategy for search question and database. If this is a response to peer review, itemize the changes made to the review suggestions
	SECONDARY search strategy— First time submitting a strategy for search question and database
	SECONDARY search strategy — NOT the first time submitting a strategy for search question and database. If this is a response to peer review, itemize the changes made to the review suggestions

3. Database (e.g., MEDLINE, CINAHL)

MEDLINE

4. Interface (e.g., Ovid, EbscoHost...)

Ovid

5. Research Question (Describe the purpose of the search)	[mandatory]
---	-------------

This evidence review aims to address the following three key questions (KQs):

- 1. a) What are the benefits and harms of different mammography-based screening strategies compared to no screening in adults greater than 40 years of age and not at high risk for breast cancer?
 - b) Do the benefits and harms differ by population characteristics and risk markers (e.g., age, breast density, race/ethnicity, family history)?
- 2. a) What are the comparative benefits and harms of different mammography-based breast cancer screening strategies in adults greater than 40 years of age and not at high risk for breast cancer?

b) Do the comparative benefits and harms differ by population characteristics and risk markers (e.g., age, breast density, race/ethnicity, family history)?

- 3. How do patients weigh the benefits and harms of breast cancer screening?
- 6. PICO Format Outline the PICOs for your question i.e., <u>Patient</u>, Intervention, <u>Comparison</u>, <u>Outcome</u>, and <u>Study Design</u> as applicable

Р	Adults with female sex-specific breast tissue aged ≥40 years of age and not at high-risk for breast cancer
	 Specific populations (using within and between-study data where able): Age (40-44 years, 45-49 years, 50-69 years, 70-74 years, 75 and older) Ethnicity, especially Indigenous and Black populations Socioeconomic status Geographical location (rural vs. urban settings) Breast density (i.e., extremely [e.g., BIRADS category D] vs not extremely dense breasts; other comparisons
17	Adults with female sex-specific breast tissue aged ≥40 years of age and not at high-risk for
Exposur	breast cancer
е	
	Specific populations (using within and between-study data where able):
	• Age (40-44 years, 45-49 years, 50-69 years, 70-74 years, 75 and older)
	Ethnicity, especially Indigenous and Black populations
	Socioeconomic status
L	

	Geographical location (rural vs. urban settings)
	• Breast density (i.e., extremely [e.g., BIRADS category D] vs not extremely dense breasts;
	other comparisons.
С	
ο	Benefits (reductions)
	1. Breast cancer mortality
	2. All-cause mortality
	3. Advanced-stage disease (stage III/IV) (including one of (hierarchy): stage III + IV
	disease; size ≥50 mm, 4+ positive lymph nodes)
	4. Stage II or higher (including one of (hierarchy): Stage II+, size ≥20 mm, 1+ positive
	lympn node)
	5. Treatment-related morbidity (i.e. invasiveness of treatment e.g., less invasive
	6 Breast cancer morbidity (e.g., adverse effects of treatment, physical/functional
	impairment)
	7 Detection of invasive cancer
	Harms (7-14 are proportions/# with 1+)
	8. Overdiagnoses ^c
	9. Detection of DCIS (cumulative)
	10. False-positive screens (single round)
	12. Bionsies on false positives ^d (single round
	13. Bionsies on false positives (single round 13. Bionsies on false positives (cumulative over multiple rounds)
	14 Interval cancers (includes ENs and clinically detected CAs before next screen or time
	equivalent)
	15. False negatives
	16. Incidental findings (if using MRI or ultrasound)
	5 (5)
S	All outcomes
	1. Randomized controlled trials, including cluster
	2. Non/quasi-randomized controlled trials
	3. Prospective or retrospective observational studies of large screening cohorts with a
	concurrent control group (including controlled before-after studies) (i.e., all having
	exposure data at the individual level and linked with outcomes)
	4. If reporting data specific to key demographic groups (i.e., 40-49 and/or /0+
	at participant level, over multiple years), time transformer and before after studies
	at participant level, over multiple years), time trend/series and before-after studies

7. Inclusion Criteria (List criteria such as age groups, study designs, etc., to be included) [optional]

2014 – present

9. Exclusion Criteria (List criteria such as study designs, date limits, etc., to be excluded)

10. Was a search filter applied? Yes

If YES, which one(s) (e.g., Cochrane RCT filter, PubMed Clinical Queries filter)? Provide the source if this is a published filter. [mandatory if YES to previous question — textbox]

Cochrane HSSS, 2008 – sensitivity and specificity-maximizing version with slight adjustments Other design filters derived from CADTH's

11. Notes or comments you feel would be useful for the peer reviewer [optional]

Limited time available for this review so important to contain volume where possible. We are including accepted design filters and overlaying this with the outcomes/benefits/harms of interest.

Team has noted they do not want male-only population removed.

Not interested in breast self-examination or physical examination unless included as part of mammography screening.

12. Please copy and paste your search strategy here, exactly as run, including the number of hits per line. [mandatory]

Database: Ovid MEDLINE(R) ALL <1946 to July 03, 2023> Search Strategy:

1 exp Breast Neoplasms/ (341966)

2 ((breast* or mamma or mammar*) adj3 (cancer* or carcinoid* or carcinoma* or carcinogen* or adenocarcinoma* or adeno-carcinoma* or malignan* or neoplasia* or neoplasm* or sarcoma* or tumour* or tumor*)).tw,kw,kf. (424125)

- 3 exp Carcinoma, Intraductal, Noninfiltrating/ (11207)
- 4 intraductal carcinoma*.tw,kw,kf. (1194)
- 5 (ductal carcinoma in situ or DCIS).tw,kw,kf. (9201)
- 6 or/1-5 [BREAST CANCER] (488694)
- 7 exp Breast Neoplasms/di, pc (52815)
- 8 exp Mass Screening/ (143920)
- 9 screen*.tw,kw,kf. (972801)
- 10 "Early Detection of Cancer"/ (37565)
- 11 ((early or earlier or earliest) adj3 (detect* or diagnos* or identif* or recogni*)).tw,kw,kf. (333269)
- 12 exp Breast Neoplasms/dg [diagnostic imaging] (28678)
- 13 exp Mammography/ (33286)
- 14 (mammograph* or mammogram*).tw,kw,kf. (36841)
- 15 exp Magnetic Resonance Imaging/ (533234)

16 (fMRI or fMRIs or MRI or MRIs or NMRI or NMRIs or MR imaging or NMR imaging or magnetic resonance imag* or magnetic resonance tomograph* or MR tomograph*).tw,kw,kf. (543225)

- 17 (chemical shift imaging or proton spin tomograph* or zeugmatograph*).tw,kw,kf. (1175)
- 18 (ultrasound* or ultrason* or echograph* or echotomograph* or echo-tomograph* or sonograph*).tw,kw,kf. (498623)
- 19 (echomammogra* or echo-mammogra*).tw,kw,kf. (11)
- 20 Imaging, Three-Dimensional/ (81241)
- 21 ((3D or "3-D") adj3 imag*).tw,kw,kf. (28379)
- 22 (("3" or three) adj dimension* adj3 imag*).tw,kw,kf. (21005)
- 23 tomosynthes*.tw,kw,kf. (2309)
- 24 or/7-23 [**SCREENING**] (2536319)
- 25 6 and 24 [BREAST CANCER SCREENING] (122336)
- 26 exp Infant/ not (exp Adult/ and exp Infant/) (920674)
- 27 exp Child/ not (exp Adult/ and exp Child/) (1389724)
- 28 Adolescent/ not (exp Adult/ and Adolescent/) (685754)
- 29 or/26-28 (2138455)
- 30 25 not 29 [CHILD-ONLY REMOVED] (121693)
- 31 exp Animals/ not (exp Animals/ and Humans/) (5135938)
- 32 30 not 31 [ANIMAL-ONLY REMOVED] (120206)
- 33 (comment or editorial or news or newspaper article).pt. (1682535)
- 34 (letter not (letter and randomized controlled trial)).pt. (1215441)
- 35 32 not (33 or 34) [OPINION PIECES REMOVED] (112557)
- 36 Case Reports.pt. (2344054)
- 37 (case adj (series or study or studies or report or reports)).ti. (413284)
- 38 35 not (36 or 37) [CASE STUDIES/SERIES REMOVED] (102565)
- 39 limit 38 to yr="2014-current" (45629)
- 40 (controlled clinical trial or randomized controlled trial or pragmatic clinical trial).pt. (687391)
- 41 clinical trials as topic.sh. (201056)
- 42 (randomi#ed or randomly or RCT\$1 or placebo*).tw. (1203771)
- 43 ((singl* or doubl* or trebl* or tripl*) adj (mask* or blind* or dumm*)).tw. (197998)
- 44 trial.ti. (288296)
- 45 or/40-44 (1610578)
- 46 39 and 45 [**RCTs**] (3124)
- 47 controlled clinical trial.pt. (95352)
- 48 Controlled Clinical Trial/ or Controlled Clinical Trials as Topic/ (100965)
- 49 (control* adj2 trial).tw,kw,kf. (211810)
- 50 Non-Randomized Controlled Trials as Topic/ (1062)
- 51 (nonrandom* or non-random* or quasi-random* or quasi-experiment*).tw,kw,kf. (73381)
- 52 (nRCT or non-RCT).tw,kw,kf. (526)
- 53 Controlled Before-After Studies/ (727)
- 54 (control* adj3 ("before and after" or "before after")).tw,kw,kf. (5290)
- 55 Interrupted Time Series Analysis/ (1857)
- 56 time series.tw,kw,kf. (45941)
- 57 (pre- adj5 post-).tw,kw,kf. (130195)
- 58 ((pretest adj5 posttest) or (pre-test adj5 post-test)).tw,kw,kf. (11719)

- 59 Historically Controlled Study/ (227)
- 60 (control* adj2 study).tw,kw,kf. (210670)
- 61 Control Groups/ (1970)
- 62 (control* adj2 group?).tw,kw,kf. (623533)
- 63 trial.ti. (288296)
- 64 or/47-63 (1385115)
- 65 39 and 64 [**nRCTs**] (3280)
- 66 exp Cohort Studies/ (2497201)
- 67 cohort?.tw,kw,kf. (859912)
- 68 Retrospective Studies/ (1128310)
- 69 (longitudinal or prospective or retrospective).tw,kw,kf. (1686220)
- 70 ((followup or follow-up) adj (study or studies)).tw,kw,kf. (58993)
- 71 Observational study.pt. (143540)
- 72 (observation\$2 adj (study or studies)).tw,kw,kf. (164751)
- 73 ((population or population-based) adj (study or studies or analys#s)).tw,kw,kf. (27804)
- 74 ((multidimensional or multi-dimensional) adj (study or studies)).tw,kw,kf. (151)
- 75 Comparative Study.pt. (1912761)
- 76 ((comparative or comparison) adj (study or studies)).tw,kw,kf. (134460)
- 77 exp Case-Control Studies/ (1427076)
- 78 ((case-control* or case-based or case-comparison or case-compeer or case-referrent or case-referent) adj3 (study or studies)).tw,kw,kf.
- (141417)
- 79 Multicenter Study.pt. (335485)
- 80 ((multicenter or multi-center or multicentre or multi-centre) adj (study or studies)).tw,kw,kf. (55453)
- 81 or/66-80 (5424225)
- 82 39 and 81 [OBSERVATIONAL STUDIES] (16409)
- 46 or 65 or 82 [RCTs, nRCTs, OBSERVATIONAL STUDIES, 2014-PRESENT] (18655)
- 84 exp Mass Screening/ae [Adverse Effects] (928)
- 85 exp Mass Screening/mo [Mortality] (85)
- 86 "Early Detection of Cancer"/ae [Adverse Effects] (361)
- 87 "Early Detection of Cancer"/mo [Mortality] (99)
- 88 exp Mammography/ae [Adverse Effects] (737)
- 89 exp Mammography/mo [Mortality] (26)
- 90 exp Diagnostic Errors/ (122510)
- 91 exp Neoplasms, Radiation-Induced/ (19503)
- 92 Mortality/ (49412)
- 93 ((avoid* or declin* or decreas* or lessen* or lower* or reduc*) adj5 (death* or fatal* or morbidit* or mortalit*)).tw,kw,kf. (246706)

94 ((avoid* or declin* or decreas* or lessen* or lower* or reduc*) adj5 (advanced stage? or (advanc* adj3 cancer?) or biopsy or biopsies or chemotherap* or chemo-therap* or disfigur* or exacerbat* or incidental finding? or progress* stage? or progression* or late? stage? or stage? III or stage? 3 or stage? IV or stage? 4)).tw,kw,kf. (70395)

95 ((avoid* or declin* or decreas* or lessen* or lower* or reduc*) adj5 (adverse* or harm* or impair* or injur* or invasiv* or undesirabl*)).tw,kw,kf. (193250)

96 ((avoid* or declin* or decreas* or lessen* or lower* or reduc*) adj5 (alarm* or anxiet* or anxious* or distress* or emotion* or feeling* or psycholog* or uncertaint*)).tw,kw,kf. (82382)

- 97 (misdiagnos* or mis-diagnos* or misdetect* or mis-detection or misidentif* or mis-identif*).tw,kw,kf. (50432)
- 98 (miss\$3 adj3 (detect* or diagnos* or identif*)).tw,kw,kf. (13278)

99 ((undetected or ("not" adj3 detect*) or undiagnos* or ("not" adj3 diagnos*) or unidentif* or ("not" adj3 identif*)) adj3 (cancer* or carcinoid* or carcinoma* or carcinogen* or adenocarcinoma* or adeno-carcinoma* or lump or lumps or malignan* or neoplasia* or neoplasm* or sarcoma* or tumour* or tumor*)).tw,kw,kf. (8200)

- 100 (overdiagnos* or over diagnos*).tw,kw,kf. (6837)
- 101 (false adj (negative* or positive*)).tw,kw,kf. (89775)
- 102 ((error* or false\$2 or wrong\$3) adj3 (alarm* or detect* or diagnos*)).tw,kw,kf. (28787)
- 103 exp Medical Overuse/ (14991)
- 104 overtreat*.tw,kw,kf. (6645)
- 105 ((medical or health service? or procedur* or therap* or treatment*) adj3 (overuse? or overusing or overutilis* or overutiliz*)).tw,kw,kf. (926)
- 106 ((inappropriate* or unnecessar*) adj3 (followup or follow-up or health care or healthcare or procedur* or therap* or treatment*)).tw,kw. (16431)

107 (inappropriate* or unnecessar* or safe or adverse or adversely or undesirabl* or unintend* or unintent* or unsafe* or unwanted or harm* or injurious* or risk or risks or reaction* or complication*).ti,kw,kf. (1398305)

108 ((adverse* or undesirabl* or unintend* or unintent* or unwanted or harm* or toxic or injurious* or serious* or fatal) adj5 (affect or affected or affecting or affects or consequence* or effect* or react or reacted or reacting or reaction* or event* or outcome* or incident*)).tw,kw,kf. (850371)

109 ((adverse* or inappropriat* or unnecessar* or undesirabl* or unintend* or unintent* or unwanted or injurious* or serious*) adj5 (alarm* or anxiet* or anxious* or distress* or emotion* or feeling* or psycholog* or uncertaint*)).tw,kw,kf. (12271)

- 110 (benefit* or beneficial*).ti,kw,kf. (95225)
- 111 or/84-110 [**BENEFITS/HARMS**] (2972927)

112 83 and 111 [nRCTs, OBSERVATIONAL STUDIES, 2014-PRESENT - BENEFITS AND HARMS] (5569)

Peer review assessment: this section to be filled in by the reviewer

viewer: Kaitryn Campbell Email: campbell.information.consulting@gmail.com Date completed: 6 Jul 2023

Do you wish to be acknowledged? (If yes, the review team will be advised to add an acknowledgement to any publications related to this work). Yes please.

The suggested acknowledgement is "We thank Kaitryn Campbell, MLIS, MSc for peer review of the Medline search strategy."

1. TRANSLATION

ANo revisions	Х
B Revision(s) suggested	
C Revision(s) required	

If "B" or "C," please provide an explanation or example:

2. BOOLEAN AND PROXIMITY OPERATORS

ANo revisions	Х
B Revision(s) suggested	1
C Revision(s) required	

If "B" or "C," please provide an explanation or example:

3. SUBJECT HEADINGS

ANo revisions	
B Revision(s) suggested	Х
C Revision(s) required	

If "B" or "C," please provide an explanation or example:

Line 37, consider doing same thing as you did with Line 34: (case reports not (case reports and randomized controlled trial)).pt., because Case Reports + RCT as publication types exist

For Benefits/Harms Concept, consider adding exp Neoplasm Metastasis/ with appropriate free text terms.

4. TEXT WORD SEARCHING

ANo revisions	
B Revision(s)suggested	Х
C Revision(s) required	

If "B" or "C," please provide an explanation or example:

As a synonym everywhere "harm" etc. appear, consider adding: side-effect* OR sideeffect*

Line 93-96, consider adding "prevent*" to (avoid* or declin* or decreas* or lessen* or lower* or reduc*)

Line 97, should "mis-detection" be "mis-detect"?

Lin 99, consider hyphenating all the following terms: undetected or undiagnos* or unidentif*

Line 104, consider hyphenating: overtreat*

Line 105, consider hyphenating all the following terms: overuse? or overusing or overutilis* or overutiliz*

Line 107, consider hyphenating all the following terms: undesirabl* or unintend* or unintent* or unsafe* or unwanted –also see lines 108 & 109 for all terms mentioned above and consider hyphenating

5. SPELLING, SYNTAX, AND LINE NUMBERS					
	ANo revisions	Х			
	B Revision(s)suggested				

C --- Revision(s) required If "B" or "C," please provide an explanation or example:

6. LIMITS AND FILTERS

ANo revisions	Х
B Revision(s) suggested	
C Revision(s) required	

If "B" or "C," please provide an explanation or example:

OVERALL EVALUATION (Note: If one or more "revision required" is noted above, the response below must be "revisions required".)

ANo revisions	
B Revision(s) suggested	Х
C Revision(s) required	

Additional comments:

Nicely done. I've made a number of minor comments for your consideration.

Appendix 4 – Portal submission

Date of submission	Link	Document name	KQ1 Decision	Notes e.g., reason for exclusion,
31-Jul-23	https://www.mdpi.com/1718- 7729/29/5/286	Marrying Story with Science: The Impact of Outdated and Inconsistent Breast Cancer Screening Practices in Canada	exclude	case report
31-Jul-23	https://pubmed.ncbi.nlm.nih.g ov/25274578/	Pan-Canadian study of mammography screening and mortality from breast cancer	include (duplicate)	NA
31-Jul-23	https://pubmed.ncbi.nlm.nih.g ov/34279132/	Breast Density and Risk of Interval Cancers: The Effect of Annual Versus Biennial Screening Mammography Policies in Canada	Exclude (not included in KQ2)	ineligible comparator, comparing annual versus biennial screening (KQ2: Biased selection into study groups)
31-Jul-23	https://pubmed.ncbi.nlm.nih.g ov/34134531/	The Added Value of Supplemental Breast Ultrasound Screening for Women With Dense Breasts: A Single Center Canadian Experience	Exclude (not included in KQ2)	retrospective review of screening program in women with dense breasts, no comparator group (KQ2 not in excluded study list but within-person comparison of US vs DM)
31-Jul-23	https://pubmed.ncbi.nlm.nih.g ov/26501844/	Breast Tumor Prognostic Characteristics and Biennial vs Annual Mammography, Age, and Menopausal Status	Exclude (included in KQ2)	ineligible comparator (comparing annual vs biennial)
31-Jul-23	pubmed.ncbi.nlm.nih.gov/341 34531/	The Added Value of Supplemental Breast Ultrasound Screening for Women With Dense Breasts: A Single Center Canadian Experience	duplicate	NA
31-Jul-23	https://pubmed.ncbi.nlm.nih.g ov/35258677/	Breast cancer screening in women with extremely dense breasts recommendations of the European Society of Breast Imaging (EUSOBI)	exclude	ineligible study design (not primary research)
31-Jul-23	https://pubmed.ncbi.nlm.nih.g ov/34812692/	The randomized trial of mammography screening that was not-A cautionary tale	exclude	ineligible study design, commentary
31-Jul-23	https://academic.oup.com/jbi/ article/4/2/108/6555324?login =false	The Fundamental Flaws of the CNBSS Trials: A Scientific Review	exclude	ineligible study design, scientific review
31-Jul-23	academic.oup.com/jbi/article/ 4/2/135/6555326?login=false	Errors in Conduct of the CNBSS Trials of Breast Cancer Screening Observed by Research Personnel	exclude	investigation of CNBSS trials, ineligible study design
31-Jul-23	academic.oup.com/jbi/article/ 4/2/135/6555326?login=false	Errors in Conduct of the CNBSS Trials of Breast Cancer Screening Observed by Research Personnel	duplicate	NA
31-Jul-23	https://pubmed.ncbi.nlm.nih.g ov/22972810/	Overdiagnosis in mammographic screening for breast cancer in Europe: a literature review	exclude	ineligible study design, literature review
31-Jul-23	https://pubmed.ncbi.nlm.nih.g ov/12518005/#:~:text=A%20s ignificant%2019%25%20redu ction%20in,0.97%3B%20p%3 D0.01)	All-cause mortality among breast cancer patients in a screening trial: support for breast cancer mortality as an end point	exclude	Results from Tabar study on the Swedish Two- County study on all-cause mortality already included (Nystrom 2002, Tabar 1989)
31-Jul-23	https://www.mdpi.com/1718- 7729/29Con/8/444	The Impact of Organised Screening Programs on Breast Cancer Stage at Diagnosis for Canadian Women Aged 40–49 and 50–59	New include	
31-Jul-23	https://pubmed.ncbi.nlm.nih.g ov/26676234/	Clinical outcomes of modelling mammography screening strategies	exclude	ineligible comparator

Date of submission	Link	Document name	KQ1 Decision	Notes e.g., reason for exclusion,
1-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/29987612/	The Impact of Screening Mammography on Treatment in Women Diagnosed with Breast Cancer	exclude	ineligible comparator
1-Aug-23	https://academic.oup.com/jbi/ article/1/3/161/5553855	Breast Cancer Screening: Beyond Mortality	exclude	ineligible study design
1-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/30411328/	The incidence of fatal breast cancer measures the increased effectiveness of therapy in women participating in mammography screening	exclude	ineligible comparator
1-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/30411328/	The incidence of fatal breast cancer measures the increased effectiveness of therapy in women participating in mammography screening	duplicate	NA
1-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/29267146/	Obligate Overdiagnosis Due to Mammographic Screening: A Direct Estimate for U.S. Women	exclude	ineligible study design (overdiagnosis rates in the US, may be useful)
1-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/36048585/	Addressing Misinformation About the Canadian Breast Screening Guidelines	exclude	ineligible study design (could be useful background)
1-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/8234686/	A critical appraisal of the Canadian National Breast Cancer Screening Study	exclude	ineligible study design
1-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/7842421/	The excess of patients with advanced breast cancer in young women screened with mammography in the Canadian National Breast Screening Study	New include	Quantitative evaluation of distribution of patients with BC with four or more positive lymph nodes in the CNBSS study, could provide additional info for CNBSS study for 40–49-year-olds. Percentages of patients with breast cancer who were at an advanced state at diagnosis in the NBSS and in previous randomized screening trials were compared.
1-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/8055437/	Statistical power in breast cancer screening trials and mortality reduction among women 40-49 years of age with particular emphasis on the National Breast Screening Study of Canada	exclude	ineligible study design - commentary
1-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/8372753/	The Canadian National Breast Screening Study: a Canadian critique	exclude	ineligible study design - commentary
1-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/8234686/	A critical appraisal of the Canadian National Breast Cancer Screening Study	duplicate	NA
1-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/8372752/	The Canadian National Breast Screening Study: a critical review	exclude	ineligible study design - microsimulation model
1-Aug-23	https://europepmc.org/article/ med/32058543	The Value of All-Cause Mortality as a Metric for Assessing Breast Cancer Screening	exclude	ineligible study design
1-Aug-23	https://academic.oup.com/jbi/ article/4/2/105/6539318	Randomized Controlled Mammography Screening Trials Revisited	exclude	ineligible study design - letter to the editor
1-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/32602400/	Women's Acceptance of Overdetection in Breast Cancer Screening: Can We Assess Harm-Benefit Tradeoffs?	exclude	ineligible study design, commentary
1-Aug-23	https://www.ncbi.nlm.nih.gov/ pmc/articles/PMC9221595/	How Did CNBSS Influence Guidelines for So Long and What Can That Teach Us?	exclude	ineligible study design, commentary

Date of submission	Link	Document name	KQ1 Decision	Notes e.g., reason for exclusion,
1-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/20882563/	Effectiveness of population-based service screening with mammography for women ages 40 to 49 years: evaluation of the Swedish Mammography Screening in Young Women (SCRY) cohort	exclude	ineligible comparator, compared invited and attended screening
1-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/25413699/	Insights from the breast cancer screening trials: how screening affects the natural history of breast cancer and implications for evaluating service screening programs	exclude	ineligible study design - systematic review (could use for advanced breast cancer outcomes)
1-Aug-23	https://www.ncbi.nlm.nih.gov/ pmc/articles/PMC6406216/?f bclid=IwAR08LiKJCIGMmkD ngQFx92zloaOr2MzRJjt7us5 h2CKdAfjny3vIkkVbKbo	Molecular breast imaging detected invasive lobular carcinoma in dense breasts: A case report	exclude	ineligible study design - case report
1-Aug-23	https://www.facingourrisk.org/ uploads/assets/press_release s/nccn-newptgls-bcscreen- final-embargoed- 62e1b7f6876c1.pdf?fbclid=lw AR38bvw_1aeFfx16QRMcF9 OOVxSvO6j18q7Hmi1rxXmA y-yF1KSFlpNuvq	NCCN Publishes New Patient Guidelines for Breast Cancer Screening and Diagnosis Emphasizing Annual Mammograms for All Average-Risk Women Over 40	exclude	ineligible study design - patient guideline publication announcement
1-Aug-23	https://ebm.bmj.com/content/ 27/5/253	Adapt or die - How the pandemic made the shift from EBM to EBM+ more urgent	exclude	ineligible study design - narrative review
1-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/34134531/	The Added Value of Supplemental Breast Ultrasound Screening for Women With Dense Breasts: A Single Center Canadian Experience	duplicate	
2-Aug-23	https://www.nejm.org/doi/full/ 10.1056/nejmsb1002538	Lessons from the Mammography Wars	exclude	ineligible study design - commentary/editorial
2-Aug-23	https://www.nejm.org/doi/full/ 10.1056/nejmsb1002538	Lessons from the Mammography Wars	duplicate	
2-Aug-23	https://cancer- rose.fr/2023/06/26/quest-ce- que-lhistoire-naturelle-du- cancer	Qu'est ce que l'histoire naturelle du cancer	exclude	ineligible study design - narrative review
2-Aug-23	https://cancer- rose.fr/2022/05/23/congres- preventing-overdiagnosis- calgary-8-12-juin-2022/	Documents presented at the Preventing Overdiagnosis congress in Calgary - From balanced information request to censorship. Situation in France	exclude	ineligible study design - narrative review
2-Aug-23	https://cancer- rose.fr/2021/10/23/quest-ce- quun-surdiagnostic/	Le surdiagnostic et ses conséquences	exclude	ineligible study design - narrative review

Date of submission	Link	Document name	KQ1 Decision	Notes e.g., reason for exclusion,
8-Aug-23	no link	Breast cancer screening in women with extremely dense breasts recommendations of the European Society of Breast Imaging (EUSOBI)	duplicate	NA
8-Aug-23	no link	Breast Cancer screening in New Brunswick in 2023	unclear, no link provided	Unclear on what this refers to; title not found
8-Aug-23	No link	Terri Lynn Mills Story	exclude	Not found - likely personal story
9-Aug-23	No link	Assurance of Timely Access to Breast Cancer Diagnosis and Treatment by a Regional Breast Health Clinic Serving Both Urban and Rural-Remote Communities	exclude	Case-only cohort study
11-Aug-23	No link	Update on ongoing breast cancer research with Stats Can	unclear, no link provided	Unclear on what this refers to; title not found
16-Aug-23	No link	Marrying Story with Science: The Impact of Outdated and Inconsistent Breast Cancer Screening Practices in Canada	duplicate	NA
16-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/27632020/	Breast cancer screening effect across breast density strata: A case-control study	include (duplicate)	NA
16-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/37150275/	Breast Cancer Screening for Women at Higher-Than-Average Risk: Updated Recommendations From the ACR	exclude	ineligible study design - other (guideline)
16-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/25984843/	Identifying women with dense breasts at high risk for interval cancer: a cohort study	exclude	ineligible comparator (all women screened with DM [no comparator))
16-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/27824483/	Using Volumetric Breast Density to Quantify the Potential Masking Risk of Mammographic Density	exclude	ineligible comparator - screen detected vs non screen detected cancers
16-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/19155400/	Tailored supplemental screening for breast cancer: what now and what next?	exclude	ineligible study design (other - narrative review)
16-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/36626696/	Prospective Multicenter Diagnostic Performance of Technologist- Performed Screening Breast Ultrasound After Tomosynthesis in Women With Dense Breasts (the DBTUST)	exclude	Exclude (not included in KQ2 draft [likely later date than search but no DM comparator])
16-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/35699706/	Association of Screening With Digital Breast Tomosynthesis vs Digital Mammography With Risk of Interval Invasive and Advanced Breast Cancer	exclude	Exclude (included in KQ2)
16-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/14735182/	Breast density as a determinant of interval cancer at mammographic screening	exclude	prior to 2014
16-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/17229950/	Mammographic density and the risk and detection of breast cancer	exclude	prior to 2014
16-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/15337416/	The randomized trials of breast cancer screening: what have we learned?	exclude	ineligible study design (other - narrative review)
16-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/34003218/	Screening for Colorectal Cancer US Preventive Services Task Force Recommendation Statement	exclude	ineligible intervention/comparator - does not evaluate BC screening

Date of	Link	Document name	KQ1 Decision	Notes
16-Aug-23	https://academic.oup.com/jbi/	Screening Breast Ultrasound Using Handheld or Automated	exclude	ineligible study design (other - narrative
	article/1/4/283/5610410	Technique in Women with Dense Breasts		review)
16-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/34134531/	The Added Value of Supplemental Breast Ultrasound Screening for Women With Dense Breasts: A Single Center Canadian Experience	duplicate	NA
16-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/26547101/	Sensitivity and specificity of mammography and adjunctive ultrasonography to screen for breast cancer in the Japan Strategic Anti-cancer Randomized Trial (J-START): a randomised controlled trial	Exclude (included in KQ2)	Ineligible comparator (both groups screened - comparator had mammography)
16-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/33724062/	Supplemental Breast MRI for Women with Extremely Dense Breasts: Results of the Second Screening Round of the DENSE Trial	Exclude (included in KQ2)	ineligible comparator (all women screened)
16-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/32055796/	Survival Outcomes of Screening with Breast MRI in Women at Elevated Risk of Breast Cancer	Exclude (Not Included in KQ2)	Ineligible comparator (KQ2: all at high risk)
16-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/32096852/	Comparison of Abbreviated Breast MRI vs Digital Breast Tomosynthesis for Breast Cancer Detection Among Women With Dense Breasts Undergoing Screening	Exclude (Not Included in KQ2)	ineligible comparator (all women screened) (KQ2: Studies using paired designs (i.e., within-person comparison))
16-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/33724062/	Supplemental Breast MRI for Women with Extremely Dense Breasts: Results of the Second Screening Round of the DENSE Trial	duplicate	NA
16-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/28221097/	Supplemental Breast MR Imaging Screening of Women with Average Risk of Breast Cancer	Exclude (Not included in KQ2)	ineligible comparator (all women screened) (KQ2: Studies using paired designs (i.e., within-person comparison))
16-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/34279132/	Breast Density and Risk of Interval Cancers: The Effect of Annual Versus Biennial Screening Mammography Policies in Canada	duplicate	NA
16-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/25984843/	Identifying women with dense breasts at high risk for interval cancer: a cohort study	duplicate	NA
17-Aug-23	https://www2.gnb.ca/content/ gnb/en/departments/health/N ewBrunswickCancerNetwork/ content/assessment_tool_bre ast_cancer.html	Healthcare Provider- Stepwise Approach to Breast Cancer Risk Assessment	exclude	ineligible study design (other - narrative review)
17-Aug-23	https://www2.gnb.ca/content/ gnb/fr/ministeres/sante/resea u du cancer du nouveau- brunswick/content/outil_evalu ation_cancer_du_sein.html	Fournisseur de soins de santé: Approche par étapes de l'évaluation du risque du cancer du sein	exclude	ineligible study design (other - narrative review)
19-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/22357883/	Impact of Mammography Detection on the Course of Breast Cancer in Women Aged 40–49 Years	exclude	prior to 2014
19-Aug-23	https://www.acpjournals.org/d oi/epdf/10.7326/M21-3577	Estimation of Breast Cancer Overdiagnosis in a U.S. Breast Screening Cohort	exclude	Ineligible comparator

Date of submission	Link	Document name	KQ1 Decision	Notes e.g., reason for exclusion,
20-Aug-23	https://bmchealthservres.bio medcentral.com/articles/10.1 186/s12913-023-09738-4	The aggregate value of cancer screenings in the United States: full potential value and value considering adherence	exclude	ineligible study design (modelling)
20-Aug-23	https://www.health.harvard.ed u/cancer/early-breast-cancer- survival-rates-increasing	Early breast cancer survival rates increasing	exclude	ineligible study design (other - narrative review)
20-Aug-23	https://ascopubs.org/doi/pdf/1 0.1200/JCO.23.00348?role=t ab	Impact of Breast Cancer Screening on 10-Year Net Survival in Canadian Women Age 40-49 Years	New include	Recent 2023 paper that is relevant - ecological study design with data for 40-49;
20-Aug-23	https://www.mdpi.com/1718- 7729/29/6/311	Overdetection of Breast Cancer	exclude	ineligible study design - Modelling study
20-Aug-23	https://www.mdpi.com/1718- 7729/29/5/291	The Impact of Dense Breasts on the Stage of Breast Cancer at Diagnosis: A Review and Options for Supplemental Screening	exclude	ineligible study design - review
20-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/29150482/	Effect of Mammography Screening on Mortality by Histological Grade	include (duplicate)	NA
20-Aug-23	https://www.mdpi.com/1718- 7729/29/8/445	Misinformation and Facts about Breast Cancer Screening	exclude	ineligible study design
20-Aug-23	https://www.mdpi.com/1718- 7729/29/6/313	How Did CNBSS Influence Guidelines for So Long and What Can That Teach Us?	duplicate	NA
20-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/21257850/	United States Preventive Services Task Force Screening Mammography Recommendations: Science Ignored	exclude	modelling study, pre-2014
20-Aug-23	https://onlinelibrary.wiley.com /doi/abs/10.1046/j.1524- 4741.1998.430139.x	Biasing the Interpretation of Mammography Screening Data by Age Grouping: Nothing Changes Abruptly at Age 50	exclude	Ineligible comparator and observational study prior to 2014
20-Aug-23	https://jamanetwork.com/jour nals/jama/fullarticle/2463262	Breast Cancer Screening for Women at Average Risk 2015 Guideline Update From the American Cancer Society	exclude	Systematic review; reviewed included references
20-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/29064760/	Screening Mammography in Women 40-49 Years Old Current Evidence	exclude	ineligible study design (other - narrative review)
20-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/26442924/	Influence of tumour stage at breast cancer detection on survival in modern times: population based study in 173,797 patients	exclude	Ineligible comparator
20-Aug-23	https://jamanetwork.com/jour nals/jamasurgery/fullarticle/26 73936	Race/Ethnicity and Age Distribution of Breast Cancer Diagnosis in the United States	exclude	ineligible intervention/comparator - does not evaluate BC screening
20-Aug-23	https://www.cancer.org/conte nt/dam/cancer- org/research/cancer-facts- and-statistics/breast-cancer- facts-and-figures/breast- cancer-facts-and-figures- 2019-2020.pdf	Breast Cancer Facts & Figures 2019-2020	exclude	ineligible study design (other - narrative review)
20-Aug-23	https://academic.oup.com/jbi/ article/1/3/161/5553855?login =true	Breast Cancer Screening: Beyond Mortality	duplicate	NA

Date of submission	Link	Document name	KQ1 Decision	Notes e.g., reason for exclusion,
20-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/16517548/	Rate of over-diagnosis of breast cancer 15 years after end of Malmö mammographic screening trial: follow-up study	include (duplicate from 2018 review)	NA
20-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/22972810/	Overdiagnosis in mammographic screening for breast cancer in Europe: a literature review	duplicate	NA
20-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/6802546/	The National Study of Breast Cancer Screening Protocol for a Canadian Randomized Controlled trial of screening for breast cancer in women	exclude	Protocol for Miller RCT
20-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/25274578/	Pan-Canadian study of mammography screening and mortality from breast cancer	duplicate	NA
20-Aug-23	https://journals.sagepub.com/ doi/full/10.1177/09691413211 059461	The randomized trial of mammography screening that was not—A cautionary tale	duplicate	NA
20-Aug-23	https://jamanetwork.com/jour nals/jamainternalmedicine/full article/1861037	Consequences of False-Positive Screening Mammograms	Exclude (included in KQ3)	Values and preferences outcomes
20-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/25274578/	Pan-Canadian study of mammography screening and mortality from breast cancer	duplicate	NA
20-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/30411328/	The incidence of fatal breast cancer measures the increased effectiveness of therapy in women participating in mammography screening	duplicate	NA
20-Aug-23	https://www.thelancet.com/pd fs/journals/lanonc/PIIS1470- 2045(20)30398-3.pdf	Effect of mammographic screening from age 40 years on breast cancer mortality (UK Age trial): final results of a randomised, controlled trial	include (duplicate)	NA
20-Aug-23	https://www.thelancet.com/jou rnals/lanonc/article/PIIS1470- 2045(15)00057-1/fulltext	The UK Age Trial: screening women in their forties	exclude	ineligible study design (other - commentary): note that UK AGE trial RCT itself is included
20-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/24018987/	A failure analysis of invasive breast cancer: most deaths from disease occur in women not regularly screened	exclude	Ineligible study design - case only cohort study
20-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/21712474/	Swedish two-county trial: impact of mammographic screening on breast cancer mortality during 3 decades	include (duplicate from 2018 review)	NOTE: Not picked up by searches, but RCT previously included in 2018 review
20-Aug-23	https://academic.oup.com/jbi/ article/1/3/161/5553855	Breast Cancer Screening: Beyond Mortality	duplicate	NA
20-Aug-23	https://bmccancer.biomedcen tral.com/articles/10.1186/s12 885-021-07917-2	Screening is associated with lower mastectomy rates in eastern Switzerland beyond stage effects	exclude	Ineligible study design - case only cohort study
20-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/17290404/	A retrospective study of the effect of participation in screening mammography on the use of chemotherapy and breast conserving surgery	exclude	Ineligible study design - case only cohort study
20-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/29987612/	Impact of Screening Mammography on Treatment in Women Diagnosed with Breast Cancer	duplicate	NA

Date of submission	Link	Document name	KQ1 Decision	Notes e.g., reason for exclusion,	
20-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/34427912/	Looking at breast cancer through the ethnic and racial lens One size definitely does not fit all	exclude	ineligible study design (other - commentary)	
20-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/34427920/	Age distributions of breast cancer diagnosis and mortality by race and ethnicity in US women	exclude	ineligible comparator	
20-Aug-23	https://academic.oup.com/jbi/ article/2/5/416/5901429	Breast Cancer Screening Recommendations: African American Women Are at a Disadvantage	exclude	ineligible study design (other - narrative review)	
20-Aug-23	https://www.ajronline.org/doi/f ull/10.2214/ajr.184.1.0184032 4	Detection of Breast Cancer on Screening Mammography Allows Patients to Be Treated with Less-Toxic Therapy		ineligible comparator - Case-only cohort study	
20-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/22972810/	Overdiagnosis in mammographic screening for breast cancer in Europe: a literature review	duplicate	NA	
20-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/16505392/	Screening mammography: do women prefer a higher recall rate given the possibility of earlier detection of cancer?	Exclude (included in KQ3)	outcomes not of interest for KQ1 (patient perspectives)	
20-Aug-23	https://www.ncbi.nlm.nih.gov/ pmc/articles/PMC6001765/	Screening for breast cancer in 2018—what should we be doing today?	exclude	ineligible study design (other - narrative review)	
20-Aug-23	https://academic.oup.com/jbi/ article/1/3/161/5553855?login =true	Breast Cancer Screening: Beyond Mortality	duplicate	NA	
20-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/34158298/	Estimations of overdiagnosis in breast cancer screening vary between 0% and over 50%: why?	exclude	ineligible study design - commentary	
20-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/26976857/	Overdiagnosis in Mammographic Screening because of Competing Risk of Death	exclude	ineligible study design - modelling study	
20-Aug-23	https://academic.oup.com/jbi/ article/1/4/278/5584369	Perspectives on the Overdiagnosis of Breast Cancer Associated with Mammographic Screening	exclude	ineligible study design (other - narrative review)	
20-Aug-23	https://pubs.rsna.org/doi/abs/ 10.1148/radiol.11110716?jour nalCode=radiology	Mammographic Screening and "Overdiagnosis"	exclude	ineligible study design (other - commentary)	
20-Aug-23	https://academic.oup.com/jbi/ article/3/3/273/6260880	Breast Cancer Screening and Anxiety	exclude	ineligible study design (other - commentary)	
20-Aug-23	https://journals.sagepub.com/ doi/full/10.1177/08465371211 021996	Imaging, Paternalism and the Worried Patient: Rethinking Our Approach	exclude	ineligible study design (other - commentary)	
20-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/34134531/	The Added Value of Supplemental Breast Ultrasound Screening for Women With Dense Breasts: A Single Center Canadian Experience	duplicate	NA	
20-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/34279132/	Breast Density and Risk of Interval Cancers: The Effect of Annual Versus Biennial Screening Mammography Policies in Canada	duplicate	NA	
20-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/34482760/	Breast Density and Risk of Interval Cancers	exclude	ineligible study design (other - commentary)	
20-Aug-23	https://www.ajronline.org/doi/ epdf/10.2214/ajr.161.4.83727 52	The Canadian National Breast Screening Study : A critical review	exclude	ineligible study design (other - critical review)	

Date of submission	Link	Document name	KQ1 Decision	Notes e.g., reason for exclusion,
20-Aug-23	https://acsjournals.onlinelibrar y.wiley.com/doi/epdf/10.1002/ 1097- 0142%2819950215%2975%3 A4%3C997%3A%3AAID- CNCR2820750415%3E3.0.C 0%3B2-M	Trar The excess of patients with advanced breast cancer in young women screened with mammography in the Canadian National Breast Screening Study duplicate NA %3		NA
20-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/9012723/	The review of randomization in the Canadian National Breast Screening Study Is the debate over	exclude	ineligible study design (other - commentary)
22-Aug-23	No link	Statistical Supplement Quality Indicators by Age Group 2019 small cells suppressed	unclear, no link provided	Can't find study
22-Aug-23	No link	Statistical Supplement Quality Indicators by Age Group 2020 Small Cell Suppressed	duplicate	Can't find study
23-Aug-23	https://www.mdpi.com/1718- 7729/29/5/286	Marrying Story with Science: The Impact of Outdated and Inconsistent Breast Cancer Screening Practices in Canada	duplicate	NA
25-Aug-23	https://www.mdpi.com/1718- 7729/29/8/444	The Impact of Organised Screening Programs on Breast Cancer Stage at Diagnosis for Canadian Women Aged 40–49 and 50–59	duplicate	NA
25-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/24159387/	Screening prior to Breast Cancer Diagnosis: The More Things Change, the More They Stay the Same	exclude	Observational study published prior to 2014 and no eligible comparator
25-Aug-23	https://jamanetwork.com/jour nals/jamanetworkopen/fullarti cle/2808381	Patterns in Cancer Incidence Among People Younger Than 50 Years in the US, 2010 to 2019	exclude	ineligible comparator (does not examine BC screening)
27-Aug-23	https://www.rsna.org/news/20 23/january/mri-detects- cancer-in-dense-breasts	Breast MRI Effective at Detecting Cancer in Dense Breasts	Exclude	ineligible comparator (no unscreened participants); note: source submitted was a news article, evaluation was done on associated SR: https://pubs.rsna.org/doi/10.1148/radiol.22178 5
27-Aug-23	https://www.breastcancer.org/ research-news/dense- breasts-mri-supplemental	Breast MRI Best Supplemental Screening for Dense Breasts	Exclude	ineligible comparator (no unscreened participants); note: source submitted was a news article, evaluation was done on associated SR: https://pubs.rsna.org/doi/10.1148/radiol.22178 5
27-Aug-23	https://www.ncbi.nlm.nih.gov/ pmc/articles/PMC9122856/	Breast cancer screening in women with extremely dense breasts recommendations of the European Society of Breast Imaging (EUSOBI)	duplicate	NA
28-Aug-23	https://www.birpublications.or g/doi/10.1259/bjr.20211388	Breast cancer risk predictions by birth cohort and ethnicity in a population-based screening mammography program	include (duplicate)	NA
29-Aug-23	https://www.mdpi.com/1718- 7729/29/8/444	The Impact of Organised Screening Programs on Breast Cancer Stage at Diagnosis for Canadian Women Aged 40–49 and 50–59	duplicate	NA

Date of submission	Link	Document name	KQ1 Decision	Notes e.g., reason for exclusion,		
29-Aug-23	https://ascopubs.org/doi/full/1 0.1200/JCO.23.00348	Impact of Breast Cancer Screening on 10-Year Net Survival in Canadian Women Age 40-49 Years	duplicate	NA		
29-Aug-23	https://pubs.rsna.org/doi/10.1 148/radiol.2021203935?url_v er=Z39.88- 2003𝔯_id=ori:rid:crossref.or g𝔯_dat=cr_pub%20%200p ubmed	Beneficial Effect of Consecutive Screening Mammography Examinations on Mortality from Breast Cancer: A Prospective Study	include (duplicate)	NA		
29-Aug-23	https://journals.sagepub.com/ doi/full/10.1177/09691413211 060680	All-cause mortality in multi-cancer screening trials	exclude	ineligible study design (other - commentary)		
29-Aug-23	https://acsjournals.onlinelibrar y.wiley.com/doi/10.1002/cncr. 32859	Mammography screening reduces rates of advanced and fatal breast cancers: Results in 549,091 women	exclude	ineligible study design		
29-Aug-23	https://academic.oup.com/jnci /article/106/11/dju261/149636 7?login=false	Pan-Canadian Study of Mammography Screening and Mortality from Breast Cancer	duplicate	NA		
29-Aug-23	https://acsjournals.onlinelibrar y.wiley.com/doi/full/10.1002/c ncr.31840	The incidence of fatal breast cancer measures the increased effectiveness of therapy in women participating in mammography screening	duplicate	NA		
29-Aug-23	https://pubmed.ncbi.nlm.nih.g ov/34279132/	Breast Density and Risk of Interval Cancers: The Effect of Annual Versus Biennial Screening Mammography Policies in Canada	duplicate	NA		
29-Aug-23	https://www.ncbi.nlm.nih.gov/ pmc/articles/PMC7491203/#: ~:text=The%20UK%20Age% 20trial%20reported,randomis ation%2C%20and%20was%2 0attenuated%20thereafter.	Effect of mammographic screening from age 40 years on breast cancer mortality (UK Age trial): final results of a randomised, controlled trial	include (duplicate)	NA		
1-Sep-23	https://www.mdpi.com/1718- 7729/30/9/571	Capturing the True Cost of Breast Cancer Treatment: Molecular Subtype and Stage-Specific per-Case Activity-Based Costing	exclude	ineligible comparator (does not examine BC screening)		

Organization	Date searched	Website Link	Articles found
Relevant websites			
Canadian Cancer Trials	15-Aug-23	https://clinicaltrials.gov/	none found
ClinicalTrials.gov	15-Aug-23	https://clinicaltrials.gov/	none found
WHO International Clinical Trials Registry Platform	15-Aug-23	https://trialsearch.who.int/Default.aspx	none found
ISRCTN	15-Aug-23	https://www.isrctn.com/search?q=breast+cancer+screening	none found
CenterWatch	15-Aug-23	https://www.centerwatch.com	none found
British Columbia Cancer Agency	15-Aug-23	http://www.bccancer.bc.ca	none found
Cancer Care Ontario	15-Aug-23	https://www.cancercareontario.ca/en	none found
Canadian Cancer Society	15-Aug-23	https://cancer.ca/en/	none found
World Conference on Breast Cancer	15-Aug-23	https://www.cancerscience.scientexconference.com/	none found
Clinical Practice Guidelines			
Canadian Medical Association (CMA)	16-Aug-23	https://joulecma.ca/cpg/homepage	none found
Canadian Partnership Against Cancer	16-Aug-23	https://www.partnershipagainstcancer.ca/tools/cancer- guidelines-database/	none found
Canadian Standards Association (CSA)	16-Aug-23	https://store.csagroup.org/?cclcl=en_US	none found
The College of Physicians and Surgeons of Ontario (CPSO)	16-Aug-23	https://www.cpso.on.ca/	none found
Internet Search			
Google (first 5 pages)	16-Aug-23	http://www.google.com	none found
Google Scholar (first 5 pages)	16-Aug-23	https://scholar.google.com/	none found
СМА	16-Aug-23	https://www.cma.ca/about-cma	none found

Appendix 6 – DistillerSR screening forms

Level 1 – Title and abstract screening

- 1. After reviewing the PICO criteria, is this study eligible for inclusion?
 - o Yes
 - **No**

Instructions in Distiller for exclusions:

At this stage please exclude:

- The following populations:
 - <u>All participants are considered high-risk (e.g., selected on the basis that they all have BRCA1 gene or family history of cancer)</u>
- The following study designs:
 - Cross-sectional studies
 - Modelling studies (e.g., prediction models, nomograms, simulation studies)
 - Diagnostic accuracy studies (e.g., measuring sensitivity, specificity of a tool)
 - Studies focusing on behaviours, attitudes, or preferences of screening.
 - Narrative reviews, editorials, commentaries, case reports
 - Protocols
- The following interventions:
 - Mammography for diagnosis or imaging
 - Screening with clinical breast examination or breast self-examination alone
 - Screening with MRI or ultrasound alone

Note:

Ensure that the participants enrolled into the study that are included based on a breast cancer diagnosis have been linked back to being screen- or not screendetected cancer.

For references without abstracts, we will exclude, <u>unless</u> you can infer from the title that it is clearly a breast cancer screening study.

Level 2 – Full-text screening

- 1. Is the language of publication English or French?
 - Yes (include)
 - No (exclude)
- 2. Please select the study design (drop down menu)
 - o Randomized or quasi-randomized controlled trial (include)
 - o Non-randomized controlled trial (published ≥2014) (include)
 - Cohort study (published ≥2014) (include)
 - Case-control study (published ≥2014) (include)
 - Controlled before and after study (published ≥2014) (include)

- Time trend/series (published ≥2014) (include)
- Ecological (population-based) study (published ≥2014) (include)
- Review (including systematic, scoping, and narrative reviews) (exclude)
- Observational study (published < 2014) (exclude)
- Abstract or conference proceeding (exclude)
- Protocol (exclude)
- Other (exclude)
- 3. Do any of the following criteria below apply to the study?
 - Participants are younger than 40 years of age (exclude)
 - Participants are at high risk of breast cancer (personal or family history of breast or ovarian cancer, significant genetic markers such as BRCA1/BRCA2 or Li-Fraumeni syndrome) (exclude)
 - Study uses a screening strategy other than mammography (exclude)
 - Ineligible comparator (must be a "no screened group") (exclude)
 - Breast imaging or clinical examinations were conducted for diagnosis or surveillance (exclude)
 - Not a primary care setting **(exclude)**
 - Screening initiation date <2000 (exclude)
 - o Does not include any outcomes of interest (exclude)
 - None of the above (include)
- 4. Please select which country the study was conducted from the list below (*drop down menu*) Countries that were considered "Very High" on the HDI were included; all others were excluded at this stage.

Typically, these questions are nested. If an answer is an include (as indicated), the form allows us to proceed to the next question. If an answer was an exclude, the form would end, and that reference would be excluded for that reason.
Appendix 7 – Data extraction form

Level 3 – Data Extraction

First Tab – Summary Characteristics

*Green items can be pulled from Distiller Datarama report and responses to level 2 responses Study identification

- 1. First author
- 2. Year of publication
- 3. Name of journal/source document
- 4. Country

Study characteristics

- 5. Study aim
- 6. Type of study/study design
 - a. If cohort study, specify
 - i. Screened vs unscreened [SU]
 - ii. Offered screening vs not [ON]
 - iii. Adhered to screening vs offered but not attended [OA]
 - iv. Not applicable [NA]
- 7. Trial name or database (e.g., CNBSS, SEER)
- 8. Total study period
- 9. Dates of screening
- 10. Screening initiation date prior to and after 2000? (yes/no)
- 11. Duration of follow-up

Population details

- 12. Population details (*Provide brief details on the population studied, copy and pasted from the text is acceptable (e.g., age of participants enrolled, existing comorbidities) otherwise type NR*)
- 13. Total number of participants
- 14. Mean or median age at entry
- 15. Recruitment method (Details on how the population was selected (e.g., Registry, Claims database, etc.)
- 16. Eligibility criteria
- 17. Other populations studied (e.g., ethnic groups, LGBTQ+, disability)
- 18. Population health status (Details on any comorbidities, family history of BC, history of other cancers)

Control group (not exposed)

- 19. Name of the control/not exposed group
- 20. Concurrent or historical control?
- 21. Control group details

- 22. Total number of participants in the control group
- 23. Total number in the control group received/not exposed (Number of participants who received the control (after exclusions, for example)
- 24. Number lost to follow-up (if applicable)
- 25. Number excluded (if applicable)
- 26. Reasons for exclusions or lost to follow-up

Intervention group (exposed)

- 27. Name of the intervention/exposed group (e.g., type of screening test)
- 28. Type of mammography received
- 29. Number of screening intervals
- 30. Duration of screening interval
- 31. Intervention/exposed group details as reported (e.g., screening interval, number of screening rounds)
- 32. Total number of participants in the intervention/exposed group
- 33. Number lost to follow-up (if applicable)
- 34. Number excluded (if applicable)
- 35. Reasons for exclusions or lost to follow-up

Level 3 – Data Extraction

Second Tab - Outcome Data

Outcome data

1. Relevant outcomes evaluated*

*We will extract absolute values (total numbers and percentages, n/%), odds ratios (OR), relative risks (RR), hazard ratios (HR), standard deviations (SD) and confidence intervals (CI). We will also report on any adjusted variables.

Outcomes of interest:

Benefits (reductions)

- i. Breast cancer related mortality
- ii. All-cause mortality
- iii. Treatment-related morbidity, measured by:
 - a. Receipt of radiotherapy (yes/no)
 - b. Receipt of chemotherapy (yes/no)
 - i. Subgroup by anthracycline vs no anthracycline
 - c. Type of surgery: complete mastectomy vs partial mastectomy/lumpectomy
 - d. Surgical management of axilla (axial lymph node dissection [ALND] vs sentinel lymph node biopsy [SLNB])
- iv. Stage distribution of breast cancer
 - a. Stage II and higher
 - b. Stage III and higher
 - c. Stage IV

v. Breast cancer morbidity (e.g., adverse effects of treatment, physical/functional impairment). Measured using composite scores from different scales

Harms

- vi. Overdiagnoses (We will calculate the number of excess diagnoses from prospective data with at least 10 years of follow up from the time of enrollment over 1,000 persons screened).
- vii. Additional imaging +/- biopsy (cumulative over multiple rounds)
- viii. Additional imaging+ biopsy (cumulative over multiple rounds)
- ix. Interval cancers (includes false negatives and clinically detected cancers before next screen or time equivalent)
 - a. Subgroup by Invasive vs DCIS

Benefit or harm

- x. Health related quality of life (secondary outcome)
- xi. Life years gained (or lost)

Study findings

- 2. Overall study conclusions
- 3. Reported limitations

Table 1: Breast cancer mortality (RCTs, short-case accrual, stratified by age, over 10 years)

Mammography +/- CB	Mammography +/- CBE compared to Usual Care										
Outcomes	Absolute effects		Relative effect	Nº of participants	Quality of the	Quality of the	Comments				
	Risk with Usual Care (Assumed Risk) ‡	Absolute effect (95% Cl)	(95% CI) §	(studies)	(GRADE) Clinical threshold of 0.5	(GRADE) Clinical threshold of 1					
Sub-Group: Breast-Cancer	General population	1	RR 0.85	Unavailable			Using a threshold of 0.5 or 1 fewer deaths per 1,000, screening may				
Mortality (40-49 years)		0.27 fewer per	(0.70 10 0.33)	(0 10,01,010 (013)	LOW ^{b,c,u,e,i}	LOW b,c,d,e,r	years for individuals aged 40 to 49 years in a general population.				
# Randomised: Unclear # Analyzed: Unclear Range of follow-up (yrs): 17.7 to 25.7	1.8 per 1,000	(from 0.13 fewer to 0.40 fewer)									
	Moderately increased risk Based on family history (scaled adjustment)		_			⊕⊕⊖⊖ LOW ^{b,c,d,e,f}	Using a threshold of 0.5 fewer deaths per 1,000, we are very uncertain whether screening decreases breast cancer mortality over 10 years for individuals aged 40 to 49 at moderately increased risk for breast cancer.				
	2.9 per 1,000	0.44 fewer per 1,000 (0.20 fewer to 0.64 fewer)					Using a threshold of 1 fewer death per 1,000, screening may make little to no difference in reducing breast cancer mortality over 10 years for individuals aged 40 to 49 years at moderately increased risk for breast cancer.				
	Moderately increased risk Based on dense breasts (scaled adjustment)		_		⊕⊖⊖⊖ VERY LOW b,c,d,f,g	⊕⊕⊖⊖ LOW b,c,d,e,f	Using a threshold of 0.5 fewer deaths per 1,000, we are very uncertain whether screening decreases breast cancer mortality over 10 years for individuals aged 40 to 49 at moderately increased risk for breast cancer.				
	3.5 per 1,000	0.53 fewer per 1,000 (0.25 fewer to 0.77 fewer)					Using a threshold of 1 fewer death per 1,000, screening may make little to no difference in reducing breast cancer mortality over 10 years for individuals aged 40 to 49 years at moderately increased risk for breast				
Sub-Group: Breast-Cancer	General population	1	RR 0.85	Unavailable			Using a threshold of 0.5 fewer deaths per 1,000, we are very uncertain whether screening decreases breast capper mortality over 10 years for				
wortailty (50-59 years)		0.50 fewer per 1 000	(0.70 10 0.93)	(0 //// (013)	b,c,d,f,g		individuals aged 50 to 59 a general population risk for breast cancer.				
# Randomised: Unclear # Analyzed: Unclear Range of follow-up (yrs): 18.0 to 30.0	3.3 per 1,000	(0.23 fewer to 0.73 fewer)					Using a threshold of 1 fewer death per 1,000, screening may make little to no difference in reducing breast cancer mortality over 10 years for individuals aged 50 to 59 years in a general population.				
	Moderately increased risk Based on family history (scaled adjustment)				⊕⊖⊖⊖ VERY LOW b,d,f,g,h	⊕⊖⊖⊖ VERY LOW b,c•d,f,g	Using a threshold of 0.5 or 1 fewer deaths per 1,000, we are very uncertain whether screening decreases breast cancer mortality over 10 years for individuals aged 50 to 59 years at moderately increased risk for				
	5.3 per 1,000	0.79 fewer per 1,000 (0.37 fewer to 1.16 fewer)					breast cancer.				

Outcomes	Absolute effects		Relative effect	Nº of participants	Quality of the	Quality of the	Comments	
	Risk with Usual Care (Assumed Risk)‡	Absolute effect (95% CI)	(90% CI)§	(studies) *	(GRADE) (Inical threshold of 0.5	(GRADE) (Inical threshold of 1		
	Moderately increase Based on dense bread adjustment)	sed risk easts (scaled			⊕⊖⊖⊖ VERY LOW _{b,d,f,g,h}	⊕⊖⊖⊖ VERY LOW b,c•d,f,g	Using a threshold of 0.5 or 1 fewer deaths per 1,000, we are very uncertain whether screening decreases breast cancer mortality over 10 years for individuals aged 50 to 59 years at moderately increased risk for	
	6.3 per 1,000	0.95 fewer per 1,000 (0.44 fewer to 1.39 fewer)						
Sub-Group: Breast-Cancer	General population	n	RR 0.85		000	$\Theta \Theta \bigcirc \bigcirc$	Using a threshold of 0.5 fewer deaths per 1,000, we are very uncertain	
Mortality (60-69 years) # Randomised: Unclear # Analyzed: Unclear Range of follow-up (yrs): 13.1 to 30.0		0.65 fewer per	(0.78 to 0.93)	(4 ^{3,4,3,11} RUTS) "	VERY LOW b,c,d,f,g	LOW b,c,d,e,f	individuals aged 60 to 69 in a general population.	
	4.3 per 1,000	(0.30 fewer to 0.95 fewer)					Using a threshold of 1 fewer death per 1,000, screening may make little to no difference in reducing breast cancer mortality over 10 years for individuals aged 60 to 69 years in a general population.	
	Moderately increased risk Based on family history (scaled adjustment)		-		⊕⊖⊖⊖ VERY LOW _{b,d,e,f,h}	⊕⊖⊖⊖ VERY LOW b,c,d,f,g	Using a threshold of 0.5 or 1 fewer deaths per 1,000, we are very uncertain whether screening decreases breast cancer mortality over 10 years for individuals aged 60 to 69 in at moderately increased risk.	
	6.9 per 1,000	1.04 fewer per 1,000 (0.48 fewer to 1.52 fewer)						
	Moderately increase Based on dense breadjustment)	sed risk easts (scaled			⊕⊖⊖⊖ VERY LOW _{b,d,e,f,h}	⊕⊖⊖⊖ VERY LOW b,c,d,f,g	Using a threshold of 0.5 or 1 fewer deaths per 1,000, we are very uncertain whether screening decreases breast cancer mortality over 10 years for individuals aged 60 to 69 in at moderately increased risk.	
	8.2 per 1,000	1.23 fewer per 1,000 (0.57 fewer to 1.80 fewer)						
Sub-Group: Breast-Cancer	General population	n	RR 0.85	Unavailable			Using a threshold of 0.5 or 1 fewer deaths per 1,000, we are very uncertain whether screening decreases breast cancer mortality over 10	
Mortality (70-74 years) # Randomised: 18,233 # Analyzed: Unclear Range of follow-up (yrs): 13.2 to 13.6	6.1 per 1,000	0.92 fewer per 1,000 (0.43 fewer to 1.34 fewer)	- (0.10 10 0.00)	(2 1013)	b,d,f,g,h	b,c,d,f,g	years for individuals aged 70 to 74 years in a general population.	
	Moderately increased risk Based on family history (scaled adjustment)				⊕⊖⊖⊖ VERY LOW b,d,e,f,h	⊕⊖⊖⊖ VERY LOW	Using a threshold of 0.5 or 1 fewer deaths per 1,000, we are very uncertain whether screening decreases breast cancer mortality over 10 years for individuals aged 70 to 74 years at moderately increased risk for breast cancer.	
	9.8 per 1,000	1.47 fewer per 1,000 (0.69 fewer to 2.16 fewer)					breast cancer.	

Mammography +/- CBE compared to Usual Care

Outcomes	Absolute effects		Relative effect	Nº of participants	Quality of the	Quality of the	Comments	
	Risk with Usual Care (Assumed Risk)‡	Absolute effect (95% Cl)	(92% CI) §	(studies) *	(GRADE) (Inical Clinical	(GRADE) Clinical threshold of 1		
	Moderately increased risk Based on dense breasts (scaled adjustment)11.6 per 1,00011.6 per 1,000 (0.81 fewer to 2.55 fewer)				⊕⊖⊖⊖ VERY LOW _{b,d,e,f,h}	⊕⊖⊖⊖ VERY LOW ^{b,d,fg,h}	Using a threshold of 0.5 o 1 fewer deaths per 1,000, we are very uncertain whether screening decreases breast cancer mortality over 10 years for individuals aged 70 to 74 years at moderately increased risk for	
							breast cancer.	

‡The baseline risk represents the breast cancer mortality rate over 10 years in an unscreened group based on observational data reported by Coldman et al.¹ To calculate a moderately increased risk group due to family history, we used an estimate from Engmann et al.² suggesting that having a first degree relative increases the lifetime risk by 1.6 times and multiplied the general population risk estimate by 1.6. To calculate a moderately increased risk group due to dense breasts, we used an estimate from the Swedish mammography trial which suggested those with high breast density have a relative increased lifetime risk of 1.9.³

§ The relative effect is based on our previous systematic review and guideline⁴ where a subgroup analysis of relative risk by age was assessed and no difference in RR among subgroups was detected and true differences resulting from age were deemed unlikely. Therefore, we used the RR for all ages rather than focusing on each decade of age as we had previously done in our 2018 guideline.

*The number of participants and studies reflect the previous analysis for each age decade, rather than the number of studies that are included in the relative effect estimate for all ages.

CI: Confidence interval; RR: Risk ratio

Bibliography: 1: Gothenburg (Nystrom 2016⁵), 2: Age (Moss 2015⁶), 3: Swedish Two County (Kopparberg & Ostergotland) (Tabar 2011⁷), 4: Malmo I (Nystrom 2016⁵), 5: Malmo I (Nystrom 2002⁸), 6: Malmo II (Nystrom 2016⁵), 7: CNBSS 1 (Miller 2014⁹), 8: CNBSS 2 (Miller 2014⁹), 9: HIP (Shapiro 1988¹⁰), 10: Stockholm (Nystrom 2016⁵), 11: Stockholm (Nystrom 2002⁸)

GRADE Working Group grades of evidence

High quality: We are very confident that the true effect lies close to that of the estimate of the effect

Moderate quality: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different

Low quality: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect

Very low quality: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect

Explanations

a. Two studies considered quasi-randomised (Stockholm & Gothenburg).

b. Randomisation and allocation concealment were either not reported or there were serious deficiencies in these areas, therefore we rated down once for risk of bias. A sensitivity analysis by risk of bias is presented in Supplemental Material, Appendix 1 and no differences in relative risk were detected between high risk and moderate risk of bias papers. True differences resulting from risk of bias were deemed unlikely, however we still rated down once due to concerns with risk of bias impacting the overall estimate.

c. All point estimates in our pooled analysis lie to one side of our threshold. We did not rate down for inconsistency.

d. Breast density was not addressed. Studies reported in Nystrom 2002 and Nystrom 2016 included one round of screening in the control group as part of the short-case accrual calculation. Therefore, the study estimates may be underestimated (a larger benefit from the intervention may be possible). Data are from trials initiated in the 1960s-1990s and the intervention groups were primarily screened with film mammography. Due to advances in mammography technology and treatment practices, we expect that the magnitude of screening effect may differ if applied to today's Canadian screening context. There are no high-quality clinical trials examining the impact of screening on breast cancer screening deaths using contemporary screening methods. We downrated once for indirectness.

e. Given the large sample size; an optimal sample size calculation was not warranted. The 95% CI does not cross the clinical decision threshold; therefore, we did not rate down for imprecision.

f. According to Egger et al.¹¹, 10 trials are needed to asses publication bias. We cannot assess publication bias due to insufficient number of trials, therefore, we did not rate down for publication bias.

g. Given the large sample sizes; an optimal sample size calculation was not warranted. The 95% CI crosses the clinical decision threshold; therefore, we rated down once for imprecision.

h. Approximately half of the point estimates in our pooled analysis lie on either side of our threshold. We rated down once for inconsistency.

Table 1 forest plot

Mammography +/- CBE	Mammography +/- CBE compared to Usual Care										
Outcomes	Absolute effects		Relative effect	Nº of participants	Quality of the	Quality of the	Comments				
	Risk with Usual Care (Assumed Risk) ‡	Absolute effect (95% CI)	(92 % CI) 8	(studies)	(GRADE) Clinical threshold of 0.5	(GRADE) Clinical threshold of 1					
Sub-Group: Breast-Cancer	General population		RR 0.82	Unavailable	@@ 00	@@ 00	Using a threshold of 0.5 or 1 fewer deaths per 1,000, screening may make				
Mortality (40-49 years) # Randomised: Unclear # Analyzed: Unclear	1.8 per 1,000	0.32 fewer per 1,000 (from 0.11 fewer to 0.52 fewer)	(0.71 to 0.94)	(0 KUIS ^{1-5,7}) °	LOW ^{b,c,d,e,T}	LOW b.c.d.e.t	individuals aged 40 to 49 years in a general population.				
Range of follow-up (yrs): 17.7 to 25.7	Moderately increased risk Based on family history (scaled adjustment)				⊕⊖⊖⊖ VERY LOW ^{b,c,d,f,g}	⊕⊕⊖⊖ LOW ^{b,c,d,e,f}	Using a threshold of 0.5 fewer deaths per 1,000, we are very uncertain whether screening decreases breast cancer mortality over 10 years for individual error 40 to 40 at moderately instructed right for breast				
	2.9 per 1,000	0.52 fewer per 1,000 (0.17 fewer to 0.84 fewer)					Using a threshold of 1 fewer death per 1,000, screening may make little to no difference in reducing breast cancer mortality over 10 years for individuals aged 40 to 49 years at moderately increased risk for breast cancer.				
	Moderately increase Based on dense breas	d risk sts (scaled adjustment)			⊕⊖⊖⊖ VERY LOW ^{b,c,d,f,g}	⊕⊕⊖⊖ LOW ^{b,c,d,e,f}	Using a threshold of 0.5 fewer deaths per 1,000, we are very uncertain whether screening decreases breast cancer mortality over 10 years for individuals and 40 to 49 at moderately increased risk for breast cancer				
	3.5 per 1,000	0.63 fewer per 1,000 (0.21 fewer to 1.02 fewer)					Using a threshold of 1 fewer death per 1,000, screening may make little to no difference in reducing breast cancer mortality over 10 years for individuals aged 40 to 49 years at moderately increased risk for breast cancer.				
Sub-Group: Breast-Cancer	General population		RR 0.82	Unavailable (5 RCTs 1.3.4.6.7) ª	0 000	⊕⊕⊖⊖ LOW b.de,f.h	Using a threshold of 0.5 fewer deaths per 1,000, we are very uncertain				
Mortality (50-59 years) # Randomised: Unclear # Analyzed: Unclear Range of follow-up (yrs): 18.0 to 30.0	3.3 per 1,000	0.59 fewer per 1,000 (0.20 fewer to 0.96 fewer)	(0.71 to 0.94)		VERY LOW b,d,f.g,h		Using a threshold of 1 fewer death per 1,000, screening may make little to no difference in reducing breast cancer mortality over 10 years for individuals aged 50 to 59 a general population.				
	Moderately increase Based on family histor	d risk ry (scaled adjustment)			⊕⊖⊖⊖ VERY LOW ^{b,d,f,g,h}	⊕⊖⊖⊖ VERY LOW ^{b,d,g,f,h}	Using a threshold of 0.5 or 1 fewer deaths per 1,000, we are very uncertain whether screening decreases breast cancer mortality over 10 years for				
	5.3 per 1,000	0.95 fewer per 1,000 (0.32 fewer to 1.54 fewer)					individuals aged 50 to 59 years at moderately increased risk for breast cancer.				
	Moderately increased risk Based on dense breasts (scaled adjustment)				⊕○○○ VERY LOW	⊕⊖⊖⊖ VERY LOW ^{b,d,f,g,h}	Using a threshold of 0.5 or 1 fewer deaths per 1,000, we are very uncertain whether screening decreases breast cancer mortality over 10 years for				
	6.3 per 1,000	1.13 fewer per 1,000 (0.38 fewer to 1.83 fewer)			u,a,tg,n		individuals aged 50 to 59 years at moderately increased risk for breast cancer.				

Mammography +/- CBE	Mammography +/- CBE compared to Usual Care										
Outcomes	Absolute effects		Relative effect	№ of participants	Quality of the	Quality of the	Comments				
	Risk with Usual Care (Assumed Risk) ‡	Absolute effect (95% CI)	(95% CI) §	(studies)"	evidence (GRADE) Clinical threshold of 0.5	GRADE) (GRADE) Clinical threshold of 1					
Sub-Group: Breast-Cancer	General population		RR 0.82	Unavailable	⊕000	0 000	Using a threshold of 0.5 or 1 fewer deaths per 1,000, we are very uncertain				
Mortality (60-69 years) # Randomised: Unclear # Analyzed: Unclear	4.3 per 1,000	0.77 fewer per 1,000 (0.26 fewer to 1.25 fewer)	(0.71 to 0.94)	(3 RUIS ^{34,7})		VERY LOW ^{b,a,t,g,n}	individuals aged 60 to 69 years in a general population.				
Range of follow-up (yrs): 13.1 to 30.0	Moderately increase Based on family histor	d risk y (scaled adjustment)			⊕⊖⊖⊖ VERY LOW ^{b,d,f,g,h}	€ VERY LOW ^{b,d,fg,h} € VERY LOW ^{b,d,fg,h}	Using a threshold of 0.5 or 1 fewer deaths per 1,000, we are very uncertain whether screening decreases breast cancer mortality over 10 years for				
	6.9 per 1,000	1.24 fewer per 1,000 (0.41 fewer to 2 fewer)					cancer.				
	Moderately increase Based on dense breas	d risk sts (scaled adjustment)	-		⊕⊕⊖⊖ LOW ^{b,d,e,f,h}		Using a threshold of 0.5 fewer deaths per 1,000, screening may make little to no difference in reducing breast cancer mortality over 10 years for individuals aged 50 to 60 years at moderately instructioned risk.				
	8.2 per 1,000	1.48 fewer per 1,000 (0.49 fewer to 2.38 fewer)					Using a threshold of 1 fewer death per 1,000, we are very uncertain whether screening decreases breast cancer mortality over 10 years for individuals aged 60 to 69 years at moderately increased risk for breast cancer.				
Sub-Group: Breast-Cancer Mortality (70-74 years)	General population		RR 0.82 (0.71 to 0.94)	Unavailable (2 RCTs 3.4)	⊕○○○ VERY LOW	⊕⊖⊖⊖ VERY LOW ^{b,d,f,g,h}	Using a threshold of 0.5 or 1 fewer deaths per 1,000, we are very uncertain whether screening decreases breast cancer mortality over 10 years for				
# Randomised: 18,233 # Analyzed: Unclear	6.1 per 1,000	1.10 fewer per 1,000 (0.37 fewer to 1.77 fewer)			b,d,f,g,h		individuals aged 70 to 74 years in a general population.				
Range of follow-up (yrs): 13.2 to 13.6	Moderately increase Based on family histor	d risk ry (scaled adjustment)			⊕⊕⊖⊖ LOW ^{b,d,e,f,h}	⊕⊖⊖⊖ VERY LOW ^{b,d,f,g,h}	Using a threshold of 0.5 fewer deaths per 1,000, screening may make little to no difference in reducing breast cancer mortality over 10 years for				
	9.8 per 1,000	1.76 fewer per 1,000 (0.59 fewer to 2.84 fewer)					Using a threshold of 1 fewer death per 1,000, we are very uncertain whether screening decreases breast cancer mortality over 10 years for individuals aged 70 to 74 years at moderately increased risk for breast cancer.				
	Moderately increase Based on dense breas	d risk sts (scaled adjustment)			⊕⊕⊖⊖ LOW ^{b,d,e,f,h}	⊕⊖⊖⊖ VERY LOW ^{b,d,f,g,h}	Using a threshold of 0.5 fewer deaths per 1,000, screening may make little to no difference in reducing breast cancer mortality over 10 years for individuals acad 70 to 74 of medarately increased relations.				
	11.6 per 1,000	2.09 fewer per 1,000 (0.70 fewer to 3.36 fewer)					Using a threshold of 1 fewer death per 1,000, we are very uncertain whether screening decreases breast cancer mortality over 10 years for individuals aged 70 to 74 years at moderately increased risk for breast cancer.				

Mammography +/- CBE compared to Usual Care

Outcomes	Absolute effects	solute effects		Nº of participants	Quality of the	Quality of the	Comments
	Risk with Usual Care (Assumed Risk) ‡	Absolute effect (95% CI)	(95% CI) §	(studies)"	evidence (GRADE) Clinical threshold of 0.5	evidence (GRADE) Clinical threshold of 1	

The baseline risk represents the breast cancer mortality rate over 10 years in an unscreened group based on Canadian observational data reported by Coldman et al.¹ To calculate moderately increased risk group, we used an estimate from Engmann et al.² suggesting that having a first degree relative increases the lifetime risk by 1.6 times and multiplied the general population risk estimate by 1.6.

§ The relative effect is based on our previous systematic review and guideline⁴ where a subgroup analysis of relative risk by age was assessed and no difference in RR among subgroups was detected and true differences resulting from age were deemed unlikely. Therefore, we used the RR for all ages rather than focusing on each decade of age as we had previously done in our 2018 guideline.

*The number of participants and studies reflect the previous analysis for each age decade, rather than the number of studies that are included in the relative effect estimate for all ages.

CI: Confidence interval; RR: Risk ratio

Bibliography:

1: Gothenburg (Bjurstam 2003¹²), 2: Age (Moss 2015⁶), 3. Swedish Two County (Kopparberg) (Tabar 1995¹³), 4: Swedish Two County (Ostergotland) (Tabar 1995¹³), 5: CNBSS 1 (Miller 2014⁹), 6: CNBSS 2 (Miller 2014⁹), 7: HIP (Habbema 1986¹⁴)

Note: Long-case accrual unavailable for the following studies: Malmo I, Malmo II, and Stockholm

GRADE Working Group grades of evidence

High quality: We are very confident that the true effect lies close to that of the estimate of the effect

Moderate quality: We are moderately confident in the effect estimate. The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different

Low quality: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect

Very low quality: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect

Explanations

a. One study considered quasi-randomised (Gothenburg)

b. Randomisation and allocation concealment were either not reported or there were serious deficiencies in these areas, therefore we rated down once for risk of bias.

c. All point estimates in our pooled analysis lie to one side of our threshold. We did not rate down for inconsistency .

d. Breast density was not addressed. For some studies, the control group received screening after the screening period. Studies reported in Nystrom 2002 and Nystrom 2016 included one round of screening in the control group as part of the short-case accrual calculation. Therefore, the study estimates may be underestimated (a larger benefit from the intervention may be possible). Downrated once for indirectness. Data are from trials initiated in the 1960s-1990s and the intervention groups were primarily screeening on breast cancer screening deaths using contemporary screening methods.

e. Given the large sample sizes; an optimal sample size calculation was not warranted. The 95% CI does not cross the clinical decision threshold; therefore, we did not rate down for imprecision.

f. According to Egger et al.¹¹, 10 trials are needed to asses publication bias. We cannot assess publication bias due to insufficient number of trials, therefore, we did not rate down for publication bias.

g. Given the large sample sizes; an optimal sample size calculation was not warranted. The 95% CI crosses the clinical decision threshold; therefore, we rated down once for imprecision.

h. Approximately half of the point estimates in our pooled analysis lie on either side of our threshold. We rated down once for inconsistency.

Table 2 forest plot

Reference	Study	Age (at entry)	Mean Follow-up (<u>yrs</u>)	log [RR]	SE	Weight	Risk Ratio [95%Cl]	Risk Ratio (RR) IV, Random, 95% Cl
Bjurstam 2003	Gothenburg	40-59	13.8	-0.29	0.13	14.0%	0.75 [0.58, 0.97]	e
Habbema 1986	HIP	40-64	14.0	-0.25	0.10	16.9%	0.78 [0.64, 0.96]	— e —
Miller 2014	CNBSS 1 & 2	40-69	21.9	-0.01	0.06	21.9%	0.99 [0.88, 1.12]	
Moss 2015	AGE	39-41	17.7ª	-0.07	0.08	19.9%	0.93 [0.80, 1.09]	
Tabar 1995	Kopparberg	40-74	12.5	-0.51	0.14	13.4%	0.60 [0.46, 0.79]*	_
Tabar 1995	Ostergotland	40-74	12.5	-0.25	0.13	13.9%	0.78 [0.60, 1.01]*	
Total (95% CI)						100.0%	0.82 [0.71, 0.94]	•
Heterogeneity: Ta Test for overall e	au² = 0.02; Chi² : ffect: Z = 2.79 (P	= 15.42, df = = 0.005)	5 (P = 0.009); l ^a = 68	3%			-	0.5 0.7 1 1.5 2
ªMedian; *Adjust	ted for age and c	lustering						Mammography +/-CBE Usual Care

 Table 3: Breast cancer mortality (Observational studies, stratified by age, adherence to screen analysis over 10 years)

Screening with mammography* compared to no screening

Outcomes	Absolute effects		Risk ratio (95% CI)	№ of participants	Quality of the	Quality of the	Comments
	Risk with Usual Care (Assumed Risk) ‡	Absolute effect (95% CI)		(studies)	evidence (GRADE) Clinical threshold of 0.5	evidence (GRADE) Clinical threshold of 1	
Sub-Group: Breast-Cancer	General population		RR 0.48**	Unavailable			Using a threshold of 0.5 or 1 fewer deaths per 1,000, we are
Mortality (40-49 years) Range of follow-up (yrs): 10.0 to 22.0	1.8 per 1,000	0.94 fewer per 1,000 (from 0.77 fewer to 1.06 fewer)	(0.4110 0.57)	(4 studies ^{, ,})		VERT LOW 40,0,0,0	mortality over 10 years for individuals aged 40 to 49 years in a general population.
	Moderately increase Based on family histo	d risk ry (scaled adjustment)			⊕○○○ VERY LOW a,b,c,d,f,9	⊕⊖⊖⊖ VERY LOW a.b.c.d.f.g	Using a threshold of 0.5 or 1 fewer deaths per 1,000, we are very uncertain whether screening decreases breast cancer
	2.9 per 1,000	1.51 fewer per 1,000 (from 1.25 fewer to 1.71 fewer)					mortality over 10 years for individuals aged 40 to 49 years at a moderately increased risk for breast cancer.
	Moderately increase Based on dense brea	d risk sts (scaled adjustment)			⊕⊖⊖⊖ VERY LOW ^{a,b,c,d,f,g}	⊕○○○ VERY LOW a,b,c,d,f,9	Using a threshold of 0.5 or 1 fewer deaths per 1,000, we are very uncertain whether screening decreases breast cancer mortality over 10 years for individuals ared 40 to 49 years a
	3.5 per 1,000	1.82 fewer per 1,000 (1.51 fewer to 2.07 fewer)					a moderately increased risk for breast cancer.
Sub-Group: Breast-Cancer	General population		RR 0.48 **	Unavailable			Using a threshold of 0.5 or 1 fewer deaths per 1,000, we are
Range of follow-up (yrs): 10.0 to 22.0	3.3 per 1,000	1.72 fewer per 1,000 (from 1.42 to 1.95)	(0.41 10 0.01)	(* 5166165*)			mortality over 10 years for individuals aged 50 to 59 years in a general population.
	Moderately increase Based on family histo	d risk ry (scaled adjustment)			⊕⊖⊖⊖ VERY LOW ab.c.d.f.9	⊕○○○ VERY LOW a,b,c,d,f,9	Using a threshold of 0.5 or 1 fewer deaths per 1,000, we are very uncertain whether screening decreases breast cancer
	5.3 per 1,000	2.76 fewer per 1,000 (from 2.28 to 3.13)					a moderately increased risk for breast cancer.
	Moderately increase Based on dense brea	d risk sts (scaled adjustment)			⊕⊖⊖⊖ VERY LOW a,b,c,d,f,9	⊕○○○ VERY LOW a,b,c,d,f,9	Using a threshold of 0.5 or 1 fewer deaths per 1,000, we are very uncertain whether screening decreases breast cancer
	6.3 per 1,000	3.28 fewer per 1,000 (2.71 fewer to 3.72 fewer)					a moderately increased risk for breast cancer.
Sub-Group: Breast-Cancer	General population		RR 0.48 **	Unavailable (4 studies1-4)	⊕⊖⊖⊖ VFRY I OW a.b.c.d.f. ^g	⊕⊖⊖⊖ VFRY I OW a,b,c,d,f,9	Using a threshold of 0.5 or 1 fewer deaths per 1,000, we are very uncertain whether screening decreases breast cancer
Range of follow-up (yrs): 10.0 to 22.0	4.3 per 1,000	2.24 fewer per 1,000 (from 1.85 to 2.54)		יי)			mortality over 10 years for individuals aged 60 to 69 years in a general population.
	Moderately increase Based on family histo	d risk ry (scaled adjustment)					Using a threshold of 0.5 or 1 fewer deaths per 1,000, we are very uncertain whether screening decreases breast cancer

Outcomes	Absolute effects		Risk ratio (95% CI)	Nº of participants	Quality of the	Quality of the	Comments
	Risk with Usual Care (Assumed Risk)‡	Absolute effect (95% CI)		(studies)	evidence (GRADE) Clinical threshold of 0.5	evidence (GRADE) Clinical threshold of 1	
	3.59 fewer per 1,000 (from 2.97 to 4.07) 6.9 per 1,000				⊕⊖⊖⊖ VERY LOW a.b.c.d.f.g	⊕○○○ VERY LOW ab.c.d.f.g	mortality over 10 years for individuals aged 60 to 69 years at a moderately increased risk for breast cancer.
	Moderately increase Based on dense brea	d risk sts (scaled adjustment)			⊕⊖⊖⊖ VERY LOW a,b,c,d,f,g	⊕⊖⊖⊖ VERY LOW a,b,c,d,f,g	Using a threshold of 0.5 or 1 fewer deaths per 1,000, we are very uncertain whether screening decreases breast cancer
	8.2 per 1,000	4.26 fewer per 1,000 (3.53 fewer to 4.84 fewer)					a moderately increased risk for breast cancer.
Sub-Group: Breast-Cancer	General population		RR 0.48 **	Unavailable (4 studies ¹⁻⁴)	€ VFRY LOW a,b,c,d,f,g	⊕⊖⊖⊖ VERY I OW a,b,c,d,f,9	Using a threshold of 0.5 or 1 fewer deaths per 1,000, we are
Range of follow-up (yrs): 10.0 to 22.0	6.1 per 1,000	3.17 fewer per 1,000 (from 2.62 to 3.60)					mortality over 10 years for individuals aged 70 to 74 years in a general population.
	Moderately increase Based on family histo	d risk ry (scaled adjustment)			⊕○○○ VERY LOW a,b,c,d,f,9	⊕⊖⊖⊖ VERY LOW a,b,c,d,f,g	Using a threshold of 0.5 or 1 fewer deaths per 1,000, we are very uncertain whether screening decreases breast cancer
	9.8 per 1,000	5.10 fewer per 1,000 (from 4.21 to 5.78)					a moderately increased risk for breast cancer.
	Moderately increase Based on dense brea	d risk sts (scaled adjustment)			⊕⊖⊖⊖ VERY LOW a,b,c,d,f,9	⊕○○○ VERY LOW a,b,c,d,f,9	Using a threshold of 0.5 or 1 fewer deaths per 1,000, we are very uncertain whether screening decreases breast cancer
	11.6 per 1,000	6.03 fewer per 1,000 (4.99 fewer to 6.84 fewer)					mortality over 10 years for individuals aged 70 to 74 years at a moderately increased risk for breast cancer.

The baseline risk (in the control group) was not representative of all included studies. Numerators and/or denominators were either unclear or not reported for some studies. For the age subgroup calculations, the baseline risk for each age group was taken from the Coldman cohort study.

*Studies varied between film and digital mammography.

**Pooling was performed for a screening adherence analysis. To note that Coldman reported a standardized mortality ratio (SMR) however, it has been noted in the literature that an SMR can approximate a RR when the mortality rate in the control group is less than 10 per 1000 for a one-year period in a 10-year age band (Symons and Taulbee, 1981). The statistical heterogeneity of this estimate is high (I²=94%). Other sensitivity analyses for combining these four studies are provided in Supplemental KQ1 GRADE Material, Appendix 3. CI: Confidence interval; RR: Risk ratio

Bibliography: 1: Choi 2021¹⁵, 2: Coldman 2014¹⁶, 3. Duffy 2021¹⁷, 4: Morrell 2017¹⁸

GRADE Working Group grades of evidence

High quality: We are very confident that the true effect lies close to that of the estimate of the effect

Moderate quality: We are moderately confident in the effect estimate. The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different

Low quality: Our confidence in the effect estimate is limited. The true effect may be substantially different from the estimate of the effect

Very low quality: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect

Explanations

a. We rated down once for the lack of adjustment for important confounding factors across studies, including use of hormone replacement therapy, socioeconomic status, or other adjustment for self-selection bias. Lack of reporting or measurement of population at increased risk of breast cancer (Duffy, Morell). Studies did not report average follow-up length and reasons for loss to follow-up are not reported (Duffy, Morell).

b. Heterogeneity is very high across studies (I2=94%); (p-value<0.0001). Estimates from studies included rate ratios, risk ratios and standardized mortality ratios, with varying degrees of adjustment for confounding factors. We are unable to explain the high statistical heterogeneity through sensitivity analyses (Supplemental KQ1 GRADE Material, Appendix 3), however, all individual estimates point to a reduction in BC mortality. Similarly, all point estimates in our pooled analysis lie to one side of our threshold, therefore we did not rate down for inconsistency. c. We did not rate for indirectness as both the studies (Duffy and Coldman) are population-based studies representing general population..

Screening with mammography* compared to no screening

d. The 95% CI does not cross the clinical decision threshold; therefore, we did not rate down for imprecision.

e. The 95% CI crosses the clinical decision threshold; therefore, we rated down once for imprecision.

f. We did not rate up for the magnitude of effect because not all plausible confounders (e.g., age, hormone replacement therapy, breast density, elevated risk), were adjusted for, decreasing our confidence in the estimated effect. Following GRADE guidance, the RR is on the threshold of being considered a large effect (i.e., RR either >2.0 or <0.5 based on consistent evidence from at least 2 studies, with no plausible confounders).

g. According to Egger et al.¹¹, 10 studies are needed to asses publication bias. We cannot assess publication bias due to insufficient number of trials, therefore, we did not rate down for publication bias.

Table 3 forest plot

				Risk Ratio		Risk Ratio				
Study or Subgroup	log[Risk Ratio]	SE	Weight	IV, Random, 95% CI	Year	IV, Rando	m, 95% Cl			
Coldman 2014	-0.5108	0.0563	25.9%	0.60 [0.54, 0.67]	2014					
Morrell 2017	-0.9676	0.1297	17.4%	0.38 [0.29, 0.49]	2017	← ■				
Duffy 2021	-0.6733	0.0385	27.6%	0.51 [0.47, 0.55]	2021					
Choi 2021	-0.844	0.0117	29.1%	0.43 [0.42, 0.44]	2021	•				
Total (95% CI)			100.0%	0.48 [0.41, 0.57]		•				
Heterogeneity: Tau ² = Test for overall effect:	0.02; Chi² = 50.17 Z = 8.60 (P ≤ 0.00	7, df = 3 (1001)	(P < 0.000	001); I² = 94%		0.5 0.7 Favours [experimental]	1.5 2 Favours [control]			

All adherence to screen papers: Coldman, Morrel, Duffy, Choi. The cohort adherence to screen: Morrel reported BC mortality for ever screened cohort (control group is never screened).

Table 4: Breast cancer mortality (Observational studies, stratified by age, stop screening analysis)

"Continue Screening" After Baseline Examination compared to "Stop Screening" After Baseline Examination

Outcomes	Absolute effects		Hazard ratio (95% CI)	№ of participants	Quality of the	Quality of the	Comments	
	Baseline risk with stopping screening	Absolute effect (95% Cl)		(studies)	evidence (GRADE) Clinical threshold of 0.5	evidence (GRADE) Clinical threshold of 1		
Sub-Group: Breast-Cancer Mortality (70-74 years)	General population		HR 0.78 (0.63 to 0.95)	1235459 (1 study¹)	⊕○○○ VERY LOW ^{a,b,c,d,e}	⊕○○○ VERY LOW a,b,c,d,e,g	Using a threshold of 0.5 or 1 fewer deaths per 1,000, we are very uncertain whether continuing screening decreases	
# of follow-up (yrs): 8.0	3.7 per 1,000	0.81 fewer per 1,000 (from 0.19 to 1.37 fewer)					breast cancer mortality over 10 years for individuals aged 70 to 74 years in a general population.	
Sub-Group: Breast-Cancer Mortality (75-84 years)	General population		HR 1.00 (0.83 to 1.19)	1403735 (1 study¹)	⊕○○○ VERY LOW a,b,c,d,e	⊕⊕⊖⊖ LOW a,b,c,f,e,g	Using a threshold of 0.5 fewer deaths per 1,000, we are very uncertain whether continuing screening decreases breast control the user for individuals area 75 to 84	
# of follow-up (yrs): 8.0		0.0 fewer per 1,000 (from 0.63 fewer to 0.70					years in a general population.	
	3.7 per 1,000	more)					Using a threshold of 1 fewer death per 1,000, continuing screening may make little to no difference in reducing breast cancer mortality over 10 years for individuals aged 75 to 84 years in a general population.	

CI: Confidence interval; HR: Hazard ratio

Bibliography: 1: Garcia-Albeniz 2020¹⁹

GRADE Working Group grades of evidence

High quality: We are very confident that the true effect lies close to that of the estimate of the effect

Moderate quality: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different

Low quality: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect

Very low quality: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect

Explanations

a. We did not downrate for risk of bias. Study was judged to be of moderate quality using the JBI critical appraisal tool for cohort studies.

b. We did not downrate for inconsistency (only one study included).

c. We did not downrate for indirectness. The study answers the question of stopping versus continuing screening and all patients have received at least one baseline mammography.

d. The 95% CI crosses the clinical decision threshold; therefore, we rated down once for imprecision.

e. We did not rate up for the magnitude of effect because the effect size did not meet the threshold for uprating. Following GRADE guidance, the RR is on the threshold of being considered a large effect (i.e., RR either >2.0 or <0.5 based on consistent evidence from at least 2 studies, with no plausible confounders).

f. The 95% CI does not cross the clinical decision threshold and we did not rate down for imprecision.

g. According to Egger et al.¹¹, 10 studies are needed to asses publication bias. We cannot assess publication bias due to insufficient number of trials, therefore, we did not rate down for publication bias.

						-	
Outcomes	Absolute effects Risk with Usual Care (Assumed Risk) ‡	Absolute effect (95% Cl)	Range of relative effects (95% CI)**	№ of participants (studies)	Quality of the evidence (GRADE) Clinical threshold of 0.5	Quality of the evidence (GRADE) Clinical threshold of 1	Comments
Sub-Group: Breast-Cancer Mortality (40-49 years) Range of follow-up (yrs): 11.0 to 38.0	General population 1.8 per 1,000 0.79 fewer per 1,000 (from 0.65 fewer to 0.92 fewer)		OR 0.56 - (0.49 to 0.64)	Unavailable (7 studies ¹⁻⁷)	⊕⊖⊖⊖ VERY LOW a,b,c,d,e,f	⊕⊖⊖⊖ VERY LOW a,b,c,d,e, ^f	Using a threshold of 0.5 or 1 fewer deaths per 1,000, we are very uncertain whether screening decreases breast cancer mortality over 10 years for individuals aged 40 to 49 years in a general population.
	Moderately increased r Based on family history (isk (scaled adjustment)			⊕○○○ VERY LOW a,b,c,d,e,f	⊕⊖⊖⊖ VERY LOW a,b,c,d,a,f	Using a threshold of 0.5 or 1 fewer deaths per 1,000, we are very uncertain whether screening decreases breast cancer mortality over 10 years for individuals aged 40 to
	2.9 per 1,000	1.28 fewer per 1,000 (from 1.04 fewer to 1.48 fewer)					49 years at a moderately increased risk for breast cancer.
	Moderately increased r Based on dense breasts	isk (scaled adjustment)	_		⊕⊖⊖⊖ VERY LOW ¤.b.c.d.e. ^f	⊕⊖⊖⊖ VERY LOW a.b.c.d.e.f	Using a threshold of 0.5 or 1 fewer deaths per 1,000, we are very uncertain whether screening decreases breast cancer mortality over 10 years for individuals aged 40 to
	3.5 per 1,000	1.54 fewer per 1,000 (1.26 fewer to 1.79 fewer)					49 years at a moderately increased risk for breast cancer.
Sub-Group: Breast-Cancer	General population		OR 0.56		⊕ 000	0 00	Using a threshold of 0.5 or 1 fewer deaths per 1,000, we
Mortality (50-59 years) Range of follow-up (yrs): 11.0 to 38.0	3.3 per 1,000	1.45 fewer per 1,000 (from 1.19 fewer to 1.68 fewer)	- (0.49 to 0.64)	(7 suules**)	VERY LOW add,c,a,e,'	VERY LOW a,D,C,Q,e,I	are very uncertain whether screening decreases breast cancer mortality over 10 years for individuals aged 50 to 59 years in a general population.
	Moderately increased r Based on family history (isk scaled adjustment)			⊕○○○ VERY LOW abcd.e. ^f	⊕⊖⊖⊖ VERY LOW a.b.c.d.e.f	Using a threshold of 0.5 or 1 fewer deaths per 1,000, we are very uncertain whether screening decreases breast
	5.3 per 1,000	2.33 fewer per 1,000 (from 1.91 fewer to 2.70 fewer)					cancer mortality over 10 years for individuals aged 50 to 59 years at a moderately increased risk for breast cancer.
	Moderately increased r Based on dense breasts	isk (scaled adjustment)			⊕○○○ VERY LOW a,b,c,d,e,f	⊕⊖⊖⊖ VERY LOW a.b.c.d.e. ^f	Using a threshold of 0.5 or 1 fewer deaths per 1,000, we are very uncertain whether screening decreases breast
	6.3 per 1,000	2.77 fewer per 1,000 (2.27 fewer to 3.21 fewer)					59 years at a moderately increased risk for breast cancer.
Sub-Group: Breast-Cancer	General population		OR 0.56	Unavailable	000	000	Using a threshold of 0.5 or 1 fewer deaths per 1,000, we
Mortality (60-69 years) Range of follow-up (yrs): 11.0 to 38.0	4.3 per 1,000	1.89 fewer per 1,000 (from 1.55 fewer to 2.19 fewer)	- (U.49 to U.64)	(7 studies ¹⁻⁷)	VERY LOW a.b.c.d.e.f	VERY LOW a,b,c,d,e, ^f	are very uncertain whether screening decreases breast cancer mortality over 10 years for individuals aged 60 to 69 years in a general population.
	Moderately increased r Based on family history (i sk (scaled adjustment)	_				Using a threshold of 0.5 or 1 fewer deaths per 1,000, we are very uncertain whether screening decreases breast

Screening with mammography* compared to no screening

Screening with mammography* compared to no screening

Outcomes	Absolute effects		Range of relative	Nº of participants	Quality of the	Quality of the	Comments	
	Risk with Usual Care (Assumed Risk) ‡	Absolute effect (95% Cl)		(studies)	(GRADE) Clinical threshold of 0.5	(GRADE) Clinical threshold of 1		
	6.9 per 1,000	3.04 fewer per 1,000 (from 2.48 fewer to 3.52 fewer)			⊕⊖⊖⊖ VERY LOW ¤,b,c,d,e,f	⊕⊖⊖⊖ VERY LOW a,b,c,d,e,f	cancer mortality over 10 years for individuals aged 60 to 69 years at a moderately increased risk for breast cancer.	
	Moderately increased risk Based on dense breasts (scaled adjustment)				⊕⊖⊖⊖ VERY LOW ^{a,b,c,d,e,f}	⊕⊖⊖⊖ VERY LOW ^{a,b,c,d,e,f}	Using a threshold of 0.5 or 1 fewer deaths per 1,000, we are very uncertain whether screening decreases breast	
	8.2 per 1,000	3.61 fewer per 1,000 (2.95 fewer to 4.18 fewer)					69 years at a moderately increased risk for breast cancer.	
Sub-Group: Breast-Cancer	General population		OR 0.56	Unavailable (7 studies ¹⁻⁷)	⊕⊖⊖⊖ VFRY I OW a,b,c,d,e, ^f	⊕⊖⊖⊖ VFRY I OW a,b,c,d,e, ^f	Using a threshold of 0.5 or 1 fewer deaths per 1,000, we are very uncertain whether screening decreases breast	
Mortality (70-74 years) Range of follow-up (yrs): 11.0 to 38.0	6.1 per 1,000	2.68 fewer per 1,000 (from 2.20 fewer to 3.11 fewer)	(cancer mortality over 10 years for individuals aged 70 to 74 years in a general population.	
	Moderately increased ris Based on family history (s	s k caled adjustment)			⊕○○○ VERY LOW ab.c.d.e. ^f	⊕⊖⊖⊖ VERY LOW a,b,c,d,e,f	Using a threshold of 0.5 or 1 fewer deaths per 1,000, we are very uncertain whether screening decreases breast	
	9.8 per 1,000	4.31 fewer per 1,000 (from 3.53 fewer to 5.0 fewer)					cancer mortality over 10 years for individuals aged 70 to 74 years at a moderately increased risk for breast cancer.	
	Moderately increased risk Based on dense breasts (scaled adjustment)		Ī		⊕◯◯◯ VERY LOW a,b,c,d,e, ^f	⊕◯◯◯ VERY LOW a,b,c,d,e,f	Using a threshold of 0.5 or 1 fewer deaths per 1,000, we are very uncertain whether screening decreases breast	
	11.6 per 1,000	5.10 fewer per 1,000 (4.18 fewer to 5.92 fewer)					cancer mortality over 10 years for individuals aged 70 to 74 years at a moderately increased risk for breast cancer	

[‡]The baseline risk represents the breast cancer mortality rate over 10 years in an unscreened group based on Canadian observational data reported by Coldman et al.¹ To calculate a moderately increased group risk, we used an estimate from Engmann et al.² suggesting that having a first degree relative increases the lifetime risk by 1.6 times and multiplied the general population baseline risk estimate by 1.6.

*Studies varied between film and digital mammography.

**Absolute risks were calculated using odds ratios (all adherence to screen exposure).

CI: Confidence interval; OR: Odds ratio

Bibliography: 1:Paap 2014²⁰, 2: Pocobelli 2015²¹, 3. Massat 2016²², 4: Ripping 2017²³, 5. van der Waal 2017²⁴, 6. Maroni 2021²⁵, 7. De Troeyer 2023²⁶

GRADE Working Group grades of evidence

High quality: We are very confident that the true effect lies close to that of the estimate of the effect

Moderate quality: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different

Low quality: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect

Very low quality: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect

Explanations

a. We rated down once for risk of bias. Cases and controls were not age matched (De Troeyer and van der Waal) or failed to adjust for important confounding factors related to self-selection bias (De Troeyer, Maroni, Van der Waal, Massat, Pocobelli, Paap and Ripping). Several studies did not provide screening details or confirm all women were invited to screening (Massat, Pocobelli, Paap, Ripping). Average follow-up length not clearly reported across studies.

b. All individual estimates point to a reduction in BC mortality, so we did not downrate for inconsistency.

c. We did not downrate for indirectness since the studies used population-based approach and are reflective of general population.

d. Given the large sample sizes; an optimal sample size calculation was not warranted. The 95% CI does not cross the clinical decision threshold; therefore, we did not rate down for imprecision.

e. We did not rate up for the magnitude of effect because not all plausible confounders (e.g., age, hormone replacement therapy, breast density), were adjusted for, decreasing our confidence in the estimated effect. Following GRADE guidance, the RR is not considered a large effect (i.e., RR either >2.0 or <0.5 based on consistent evidence from at least 2 studies, with no plausible confounders).

f. According to Egger et al.¹¹, 10 studies are needed to asses publication bias. We cannot assess publication bias due to insufficient number of trials, therefore, we did not rate down for publication bias.

Table 5 forest plot

				Odds Ratio		Odds Ratio			
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI			
Paap 2014	-0.8675	0.1187	12.6%	0.42 [0.33, 0.53]	2014	←			
Pocobelli 2015	-0.7133	0.0589	17.8%	0.49 [0.44, 0.55]	2015				
Massat 2016	-0.4943	0.1693	9.0%	0.61 [0.44, 0.85]	2016				
Ripping 2017	-0.3425	0.1153	12.9%	0.71 [0.57, 0.89]	2017	-			
van der Waal 2017	-0.3711	0.1299	11.7%	0.69 [0.53, 0.89]	2017				
Maroni 2021	-0.478	0.0546	18.2%	0.62 [0.56, 0.69]	2021				
De Troeyer 2023	-0.7133	0.0589	17.8%	0.49 [0.44, 0.55]	2023				
Total (95% CI)			100.0%	0.56 [0.49. 0.64]		•			
Heterogeneity: Tau ² =	0.02: Chi ² = 25.91	df = 6 (F	P = 0.000	2): ² = 77%					
Test for overall effect: $Z = 8.61$ (P < 0.00001)						0.5 0.7 1 1.5 2 Cases Control			

Before-and-after BC screening program / Jurisdictions with or without BC screening program in 40-49 years

Outcomes			Absolute Effect	Relative Effects	№ of participants (studies)	Certainty of evidence (GRADE)
	Before BC screening implementation (N)	After BC screening implementation (N)				
Breast Cancer Mortality Sub-group: 40-49 (Age) Follow-up (yrs.): Unavailable Error! Bookmark not defined.	0.2 per 1,000 person- years	0.17 per 1,000 person- years	0.03 fewer per 1,000 person-years	Unavailable	N=323719 (1 Study ^A)	⊕○○○ VERY LOW ^{1,5,6,7}
Breast Cancer Mortality Sub-group: 40-49 (Age) Follow-up (yrs.): 11 years	0.15 per 1,000 person-years	0.12 per 1,000 person- years	0.03 fewer per 1,000 person-years	Unavailable	N= 40.7 million women-years (1 Study ^B)	⊕⊖⊖⊖ VERY LOW ^{2,5,6,7}
Breast Cancer Mortality Sub-group: 50-59 (Age) Follow-up (yrs.): Unavailable Error! Bookmark not defined.	0.49 per 1,000 person-years	0.36 per 1,000 person- years	0.13 fewer per 1,000 person-years	Unavailable	N=323719 (1 Study ^A)	⊕○○○ VERY LOW ^{1,5,6,7}
Breast Cancer Mortality Sub-group: 50-59 (Age) Follow-up (yrs.): 11 years	0.32 per 1,000 person-years	0.34 per 1,000 person- years	0.02 more per 1,000 person-years	Unavailable	N= 40.7 million women-years (1 Study ^B)	⊕OOO VERY LOW ^{2.5,6,7}
Breast Cancer Mortality Sub-group: 60-69 (Age) Follow-up (yrs.): Unavailable Error! Bookmark not defined.	0.80 per 1,000 person-years	0.63 per 1,000 person- years	0.17 fewer per 1,000 person-years	Unavailable	N=323719 (1 Study ^A)	⊕○○○ VERY LOW ^{1,5,6,7}
Breast Cancer Mortality Sub-group: 70-79 (Age) Follow-up (yrs.): Unavailable Error! Bookmark not defined.	112/100,000 person- years 1.12 per 1,000 person-years	114/100,000 person- years 1.14 per 1,000 person- years	0.02 more per 1,000 person-years	Unavailable	N=323719 (1 Study ^A)	⊕○○○ VERY LOW ^{1,5,6,7}
Breast Cancer Mortality Sub-group: 60-74 (Age) Follow-up (yrs.): 11 years	58/153,905 person- years 0.38 per 1,000 person-years	98/166,317 person- years 0.59 per 1,000 person- years	0.21 more per 1,000 person-years	Unavailable	N= 40.7 million women-years (1 Study ^B)	⊕⊖⊖⊖ VERY LOW2.5.6.7
Breast Cancer Mortality Sub-group: 75-84 (Age) Follow-up (yrs.): 11 years	0.72 per 1,000 person-years	0.84 per 1,000 person- years	0.12 more per 1,000 person-years	Unavailable	N= 40.7 million women-years (1 Study) ^B	⊕⊖⊖⊖ VERY LOW ^{2,5,6,7}

Outcomes			Absolute Effect	Relative Effects	№ of participants (studies)	Certainty of evidence (GRADE)
	Before BC screening implementation (N)	After BC screening implementation (N)				
Incidence of fatal breast cancer within 10 years of diagnosis Sub-group: Comparison made during the active screening period (1977 to 2015) Follow-up (yrs.): 10 years	Women who were invited and did not participate in screening during the screening period: 0.62 per 1,000 person-years	Women who were invited and participated in screening during the screening period: 0.25 per 1,000 person- years	0.37 fewer per 1,000 person-years	Relative Risk: 0.40 (0.34 to 0.48)	N=52,438 (Mean no. of women aged 40 to 69 years); (1 study) ^c	⊕⊖⊖⊖ VERY LOW ^{3,5,6,7}
Incidence of fatal breast cancer within 10 years of diagnosis Time-trend analysis looking at those who did not have the opportunity to screen in the pre- screening period (1958 to 1976) compared to those who were invited and participated during the active screening period (1977 to 2015) Follow-up (yrs.): 10 years	0.55 per 1,000 person-years	0.25 per 1,000 person- years	0.30 fewer per 1,000 person-years	Relative Risk: 0.46 (0.39 to 0.53)	N=52,438 (Mean no. of women aged 40 to 69 years); (1 study) ^c	⊕○○○ VERY LOW ^{3,5,6,7}
Incidence-based BC mortality rate ratio Subgroup: 40-49 years Follow-up (yrs.): 10 years	Provincial/territorial mammography screening programs not including women aged 40-49 years: NR	Provincial/territorial mammography screening programs including women aged 40-49 years: NR	NR	Rate Ratio: 0.92; 95% CI, 0.85 to 0.99	N=21,103 ^D	⊕○○○ VERY LOW4.5,6,8
Bibliography:						
A: Katalinic 2020 ²⁷	B: Parvinen 201528		C: Tabar 2019 ²⁹	D. W	ilkinson 2023 ³⁰	

Explanations

- 1. We did not downrate for RoB. Study assessed at low risk of bias (RoB score for JBI Quasi-experimental tool=7/9). Study reported no data on reliability of outcomes and average follow-up period.
- 2. We downrated once for RoB. Study at moderate risk of bias (RoB score for JBI Quasi-experimental tool=5/9). Different number of participants across comparative groups. No information on lost to follow-up participants. No data on reliability of outcome measures.
- 3. We downrated once for RoB. Study at moderate risk of bias (RoB score for JBI Quasi-experimental tool=6/9). No information on control group, loss-to follow-up patients and reliability of outcome measures
- 4. We did not downrate for RoB. Study at low risk of bias (RoB score for JBI Quasi-experimental tool=7/9). Noted that there may be differences in the participants and access to care/treatment across screening and non-screening jurisdictions beyond screening that could impact survival differences.
- Unable to evaluate imprecision using thresholds, as the baseline rates were not available to allow the calculation of absolute effects. Therefore, a minimally contextualized approach was used. The total population is large (>2000) and there is a large event rate (>300). We did
 not downrate for imprecision.
- 6. Not downrated for inconsistency. Single study evaluated outcome (unable to evaluate heterogeneity).
- 7. Downrated once for indirectness. Pre-screening periods ranged across studies between 1958 and 2004. There are population-level differences that may affect mortality beyond the introduction of mammography screening between the pre-screening period and the post-screening period.
- 8. Downrated once for indirectness. Study assessed the effect of screening programs on outcomes of interest, rather than the effect of individual-level mammography screening. Not all women in screening jurisdictions participated in screening and it is unknown if BCs were diagnosed by screening or through other means (e.g., interval cancers, symptoms).

Mammography +/- CBE co	mpared to Usual Ca	re					
Outcomes	Absolute effects		Relative effect §	№ of participants*	Quality of the	Comments	
	Risk with Usual Care (Assumed Risk) ‡	Absolute effect (95% Cl)	(95% Cl)	(studies)	evidence (GRADE)		
Sub-Group: All-Cause Mortality (40-49 years)	12.7 per 1,000	0.13 fewer per 1,000 (from 0 fewer to 0.25 fewer)	RR 0.99 (0.98 to 1.00)	Unavailable (7 RCTs ^{1-6, 8}) ª	€ LOW b,c,d,e,f	Using a threshold of 1 fewer death per 1,000, screening may make little to no difference in reducing mortality from any cause over 10 years for individuals aged 40 to 49 years	
# Randomised: 311,066 # Analyzed: Unclear							
Range of follow-up (yrs): 7.9 to 17.7							
Sub-Group: All-Cause Mortality (50-59 years)	30.6 per 1,000	0.31 fewer per 1,000 (from 0 fewer to 0.61	RR 0.99 (0.98 to 1.00)	79,695 (3 RCTs ^{3,4,7})	LOW b,c.d,e,f	Using a threshold of 1 fewer death per 1,000, screening may make little to no difference in reducing mortality from any	
# Randomised: 79,749 # Analyzed: 79,695		ionoly					
Range of follow-up (yrs): 7.9 to 13.0							
Sub-Group: All-Cause Mortality (60-69 years)	71.3 per 1,000	0.71 fewer per 1,000 (from 0 fewer to 1.43 fewer)	RR 0.99 (0.98 to 1.00)	39,681 (2 RCTs ^{3,4})	⊕⊖◯⊖ VERY LOW ^{b,c,d,f,g}	Using a threshold of 1 fewer death per 1,000, we are very uncertain whether screening decreases mortality from any cause over 10 years for individuals aged 60 to 69 years	
# Randomised: 39,681 # Analyzed: 39,681		ionoly					
Range of follow-up (yrs): 7.9							
Sub-Group: All-Cause Mortality (70-74 years)	140.6 per 1,000	1.41 fewer per 1,000 (from 0 fewer to 2.81 fewer)	RR 0.99 (0.98 to 1.00)	17,646 (2 RCTs ^{3,4})	€ VERY LOW b,c,d,f,g	Using a threshold of 1 fewer death per 1,000, we are very uncertain whether screening decreases mortality from any cause over 10 years for individuals aged 70 to 74 years	
# Randomised: 17,646 # Analyzed: 17,646		,					
Range of follow-up (yrs): 7.9							
The baseline risk has been calculated usin	a deaths and age-specific mortalit	v rates data from Statistics Canad	a and estimated over a 10-vea	r period.			

(https://www150.statcan.gc.ca/t1/tb1/en/tv.action?pid=1310039201&pickMembers%5B0%5D=2.11&pickMembers%5B1%5D=3.3&cubeTimeFrame.startYear=2017&cubeTimeFrame.endYear=2021&referencePeriods=20170101%2C20210101) § Following the same logic as breast cancer mortality, the relative effect is based on our previous systematic review and guideline⁴ where a subgroup analysis of relative risk by age was assessed and no difference in RR among subgroups was detected and true differences resulting from age were deemed unlikely. Therefore, we used the RR for all ages rather than focusing on each decade of age as we had previously done in our 2018 guideline.

*The number of participants and studies reflect the previous analysis for each age decade, rather than the number of studies that are included in the relative effect estimate for all ages.

CI: Confidence interval: **RR:** Risk ratio

Mammography +/- CBE compared to Usual Care

Outcomes	Absolute effects		Relative effect §	№ of participants*	Quality of the	Comments
	Risk with Usual Care (Assumed Risk) ‡	Absolute effect (95% Cl)	(95% CI)	(studies)	evidence (GRADE)	

GRADE Working Group grades of evidence

High quality: We are very confident that the true effect lies close to that of the estimate of the effect

Moderate quality: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different

Low quality: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect

Very low quality: We have very little confidence in the effect estimate. The true effect is likely to be substantially different from the estimate of effect

Bibliography:

 1: Age (Moss 2015⁶)
 2. Malmo II (Nystrom 2002⁸)

 4: Swedish Two County (Ostergotland) (Tabar 1989³¹)
 5: Stockholm (Frisell 1997³²)

 7: CNBSS 2 (Miller 2000³⁴)
 8: Gothenburg (Bjurstam 1997³⁵)

3: Swedish Two County (Kopparberg) (Tabar 1989³¹) 6: CNBSS 1 (Miller 2002³³)

Explanations

a. Two studies considered quasi-randomised (Stockholm & Gothenburg)

b. Randomisation and allocation concealment were either not reported or there were serious deficiencies in these areas, we downrated once for risk of bias.

c. All point estimates in our pooled analysis lie to one side of our threshold. We did not rate down for inconsistency.

d. Breast density was not addressed. For some studies, the control group received screening after the screening period. Studies reported in Nystrom 2002 and Nystrom 2016 included one round of screening in the control group as part of the short-case accrual calculation. Therefore, the study estimates may be underestimated (a larger benefit from the intervention may be possible). Downrated once for indirectness. Data are from trials initiated in the 1960s-1990s and the intervention groups were primarily screeening on breast cancer screening deaths using contemporary screening methods.

e. Not downrated for imprecision i) The number of events and total population are large (>300 threshold for events); and (ii) the 95%CIs include the null, but do not cross clinical decision threshold (1 fewer or 1 more). Given the large sample sizes, an optimal sample size calculation was not warranted.

f. According to Egger et al.¹¹, 10 trials are needed to asses publication bias. We cannot assess publication bias due to insufficient number of trials, therefore, we did not rate down for publication bias.

g. Downrated once for imprecision. i) The number of events and total population are large (>300 threshold for events); and (ii) the 95%Cls include the null and cross the clinical decision threshold (1 fewer or 1 more). Given the large sample sizes, an optimal sample size calculation was not warranted.

Table 7 forest plot

Reference	Study	Age (at entry)	Mean Follow-up (<u>vrs</u>)	log [RR]	SE	Weight	Risk Ratio [95%Cl]	Risk Ratio (RR) IV, Random, 95% Cl
Aron and Prorok 1986	HIP	40-59	10.0	-0.01	0.03	4.7%	0.99 [0.93, 1.05]	-
Miller 2014	CNBSS 1& 2	40-59	25.0	0.02	0.02	11.4%	1.02 [0.98, 1.06]	
Moss 2015	AGE	39-41	17.7ª	-0.02	0.03	6.7%	0.98 [0.93, 1.03]	+
Nystrom 2002	Gothenburg	40-59	13.2	-0.06	0.03	4.3%	0.94 [0.88, 1.00]	
Nystrom 2002	Malmo I	45-70	19.2	-0.01	0.01	42.8%	0.99 [0.97, 1.01]	
Nystrom 2002	Malmo II	43-49	9.1	0.03	0.08	0.8%	1.03 [0.89, 1.20]	
Nystrom 2002	Ostergotland	40-74	17.2	-0.02	0.02	18.6%	0.98 [0.95, 1.01]	
Nystrom 2002	Stockholm	40-64	14.7	-0.01	0.02	10.7%	0.99 [0.95, 1.03]	*
Total (95% CI)						100.0%	0.99 [0.98, 1.00]	
Heterogeneity: Tau ² = 0	0.00; Chi ² = 5.5	7, <u>df</u> = 7 (P	= 0.59); l² = 0%					
Test for overall effect: 2	Z = 1.65 (P = 0.	10)						0.5 0.7 1 1.5 2
^a Median								Mammography +/- CBE Usual Care

Table 8: Stage at diagnosis (RCTs, all ages)

Screening with film mammography (with or without CBE) compared to usual care

Outcomes	Absolute Effects		Relative effect	№ of participants	Quality of the	Comments			
	Risk with Usual Care (Assumed Risk)	Absolute effect (95% CI)	(95% CI)	· (studies)	evidence (GRADE)				
Invasive Breast Cancer Diagnosed at Stage II or higher (all ages)*		3 fewer per 1,000 (from 5 fewer to 1 more)	RR 0.72 (0.49 to 1.06)	Unclear (5 RCTs ^{1.5})	⊕⊖⊖⊖ VERY LOW a,b,c,d,e,I	Using a threshold of 3 fewer breast cancers diagnosed at stage II or higher per 1,000, we are very uncertain whether screening decreases the number of individuals with stage II+			
Range of follow-up (yrs): 5.0 to 10.0	9.1 per 1000					at diagnosis in those at general population risk for breast cancer (all ages).			
Invasive Breast Cancer Diagnosed at Stage II or higher (Ages 40-49 years)* Follow-up (yrs): 7.0	2.6 per 1000	1 more per 1,000 (from 1 more to 3 more)	RR 1.55 (1.23 to 2.11)	Unclear (1 RCT³)	€ VERY LOW f.g.d.h.l	Using a threshold of 3 fewer breast cancers diagnosed at stage II or higher per 1,000, we are very uncertain whether screening makes little to no difference on the number of individuals with stage II+ at diagnosis in those at general population risk for breast cancer (40-49 years).			
Invasive Breast Cancer Diagnosed at Stage II or higher (Ages 50-59 years)*	4.0	0 fewer per 1,000 (from 1 fewer to 2 more)	RR 1.09 (0.82 to 1.45)	Unclear (1 RCT³)	⊕⊖⊖⊖ VERY LOW ^{f,g,d,h,l}	Using a threshold of 3 fewer breast cancers diagnosed at stage II or higher per 1,000, we are very uncertain whether screening makes little to no difference on the number of individuals with stage II+ at diagnosis in those at general			
Follow-up (yrs): 7.0	4.6 per 1000					population risk for breast cancer (50-59 years).			
Invasive Breast Cancer Diagnosed at Stage III or higher (all ages)*		1 fewer per 1,000 (from 1 fewer to 0 fewer)	RR 0.64 (0.47 to 0.88)	Unclear (3 RCTs ^{2,4,5})	€ VERY LOW i,j,d,k,I	Using a threshold of 2 fewer breast cancers being diagnosed at stage III or higher per 1,000, we are very uncertain whether			
Range of follow-up (yrs): 5.0 to 10.0	2.2 per 1000					screening makes little to no difference on the number of individuals with stage III+ at diagnosis in those at general population risk for breast cancer (all ages).			
*Rates calculated using number of partic CI: Confidence interval; RR: Risk ratio	ipants with stage II+ or stage I	II+ reported in Tarone 1995 fo	r included trials and the num	ber of participants randomized	in each trial.				
Bibliography: 1: Swedish Two County (Kopparberg & C	Ostergotland) (Tarone 1995 ³⁶)	2: Malmo I (Tarone	e 1995 ³⁶) 3:	CNBSS 1 (Tarone 1995 ³⁶)	4: HIP (Tarc	one 1995 ³⁶) 5: Stockholm (Tarone 1995 ³⁶)			
3RADE Working Group grades of evidence High quality: We are very confident that the true effect lies close to that of the estimate of the effect Moderate quality: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different Low quality: We have very little confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect Very low quality: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect									

Explanations

a. One study considered quasi-randomised (Stockholm)

b. Downrated once for risk of bias. Randomisation and allocation concealment were either not reported sufficiently (Malmo I, HIP) or there were serious deficiencies in these areas (CNBSS-I, Stockholm).

c. Approximately half of the point estimates in our pooled analysis lie on either side of our threshold. We rated down once for inconsistency.

d. Data are from trials initiated in the 1960s-1990s and the intervention groups were primarily screened with film mammography. Due to advances in mammography technology and treatment practices, we expect that the magnitude of screening effect may differ if applied to today's Canadian screening context. There are no high-quality clinical trials examining the impact of screening on breast cancer screening deaths using contemporary screening methods.

e. Downrated once for imprecision. CI crosses threshold for benefit of breast cancer screening for proportion of patients diagnosed at stage II or higher.

f. Downrated once for risk of bias. High risk of bias due to concerns with randomisation method and allocation concealment (CNBSS I).

g. Not downrated for inconsistency. Single study evaluated outcome.

h. Downrated once for imprecision. Low number of events (fewer than 300) and confidence interval crosses threshold for harm.

i. Downrated once for risk of bias. High risk of bias due to risk of bias in randomization and allocation concealment (Stockholm) and use of local endpoint committee for blinding of outcomes (HIP).

j. All point estimates in our pooled analysis lie to one side of our threshold. We did not rate down for inconsistency.

k. Did not downrate for imprecision. Large population and CI does not cross below the threshold for benefit of breast cancer screening for proportion of population diagnosed at stage III.

I. According to Egger et al.¹¹, 10 trials are needed to asses publication bias. We cannot assess publication bias due to insufficient number of trials, therefore, we did not rate down for publication bias.

	Mammography Usual Care		Risk Ratio		Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Tarone (CNBSS I& II) 1995	200	44925	156	44910	19.8%	1.28 [1.04, 1.58]	
Tarone (HIP) 1995	162	30239	190	30765	19.8%	0.87 [0.70, 1.07]	
Tarone (Malmo I) 1995	190	21088	231	21195	20.0%	0.83 [0.68, 1.00]	
Tarone (Stockholm) 1995	173	39139	210	20978	19.9%	0.44 [0.36, 0.54]	_ _
Tarone (Swedish Two (Kopparbeg/Ostergotland)) 1995	460	38589	453	18582	20.5%	0.49 [0.43, 0.56]	
Total (95% CI)		173980		136430	100.0%	0.72 [0.49, 1.06]	
Total events	1185		1240				
Heterogeneity: Tau ² = 0.18; Chi ² = 87.11, df = 4 (P < 0.000	01); P = 95	5%				-	
Test for overall effect: Z = 1.68 (P = 0.09)							Favours [experimental] Favours [control]

Breast Cancer Diagnosis at stage III or higher

Table 9: Stage at diagnosis (Observational studies, all ages)

Screening with mammography* compared to no screening

Outcomes	Absolute effects		Relative effect	Nº of participants	Quality of the	Comments			
	Risk with Usual Care (Assumed Risk)	Absolute effect (95% CI)	(95% CI)	(studies)	(GRADE)				
Distant degree of spread at diagnosis	NR	Not estimable**	RR 0.44 (0.37 to 0.52)	869,857 (1 study¹)	⊕⊖⊖⊖ VERY LOW a,b.c.d.e	We are very uncertain about if screening with mammography compared to no screening reduces the proportion of individuals with distant degree of breast cancer spread at diagnosis			
Stage II+ at diagnosis	1.81 per 1000	0.51 fewer per 1000 (0.43 fewer to 0.58 fewer)	Incidence Rate ratio 0.72 (0.68 to 0.76)	413,447 (1 study²)	UERY LOW b.c.e	Using a threshold of 3 fewer breast cancers being diagnosed at stage II or higher per 1,000, we are very uncertain whether screening makes little to no difference in the number of individuals with stage II+ at diagnosis in those at general population risk for breast cancer.			
*The corresponding risk (and its 95 **Study did not provide baseline risk CI: Confidence interval; RR: Risk rat	5% confidence interval) is b values for usual care or bre io	ased on the assumed risk east cancer screening grou	t in the comparison group ps to calculate absolute ris	and the relative effect of t k.	he intervention (and	its 95% CI).			
Bibliography: 1: Morrell 2017 ¹⁸	2: Puliti 2017 ³⁷								
GRADE Working Group grades of evidence High quality: We are very confident that the true effect lies close to that of the estimate of the effect Moderate quality: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different Low quality: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect Very low quality: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect									
Explanations									
a. Downrated twice for risk of bias. Study at high	h risk of bias (RoB score for JBI	cohort tool=4/11). Non-screening	population inferred from census	-derived population data rather th	nan individual data and la	ck of reporting on outcome measurement. Lack of adjustment for			

important confounding factors (use of HT), breast density). Unclear report of average follow-up time for population and no description of number of women lost to follow-up.

b. Not downrated for inconsistency. Single study evaluated outcome (unable to evaluate heterogeneity).

c. Not downrated for indirectness. Studies used population-based approach which was reflective of general population

d. Not downrated for imprecision. Unable to calculate absolute effects to determine if benefit for threshold is crossed, so a minimally contextualized approach was used. The total population is large (>2000) and there is a large event rate (>300). Given the large sample sizes and that the confidence interval does not include the null value, an optimal sample size calculation is not warranted.

e. According to Egger et al.¹¹, 10 studies are needed to asses publication bias. We cannot assess publication bias due to insufficient number of trials, therefore, we did not rate down for publication bias.

f. Downrated once for risk of bias. Study at moderate risk of bias (RoB score for JBI cohort tool=7/11). Lack of adjustment for important confounding factors (use of HRT, breast density). No description of number of women lost to follow-up.

g. Not downrated for imprecision. Large population and CI does not cross threshold for breast cancer screening benefit for stage III at diagnosis.

Table 10: Stage distribution of Breast Cancer (Quasi-experimental, Sub-groups)

Before-and-after BC screening program implementation/ Jurisdictions with or without BC screening program in 40-49 years

Outcomes	Rates		Absolute Effect	Relative effect	Nº of participants	Risk of bias
	Before BC screening implementation (N)	After BC screening implementation (N)		(95% CI)	(studies)	(Score)
Advanced stage defined as stages III and IV as per the TNM classification Sub-group: 70-75 years (Screening uptake period; 1998-2002) ²	0.59 per 1,000 person-years	0.46 per 1,000 person- years	0.13 fewer per 1,000 person-years	Incidence Rate Ratio: 0.79¹	N= 38442 (1 study) ^A	⊕⊖⊖⊖ VERY LOW ^{3,6,7,8}
Follow-up (yrs.): Unavailable				(0.71100.87)		
Advanced stage defined as stages III and IV as per the TNM classification			0.03 more per 1,000			
Sub-group: 76-80 years (Screening uptake period; 1998-2002) ²	0.66 per 1,000 person-years	0.69 per 1,000 person- years	person-years	1.04 ¹ (0.94 to 1.17)	N= 38442 (1 study) ^A	⊕⊖⊖⊖ VERY LOW ^{3,6,7,8}
Follow-up (yrs.): Unavailable						
Advanced stage defined as stages III and IV as per the TNM classification			0.07 fewer per 1,000 person-years			
Sub-group: 70-75 years (Screening uptake period; 2003-2011) ²	0.59 per 1,000 person-years	0.52 per 1,000 person- years		Incidence Rate Ratio: 0.88 ¹ (0.81 to 0.97) ¹	N= 38442 (1 study) ^A	$\oplus \bigcirc \bigcirc \bigcirc$ VERY LOW ^{3,6,7,8}
Follow-up (yrs.): Unavailable						
Advanced stage defined as stages III and IV as per the TNM classification		0.67 per 1.000 person	0.01 more per 1,000 person-years	Incidence Data Datio	N= 29/42 (1 study) A	
Sub-group: 76-80 years (Screening uptake period; 2003-2011) ²	0.66 per 1,000 person-years	years		1.02 ¹ (0.92 to 1.13)	N- 30442 (T Sludy)^	₩ WERY LOW ^{3,6,7,8}
Follow-up (yrs.): Unavailable						
Sub-group: Late stage (Regional) Age group: Women aged ≥40 years (all ages) Follow-up (yrs.): Unavailable	0.87 per 1,000 person-years	0.77 per 1,000 person- years	0.10 fewer per 1,000 person-years	Unavailable	Unavailable Error! Bookmark not defined. (1 Study) ^B	⊕○○○ VERY LOW ^{4,6,7,8}

Outcomes	Rates		Absolute Effect	Relative effect	Nº of participants	Risk of bias
	Before BC screening implementation (N)	After BC screening implementation (N)		(95% CI)		(Score)
Sub-group: Late stage (Distant) Age group: Women aged ≥40 years (all ages) Follow-up (yrs.): Unavailable	0.17 per 1,000 person-years	0.18 per 1,000 person- years	0.01 more per 1,000 person-years	Unavailable	Unavailable Error! Bookmark not defined. (1 Study) ^B	⊕⊖⊖⊖ VERY LOW ^{4,6,7,8}
Proportion of BC diagnosed at Stage II Subgroup: 40-49 years	Jurisdictions without organised screening programs for women 40–49 with annual recall: 437 per 1,000	Jurisdictions with organised screening programs for women 40–49 with annual recall: 407 per 1,000	30 fewer per 1,000	Unavailable p < 0.001	Unavailable (1 Study) ^c	⊕⊖⊖⊖ VERY LOW ^{5,6,7,9}
Proportion of BC diagnosed at Stage III Subgroup: 40-49 years	Jurisdictions without organised screening programs for women 40–49 with annual recall: 183 per 1,000	Jurisdictions with organised screening programs for women 40–49 with annual recall: 156 per 1,000	27 fewer per 1,000	Unavailable p < 0.001	Unavailable (1 Study) ^c	€ VERY LOW 5.6.7.9
Proportion of BC diagnosed at Stage IV Subgroup: 40-49 years	Jurisdictions without organised screening programs for women 40–49 with annual recall: 46 per 1,000	Jurisdictions with organised screening programs for women 40–49 with annual recall: 39 per 1,000	7 fewer per 1,000	Unavailable p = 0.001	Unavailable (1 Study) ^c	€CO VERY LOW 5.6,7,9
Proportion of BC diagnosed at Stage II Subgroup: 50-59 years	Jurisdictions without organised screening programs for women 40–49 with annual recall: 372 per 1,000	Jurisdictions with organised screening programs for women 40–49 with annual recall: 360 per 1,000	12 fewer per 1,000	Unavailable p = 0.003	Unavailable (1 Study) ^c	€ VERY LOW 5.6.7.9

Outcomes	Rates		Absolute Effect	Relative effect	№ of participants	Risk of bias
	Before BC screening implementation (N)	After BC screening implementation (N)		(95% CI)	(studies)	(Score)
Proportion of BC diagnosed at Stage III Subgroup: 50-59 years	Jurisdictions without organised screening programs for women 40–49 with annual recall: 136 per 1,000	Jurisdictions with organised screening programs for women 40–49 with annual recall: 123 per 1,000	13 fewer per 1,000	Unavailable p < 0.001	Unavailable (1 Study)¢	€ VERY LOW 5.6.7.9
Proportion of BC diagnosed at Stage IV Subgroup: 50-59 years	Jurisdictions without organised screening programs for women 40–49 with annual recall: NR	Jurisdictions with organised screening programs for women 40–49 with annual recall: NR	NR	Unavailable	Unavailable (1 Study) c	€ VERY LOW 5.6,7,9
Bibliography:						
A: de Glas 2014 ³⁸ B: Helvie	2014 ³⁹	C. Wilkinson 202240				

Explanations

- 1. Unadjusted incidence rate ratio (IRR)
- 2. Comparison of screening period to pre-screening period of 1995-1997.
- 3. Study at Low risk of bias (RoB score for JBI Quasi-experimental tool=7/9). No information on loss-to follow-up patients and reliability of outcome measures.
- 4. Study at moderate risk of bias (RoB score for JBI Quasi-experimental tool=6/9). No information on control group, loss-to follow-up patients and reliability of outcome measures
- 5. Study at low risk of bias (RoB score for JBI Quasi-experimental tool=8/9). Noted that there may be differences in access to care across screening and non-screening jurisdictions beyond screening that could impact the stage of BC diagnosis.
- 6. Unable to evaluate imprecision using thresholds, as the baseline rates were not available to allow the calculation of absolute effects. Therefore, a minimally contextualized approach was used. The total population is large (>2000) and there is a large event rate (>300). We did not downrate for imprecision.
- 7. Not downrated for inconsistency. Single study evaluated outcome (unable to evaluate heterogeneity).
- 8. Downrated once for indirectness. Pre-screening periods ranged across studies between 1958 and 2004. There are population-level differences that may affect mortality beyond the introduction of mammography screening between the pre-screening period and the post-screening period.
- Downrated once for indirectness. Study assessed the effect of screening programs on outcomes of interest, rather than the effect of individual-level mammography screening. Not all women in screening jurisdictions participated in screening and it is
 unknown if BCs were diagnosed by screening or through other means (e.g., interval cancers, symptoms).

Table 11: Overdiagnosis over 10 years (RCTs, stratified by age)

Mammography +/- CBE compared to Usual Care

Outcomes	Absolute effects		Relative effect	Nº of participants	Quality of the	Comments
	Incident rates with usual care (Assumed rate) ‡	Absolute risk (95% Cl)	(95% CI)	(studies)	evidence (GRADE)	
Main analysis: Overdiagnosis invasive + in situ cancers (40-49 years)	17.7 per 1,000	1.95 more per 1,000 (from 0.89 more to 3.01 more)	RR 1.11 (1.05 to 1.17)	293,152 (3 ¹⁻³ RCTs) ª	⊕⊖⊖⊖ VERY LOW a,b,c,d,e	Using a threshold of 5, we are very uncertain whether screening leads to at least 5 overdiagnosed cancers in individuals aged 40 to 49 years.
Range of follow-up (yrs): 9 to 15						
Other analysis: Overdiagnosis invasive cancers only (40-49 years)	16.7 per 1,000	1 more per 1,000 (from 0 to 2 more)	RR 1.06 (1.00 to 1.12)	293,152 (3 ¹⁻³ RCTs) ª	₩₩ LOW a.c.d.e.f	Using a threshold of 5, screening may lead to little to no difference in overdiagnosed invasive cancers in individuals aged 40 to 49 years.
Range of follow-up (yrs): 9 to 15						
Main analysis: Overdiagnosis invasive + in situ cancers (50-59 years) Range of follow-up (yrs): 10 to 15	24.1 per 1,000	1.93 more per 1,000 (from 0.24 more to 3.86 more)	RR 1.08 (1.01 to 1.16)	132,231 (2 ^{1,2} RCTs) ^a	⊕⊕⊖⊖ LOW a,c,d,e,f	Using a threshold of 5, screening may lead to little to no difference in overdiagnosed cancers in individuals aged 50 to 59 years.
Other analysis: Overdiagnosis invasive cancers only (50-59 years) Range of follow-up (yrs): 10 to 15	23.5 per 1,000	1.18 more per 1,000 (from 0.71 fewer to 3.06 more)	RR 1.05 (0.97 to 1.13)	132,231 (2 ^{1,2} RCTs) ^a	⊕⊕⊖⊖ LOW a,c,d,e,f	Using a threshold of 5, screening may lead to little to no difference in overdiagnosed invasive cancers in individuals aged 50 to 59 years.

Mammography +/- CBE compared to Usual Care

Outcomes	Absolute effects		Relative effect	Nº of participants (studies)	Quality of the evidence (GRADE)	Comments
	Incident rates with usual care (Assumed rate) ‡	Absolute risk (95% Cl)	(95% CI)			

‡The assumed rate was calculated using the control event rates across included studies. **CI:** Confidence interval

Bibliography: 1: Malmo I (Zackrisson 2006⁴¹); 2: CNBSS 1 & 2 (Baines 2016⁴²); 3: AGE (Duffy 2020⁴³)

GRADE Working Group grades of evidence

High quality: We are very confident that the true effect lies close to that of the estimate of the effect

Moderate quality: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different

Low quality: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect

Very low quality: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect

Explanations

a. We downrated once for risk of bias. Randomisation and allocation concealment were either not reported or there were serious deficiencies in these areas.

b. Approximately half point estimates in our pooled estimate cross our threshold, we downrated once for inconsistency.

c. Downrated once for indirectness. Data are from trials initiated in the 1960s-1990s and some trial estimates included participants outside the previously defined age decades (e.g., in the 40-49 age decade, one study included some individuals in their 50s).

d. Not rated down for imprecision. Clinical decision threshold set at 5.

e. Not downrated for publication bias. Cannot assess publication bias (insufficient number of trials).

f. Not downrated for inconsistency; all point estimates in our pooled analysis lie to one side of our threshold.

Table 11 forest plots

Age 40-49 (invasive + in situ)

Interve	ntion	Con	trol		Risk Ratio	Risk Ratio		
Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl		
953	53914	1731	107007	46.4%	1.09 [1.01, 1.18]			
958	44981	828	44967	33.6%	1.16 [1.05, 1.27]			
540	21088	507	21195	19.9%	1.07 [0.95, 1.21]	+ - -		
	119983		173169	100.0%	1.11 [1.05, 1.17]	◆		
2451		3066						
Heterogeneity: Tau ² = 0.00; Chi ² = 1.27, df = 2 (P = 0.53); I ² = 0% Test for overall effect: Z = 3.81 (P = 0.0001) Interver								
1	Interve Events 953 958 540 2451 1.27, df = 2 (0.0001)	Intervention Events Total 953 53914 958 44981 540 21088 119983 2451 1.27, df = 2 (P = 0.53) 0.0001)	Intervention Con Events Total Events 953 53914 1731 958 44981 828 540 21088 507 119983 2451 3066 1.27, df = 2 (P = 0.53); I ² = 0% 0.0001)	Intervention Control Events Total Events Total 953 53914 1731 107007 958 44981 828 44967 540 21088 507 21195 119983 173169 173169 2451 3066 1.27, df = 2 (P = 0.53); I ² = 0% 0.0001)	Intervention Control Events Total Events Total Weight 953 53914 1731 107007 46.4% 958 44981 828 44967 33.6% 540 21088 507 21195 19.9% 119983 173169 100.0% 2451 3066 1.27, df = 2 (P = 0.53); I ² = 0% 500001)	Intervention Control Risk Ratio Events Total Events Total Weight M-H, Random, 95% Cl 953 53914 1731 107007 46.4% 1.09 [1.01, 1.18] 958 44981 828 44967 33.6% 1.16 [1.05, 1.27] 540 21088 507 21195 19.9% 1.07 [0.95, 1.21] 119983 173169 100.0% 1.11 [1.05, 1.17] 2451 3066 1.27, df = 2 (P = 0.53); I ² = 0% -<		

Age 40-49 (invasive only)

		Interve	ntion	Con	trol		Risk Ratio		Risk Ratio
Study or Subgroup		Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
Malmo I	Age:[45-54]	481	21088	454	21195	19.7%	1.06 [0.94, 1.21]	2006	
CNBSS I	Age:[40-49]	912	44981	817	44967	35.5%	1.12 [1.02, 1.23]	2016	
AGE	Age:[39-41]	835	53914	1628	107007	44.8%	1.02 [0.94, 1.11]	2020	
Total (95% CI)			119983		173169	100.0%	1.06 [1.00, 1.12]		•
Total events		2228		2899					
Heterogeneity: Tau ² = 0.00; Chi ² = 2.08, df = 2 (P = 0.35); l ² = 4% 0.5 0.7 1 1.5 2 Test for overall effect: Z = 2.04 (P = 0.04) Intervention Control Control Intervention Control									

Age 50-59 (invasive + in situ)

		Interve	ntion	Cont	rol		Risk Ratio	Risk Ratio
Study or Subgroup		Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
CNBSS1&2	Age:[50-59]	942	44981	898	44967	55.2%	1.05 [0.96, 1.15]	
Malmo I	Age:[55-69]	780	21088	698	21195	44.8%	1.12 [1.02, 1.24]	
Total (95% CI)			66069		66162	100.0%	1.08 [1.01, 1.16]	◆
Total events		1722		1596				
Heterogeneity: Tau² = Test for overall effect	= 0.00; Chi² = 0.9 2 Z = 2.28 (P = 0	0.5 0.7 1 1.5 2 Intervention Control						

Age 50-59 (invasive only)

		Interve	ntion	Cont	rol		Risk Ratio	Risk Ratio
Study or Subgroup		Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
CNBSS1&2	Age:[50-59]	899	44981	891	44967	54.9%	1.01 [0.92, 1.11]	-#-
Malmo I	Age:[55-69]	719	21088	662	21195	45.1%	1.09 [0.98, 1.21]	+=-
Total (95% CI)			66069		66162	100.0%	1.05 [0.97, 1.13]	•
Total events		1618		1553				
Heterogeneity: Tau ² = 0.00; Chi ² = 1.25, df = 1 (P = 0.26); I ² = 20%								
Test for overall effect: Z = 1.13 (P = 0.26)								Intervention Control

Table 12: Overdiagnosis (Observational studies, stratified by age)

Mammography +/- CBE compared to Usual Care

Outcomes	Summary‡	№ of participants (studies)	Quality of the evidence (GRADE)	Comments
Overdiagnosis invasive + in situ cancers (40-49 years) Range of follow-up (yrs): 8 years Screening interval: biennial	One study reported the number of invasive and in situ breast cancers among women 49 to 52 years and found a rate of 3.87 per 1,000 person years in the screened group and 2.45 per 1,000 person years in the unscreened group [RR 1.49 (95% CI 1.18 to 1.88)].	Unclear (1 study)¹	⊕OOO VERY LOW ªe	We are very uncertain whether screening leads to at least 5 overdiagnosed cancers in individuals aged 40 to 49 years.
Overdiagnosis invasive + in situ cancers (50-59 years) Range of follow-up (yrs): 8 to 13 years Screening interval: biennial	Two studies reported the number of invasive and in situ breast cancers. One study reported among 53- to 59-year-olds and found a rate of 2.77 per 1,000 person years in the screened group and 3.19 per 1,000 person years in the unscreened group. The second study found a rate of 3.74 per 1,000 individuals in the screening group and 3.40 per 1,000 individuals in the control group among 50- to 69-year-olds.	Unclear (2 studies) ^{1,2}	UERY LOW adg	We are very uncertain whether screening leads to at least 5 overdiagnosed cancers in individuals aged 50 to 59 years.
Overdiagnosis invasive + in situ cancers (60-69 years) Range of follow-up (yrs): 8 to 13 years Screening interval: biennial	Two studies reported the number of invasive and in situ breast cancers. One study reported among 60- to 69-year-olds and found a rate of 3.59 per 1,000 person years in the screened group and 3.44 per 1,000 person years in the unscreened group. The second study found a rate of 3.74 per 1,000 individuals in the screening group and 3.40 per 1,000 individuals in the control group among 50- to 69-year-olds.	Unclear (2 studies) ^{1,2}	UERY LOW ad-g	We are very uncertain whether screening leads to at least 5 overdiagnosed cancers in individuals aged 60 to 69 years.
Overdiagnosis invasive + in situ cancers (70-74 years) Range of follow-up (yrs): 15 years Screening interval: 3 years	One study reported the number of invasive and in situ breast cancers among women 70 to 74 years and found a rate of 61 per 1,000 individuals in the screened group and 41 per 1,000 individuals in the unscreened group [HR 1.47 (95% CI 1.19 to 1.81)].	19,925 (1 study) ³	⊕⊕⊖⊖ LOW b,d,e,h,i	Screening may lead to at least 5 overdiagnosed cancers in 1,000 individuals aged 70 to 74 years.
Overdiagnosis invasive + in situ cancers (75 years and older) Range of follow-up (yrs): 15 years Screening interval: 3 years	One study reported the number of invasive and in situ breast cancers among women 75 to 84 years and found a rate of 49 per 1,000 individuals in the screened group and 26 per 1,000 individuals in the unscreened group (HR 1.92 (95% CI 1.60 to 2.30)]. The same study reported for those aged 85 years or older and found a rate of 28 per 1,000 individuals in the screened group and 13 per 1,000 individuals in the unscreened group [HR 2.20 (95% CI 1.43 to 3.40)].	34,710 (1 study) ³	⊕⊕⊖⊖ LOW b,d,e,h,i	Screening may lead to at least 5 overdiagnosed cancers in 1,000 individuals aged 75 years or older.
Mammography +/- CBE compared to Usual Care

Summary ‡	№ of participants	Quality of the	Comments
	(studies)	evidence	
		(GRADE)	
	Summary‡	Summary‡ Nº of participants (studies)	Summary‡ Nº of participants Quality of the evidence (Studies) Quality of the evidence (GRADE)

[‡] We did not pool due to variations in reporting (e.g., different denominators such as person years). Results are narratively summarized. **CI:** Confidence interval, **RR:** relative risk, **HR:** hazard ratio

Bibliography: 1 Lund 201844; 2: Puliti 201737; 3: Richman 202345

GRADE Working Group grades of evidence

High quality: We are very confident that the true effect lies close to that of the estimate of the effect

Moderate quality: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different

Low quality: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect

Very low quality: We have very little confidence in the effect estimate. The true effect is likely to be substantially different from the estimate of effect

Explanations

a. Downrated once for risk of bias. One study had a follow up time deemed not sufficient to be long enough for outcomes to occur (at least 10-15 years) and there are concerns with adjusting for lead time or self selection bias.

b. Not downrated for inconsistency. One study assessed.

c. Downrated once for indirectness. We reported what study authors report and some study subjects in their 50s were included in the estimate, it's not truly a reflection of the desired age group.

d. Not downrated for imprecision. Narrative analysis. Clinical decision threshold of 5 more or fewer. Unable to assess OIS.

e. According to Egger et al.¹¹, 10 studies are needed to asses publication bias. We cannot assess publication bias due to insufficient number of trials, therefore, we did not rate down for publication bias.

f. Downrated once for inconsistency. Reporting of estimates varied between studies. One cannot be confident that the same methodological approach was used.

g. Downrated once for indirectness. We reported what study authors report and some study subjects in their 50s or 60s were missing in the estimate, it's not truly a reflection of the desired age group.

h. Not downrated for risk of bias.

i. Not downrated for indirectness.

Screening with mammography (with or without CBE) compared to usual care								
Outcomes	Impact	№ of participants (studies)	Quality of the evidence (GRADE)	Comments				
Invasive and DCIS (All ages) – screening interval <=12 months # R: 44,925 # A: Unclear Range of follow-up (yrs): 5.0	3.9 (95% CI 3.4 to 4.5) interval cancers (Invasive and DCIS) were detected in the mammography arm per 1000 women (176/44,925 randomized) over the follow-up period of five years (screening interval 12 months).	Unclear (1 RCT) ¹	⊕⊕⊖⊖ LOW a.b.c.dJ	Using a threshold of 6 interval cancers over 10 years, screening may lead to little to no difference in interval cancers (invasive and DCIS). We cannot comment on the comparative effectiveness of breast cancer screening for interval cancers, as interval cancers detected by screening cannot be measured in a non-screening comparator group. Interpretation of this estimate should be informed by additional data that is reflective of the current Canadian context.				
Invasive and DCIS (All ages) – screening interval 13-24 months # R: 62,222 # A: Unclear Range of follow-up (yrs): 4.8-7.0	3.1 (95% CI 2.6 to 3.7) interval cancers (Invasive and DCIS) were detected in the mammography arm per 1000 women over the follow-up period of 4.8-7 years (screening interval 18 months).	Unclear (2 RCTs) ^{2.3}	⊕⊖⊖⊖ VERY LOW e.f.c.dJ	Using a threshold of 6 interval cancers over 10 years, we are very uncertain if screening leads to little to no difference in interval cancers (invasive and DCIS). We cannot comment on the comparative effectiveness of breast cancer screening for interval cancers, as interval cancers detected by screening cannot be measured in a non-screening comparator group. Interpretation of this estimate should be informed by additional data that is reflective of the current Canadian context.				

Table 13: Interval cancers (Intervention arm only - descriptive data of RCTs)

Screening with mammography (with or without CBE) compared to usual care								
Outcomes	Impact	№ of participants (studies)	Quality of the evidence (GRADE)	Comments				
Invasive and DCIS (All ages) – screening interval >24 months # R: 77,080 # A: Unclear Range of follow-up (yrs): 7.0	3.9 (95% CI 3.4 to 4.3) interval cancers (Invasive and DCIS) were detected in the mammography arm per 1000 women (298/77,080 randomised) over the follow-up period of 7 years (screening interval 23-33 months).	Unclear (1 RCT) ⁴	DOW a.b.c.d.j	Using a threshold of 6 interval cancers over 10 years, screening may lead to little to no difference in interval cancers (invasive and DCIS). We cannot comment on the comparative effectiveness of breast cancer screening for interval cancers, as interval cancers detected by screening cannot be measured in a non-screening comparator group. Interpretation of this estimate should be informed by additional data that is reflective of the current Canadian context.				
Invasive Only (All ages) – 18- month screening interval # R: 61,968 # A: Unclear Mean follow-up (yrs): 4.8-7.0	2.8 (95% CI 2.4 to 3.3) interval cancers (Invasive cancers) were detected in the mammography arm per 1000 women over the follow-up period of 4.8-7 years (screening interval 18 months).	Unclear (2 RCTs) ^{2,5}	⊕⊖⊖⊖ VERY LOW e.g.c.dj	Using a threshold of 6 interval cancers over 10 years, we are very uncertain if screening leads to little to no difference in interval cancers (invasive only). We cannot comment on the comparative effectiveness of breast cancer screening for interval cancers, as interval cancers detected by screening cannot be measured in a non-screening comparator group. Interpretation of this estimate should be informed by additional data that is reflective of the current Canadian context.				

Screening with mammography (with or without CBE) compared to usual care								
Outcomes	Impact	№ of participants (studies)	Quality of the evidence (GRADE)	Comments				
DCIS Only (All ages) – 18-month screening interval # R: 61,968 # A: Unclear Mean follow-up (yrs): 4.8-7.0	0.2 (95% CI 0.1 to 0.5) interval cancers (DCIS cancers) were detected in the mammography arm per 1000 women over the follow-up period of 4.8-7 years (screening interval 18 months).	Unclear (2 RCTs) ^{2.5}	€ VERY LOW e.h.c.dj	Using a threshold of 6 interval cancers over 10 years, we are very uncertain if screening leads to little to no difference in interval cancers (DCIS). We cannot comment on the comparative effectiveness of breast cancer screening for interval cancers, as interval cancers detected by screening cannot be measured in a non-screening comparator group. Interpretation of this estimate should be informed by additional data that is reflective of the current Canadian context.				
Age group 39-49 years (Invasive and DCIS) – 18-month screening interval # R: 11,724 # A: Unclear	3.0 (95% CI 2.1 to 4.2) interval cancers (Invasive and DCIS) were detected in the mammography arm per 1000 women (35/11,724 randomised) over the follow-up period of 4.8-7 years (screening interval 18 months).	Unclear (1 RCT)⁵	DOW i.b.c.dj	Using a threshold of 6 interval cancers over 10 years, screening may lead to little to no difference in interval cancers (invasive and DCIS). We cannot comment on the comparative				
Mean follow-up (yrs): 4.8-7.0				effectiveness of breast cancer screening for interval cancers, as interval cancers detected by screening cannot be measured in a non-screening comparator group. Interpretation of this estimate should be informed by additional data that is reflective of the current Canadian context.				

Screening with mammography (with or without CBE) compared to usual care								
Outcomes	Impact	№ of participants (studies)	Quality of the evidence (GRADE)	Comments				
Age group 39-49 years (Invasive Only) – 18-month screening interval	2.8 (95% CI 1.9 to 3.9) interval cancers (Invasive) were detected in the mammography arm per 1000 women (33/11,724 randomised) over the follow-up period of 4.8-7 years (screening interval 18 months).	Unclear (1 RCT)⁵	LOW i,b,c,dj	Using a threshold of 6 interval cancers over 10 years, screening may lead to little to no difference in interval cancers (invasive).				
# R: 11,724 # A: Unclear Mean follow-up (yrs): 4.8-7.0				We cannot comment on the comparative effectiveness of breast cancer screening for interval cancers, as interval cancers detected by screening cannot be measured in a non-screening comparator group. Interpretation of this estimate should be informed by additional data that is reflective of the current Canadian context.				
Age group 39-49 years (DCIS Only) – 18-month screening interval	0.2 (95% CI 0.02 to 0.6) interval cancers (DCIS) were detected in the mammography arm per 1000 women (2/11,724 randomised) over the follow-up period of 4.8-7 years (screening interval 18 months).	Unclear (1 RCT)⁵	⊕⊕⊖⊖ LOW i,b,c,dj	Using a threshold of 6 interval cancers over 10 years, screening may lead to little to no difference in interval cancers (DCIS).				
# R: 11,724 # A: Unclear Mean follow-up (yrs): 4.8-7.0				We cannot comment on the comparative effectiveness of breast cancer screening for interval cancers, as interval cancers detected by screening cannot be measured in a non-screening comparator group. Interpretation of this estimate should be informed by additional data that is reflective of the current Canadian context.				

Screening with mammography (with or without CBE) compared to usual care							
Outcomes	Impact	№ of participants (studies)	Quality of the evidence (GRADE)	Comments			
Age group 50-59 years (Invasive and DCIS) – 18-month screening interval	1.9 (95% CI 1.2 to 3.0) interval cancers (Invasive; no DCIS detected) were detected in the mammography arm per 1000 women (19/9,926 randomised) over the follow-up period of 4.8-7 years (screening interval 18 months).	Unclear (1 RCT)⁵	DOW i,b,c,dj	Using a threshold of 6 interval cancers over 10 years, screening may lead to little to no difference in interval cancers (invasive and DCIS)			
# R: 9,926 # A: Unclear Mean follow-up (yrs): 4.8-7.0				We cannot comment on the comparative effectiveness of breast cancer screening for interval cancers, as interval cancers detected by screening cannot be measured in a non-screening comparator group. Interpretation of this estimate should be informed by additional data that is reflective of the current Canadian context.			
Bibliography: 1: CNBSS 1 & 2 (Miller 2014 ⁹) 4: Swedish Two County (Tabar 2011	2: Stockholm (Frisell 1997 ³²) 3. 7) 5: Gothenburg (Bjurstam 2003 ¹²)	Gothenburg (Bjurstam :	201646)				
Explanations							

a. Downrated once for risk of bias due to a lack of reporting for how interval cancers were detected and unclear reporting on who was used in the analysis.

b. Not downrated for inconsistency. Single study evaluated for outcome.

c. Downrated once for indirectness. Data are from trials initiated in the 1960s-1990s and the intervention groups were primarily screened with film mammography. Due to advances in mammography technology and treatment practices, we expect that the magnitude of screening effect may differ if applied to today's Canadian screening context. There are no high-quality clinical trials examining the impact of screening on interval cancers using contemporary screening methods.

d. The 95% CI does not cross the clinical decision threshold; therefore, we did not rate down for imprecision.

e. Downrated once for risk of bias. Studies ranged from moderate to high risk of bias. Lack of reporting for how interval cancers were detected and unclear reporting on who was used in the analysis.

f. Inconsistency is moderately high (I[^]2 = 61%). Rated down once.

g. Inconsistency is moderately high (I² = 52%). Rated down once.

h. Inconsistency is moderately high (I^2 = 57%). Rated down once.

i. Downrated once for risk of bias. Lack of reporting for how interval cancers were detected and missing important demographic details in intervention group.

j. According to Egger et al.11, 10 trials are needed to asses publication bias. We cannot assess publication bias due to insufficient number of trials, therefore, we did not rate down for publication bias.

Table 13 forest plots

Forest plot for Invasive and DCIS (All ages):

Study	Events	Total	Events per 1000 observations	Event rate	95%-Cl
Screening.interval = <=12 mor Miller 2014 (<=12 months)	nths 176	44925		- 3.92	[3.36; 4.54]
$\label{eq:scenario} \begin{array}{l} \mbox{Screening.interval} = 13\text{-}24\mbox{ monopole} \\ \mbox{Frissell 1997 (13\text{-}24\mbox{months})} \\ \mbox{Bjurstam 2016 (13\text{-}24\mbox{months})} \\ \mbox{Random effects model} \\ \mbox{Heterogeneity:} \end{tabular} \end{tabular} \begin{array}{l} \mbox{Amount} \\ \mbox{Bigs} \\ \mbox{Amount} \\ \mbox{Amount} \\ \mbox{Bigs} \\ \mbox{Amount} \\ \mbox{Bigs} \\$	nths 135 57 25, p = 0.1	40318 21904 62222 1		3.35 2.60 3.06	[2.81; 3.96] [1.97; 3.37] [2.57; 3.65]
Screening.interval = >24 mont Tabar 2011 (>24 months) Heterogeneity: $I^2 = 68\%$, $\tau^2 = 0.011$ Test for subgroup differences: $\chi_2^2 =$	ths 298 09, <i>p</i> = 0.0 = 5.63, df =	77080 2 Г 2 (р = 020€	6) 2.5 3 3.5 4 4	ר ז ו.5	[3.44; 4.33]

- Notes: Rates presented per 1000 women
- Follow-up rates varied between studies: Miller 5.0 years, Frissell and Bjurstam 4.8-7.0 years, Tabar 7.0 years

Forest plot for Invasive-only interval cancers (All ages):

- Notes: Rates presented per 1000 women
- Follow-up rates varied between studies: 4.8-7.0 years

Forest plot for DCIS-only interval cancer (All ages):

Study	Events Total	Events per 1000 observations	Event rate 95%-CI
Frissell 1997 Bjurstam 2003	12 40318 2 21650 —		- 0.30 [0.15; 0.52] 0.09 [0.01; 0.33]
Random effects me Heterogeneity: $l^2 = 57$	odel 61968 $7\%, \tau^2 = 0.0452, p = 0.13$		0.21 [0.10; 0.46]
	,, p	0.1 0.2 0.3 0.4 0	.5

- Notes: Rates presented per 1000 women
- Follow-up rates varied between studies: 4.8-7.0 years

Interval Cancers – Age Subgroups

Study	Events	Total	Events per 1000 observations	Event rate 95%-CI
Category = Invasive and DCI	s			
Bjurstan 2002 (Age=39-49)) 35	11724		2.99 [2.08; 4.15]
Bjurstan 2002 (Age=50-59)) 19	9926		1.91 [1.15; 2.99]
Category = Invasive				
Bjurstan 2002 (Age=39-49)	33	11724		2.81 [1.94; 3.95]
Bjurstan 2002 (Age=50-59)	19	9926		1.91 [1.15; 2.99]
Category = DCIS				
Bjurstan 2002 (Age=39-49)	2	11724		0.17 [0.02; 0.62]
Bjurstan 2002 (Age=50-59)	0	9926 -	-	0.00 [0.00; 0.37]
		0	1 2 3 4	

• Notes: Rates presented per 1000 women

• Follow-up rate ranged between 4.8-7.0 years

Table 14: Treatment-related morbidity (RCTs, all ages)

Outcomes	Absolute effects		Relative effect № of participants	Quality of the	Comments	
	Risk with Usual Care (Assumed Risk)**	Absolute effect (95% CI)	(95% CI)	(studies)	evidence (GRADE)	
Number of mastectomies Mean follow up: 7-9 years	9.2 per 1000	1.84 more per 1000 (from 1.01 more to 2.76 more)	RR 1.20 (1.11 to 1.30)	250479 (5 RCTs ¹⁻⁵)	⊕⊖⊖⊖ VERY LOW ab.c.d.i	Using a threshold of 2 fewer breast cancers requiring a full mastectomy per 1,000, we are very uncertain whether screening makes little to no difference in the number of mastectomies over 7-9 years in those in a general population.
Number treated with radiotherapy Mean follow up: 7-9 years	8.9 per 1000	2.85 more per 1000 (from 1.42 more to 4.45 more)	RR 1.32 (1.16 to 1.50)	100383 (2 RCTs ^{3.4})	⊕⊕⊖O LOW beifgi	Using a threshold of 5 fewer breast cancers requiring radiotherapy per 1,000, screening may make little to no difference in the number treated with radiotherapy over 7-9 years in those in a general population.
Number treated with chemotherapy Mean follow up: 7-9 years	3.6 per 1000	0.14 fewer per 1000 (from 0.79 fewer to 0.68 more)	RR 0.96 (0.78 to 1.19)	100383 (2 RCTs ^{3,4})	⊕⊕⊖O LOW b.e.f.h.i	Using a threshold of 2 fewer breast cancers requiring chemotherapy per 1,000, screening may make little to no difference in the number treated with chemotherapy over 7-9 years in those at a general population risk of breast cancer.
*The corresponding risk (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI). **The overall event rate in the usual care group across included trials was used for the baseline risk. CI: Confidence interval; RR: Risk ratio						
Bibliography: 1: CNBSS 1 (Gøtzsche 2013 ⁴⁷) Stockholm (Gøtzsche 2013 ⁴⁷)	2: CNBSS	S 2 (Gøtzsche 201347)	3: Malmo I (Gøt	zsche 201347)	4: Swedish Two Cou	unty (Kopparberg) (Gøtzsche 201347) 5:
GRADE Working Group grades of evidence High quality: We are very confident that the true effect lies close to that of the estimate of the effect Moderate quality: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different						

Screening with mammography (with or without CBE) compared to usual care

Very low quality: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect

Explanations

a. Downrated once for risk of bias. Randomisation and allocation concealment were either not reported (Malmo I, Swedish two county [Kopparberg]) or there were serious deficiencies in these areas (CNBSS 1&2, Stockholm).

b. All point estimates in our pooled analysis lie to one side of our threshold. We did not rate down for inconsistency.

c. Downrated once for indirectness. Data are from trials initiated in the 1960s-1990s and the intervention groups were primarily screened with film mammography. Due to advances in mammography technology and treatment practices, we expect that the magnitude of screening effect may differ if applied to today's Canadian screening context. There are no high-quality clinical trials examining the impact of screening on breast cancer treatment-related morbidity using contemporary screening methods. For some studies, the control group received screening after the screening period (Stockholm and Swedish Two County [Kopparberg]).

d. Downrated once for imprecision. CI crosses threshold for breast cancer screening harm for breast cancers requiring a full mastectomy (versus lumpectomy).

e. Downrated once for risk of bias. Randomisation and allocation concealment were not reported (Malmo I, Swedish two county [Kopparberg]).

f. Downrated once for indirectness. Trial data is from trials mainly initiated in the 1970s-1980s and the intervention groups were primarily screened with film mammography. Due to advances in mammography technology and treatment practices, we expect that the magnitude of screening effect would differ if applied to today's Canadian screening context. In one of the studies, the control group received screening after the screening period (Swedish Two County [Kopparberg]).

g. Not downrated for imprecision. The CI does not cross the threshold for breast cancer screening harm for breast cancers requiring radiotherapy.

h. Not downrated for imprecision. The CI does not cross the threshold for breast cancer screening benefit or harm for breast cancers requiring chemotherapy.

i. According to Egger et al.11, 10 trials are needed to asses publication bias. We cannot assess publication bias due to insufficient number of trials, therefore, we did not rate down for publication bias.

Table 15: Treatment-related morbidity (Observational studies, all ages, adherence to screen analysis)

Screening with mammography* compared to no screening

Outcomes	Absolute effects		Relative effect № of participants		Quality of the	Comments
	Risk with Usual Care (Assumed Risk)	Absolute effect (95% Cl)	(95% CI)	(studies)	(GRADE)	
Breast cancers with conservative surgery as treatment Range of follow-up (yrs): Median 11, IQR 9-13	1.83/1000	0.9 more per 1,000 (from 0.7 more to 1.1 more)	Rate ratio 1.5 (1.4 to 1.6)	413,447 (1 study¹)	UERY LOW abc.d.e	Using a threshold of 2 fewer breast cancers requiring a full mastectomy per 1,000, screening may make little to no difference in the number of breast cancers with conservative surgery as treatment in individuals in a general population.
Breast cancers with mastectomy as treatment Range of follow-up (yrs): Median 11, IQR 9-13	1.24/1000	0.4 fewer per 1,000 (from 0.35 fewer to 0.46 fewer)	Rate ratio 0.68 (0.63 to 0.72)	413,447 (1 study¹)	UERY LOW ab.c.d.e	Using a threshold of 2 fewer breast cancers requiring a full mastectomy per 1,000, screening may make little to no difference in the number of breast cancers with mastectomy as treatment in individuals in a general population.

*The corresponding risk (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI). CI: Confidence interval; RR: Risk ratio

Bibliography:

1: Puliti 2017³⁷

GRADE Working Group grades of evidence

High quality: We are very confident that the true effect lies close to that of the estimate of the effect

Moderate quality: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different

Low quality: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect

Very low quality: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect

Explanations

a. Study downrated once for moderate risk of bias (RoB score for JBI cohort tool=7/11). Lack of adjustment for important confounding factors (use of HRT, breast density). No description of number of women lost to follow-up.

b. Not downrated for inconsistency. Single study evaluated outcome (unable to evaluate heterogeneity).

c. Not downrated for indirectness. Studies used population-based approach which was reflective of general population.

d. Not downrated for imprecision. Large population and CI does not cross threshold for breast cancer screening benefit for breast cancers requiring a full mastectomy (2 less breast cancers requiring mastectomy).

e. According to Egger et al.11, 10 studies are needed to asses publication bias. We cannot assess publication bias due to insufficient number of trials, therefore, we did not rate down for publication bias.

"Continue Screening" After Baseline Examination compared to "Stop Screening" After Baseline Examination								
Outcomes	70-74 Age Subgroup	75-84 Age Subgroup	№ of participants (studies)	Quality of the evidence (GRADE)	Comments			
Simple mastectomy # of follow-up (yrs): 8.0	The proportion of women (aged 70-74) diagnosed with breast cancer who received simple mastectomy in the continue screening strategy was 11.3 (10.8– 11.8) and 10.4 (9.5–11.3) in the stop screening strategy group (absolute difference 9 more per 1,000).	The proportion of women (aged 75-84) diagnosed with breast cancer who received simple mastectomy in the continue screening strategy was 10.8 (10.3–11.2) and 10.1 (9.4–10.9) in the stop screening strategy group (absolute difference 7 more per 1,000)	2,639,194 (1 study) ¹	€⊕⊖⊖ LOW ab.c.d.e	We found low certainty evidence comparing the proportions of women requiring simple mastectomy among those who continued mammography screening and those who stopped screening in their 70s (70-74 and 75-84 age groups).			
Radical mastectomy # of follow-up (yrs): 8.0	The proportion of women (aged 70-74) diagnosed with breast cancer who received radical mastectomy in the continue screening strategy was 13.9 (13.4– 14.5) and 18.2 (17.0–19.4) in the stop screening strategy group (absolute difference 43 fewer per 1,000)	The proportion of women (aged 75-84) diagnosed with breast cancer who received radical mastectomy in the continue screening strategy was 14.2 (13.7–14.6) and 17.0 (16.0–17.9) in the stop screening strategy group (absolute difference 28 fewer per 1,000).	2,639,194 (1 study) ¹	LOW ab.c.d.e	We found low certainty evidence comparing the proportions of women requiring radical mastectomy among those who continued mammography screening and those who stopped screening in their 70s (70-74 and 75-84 age groups).			
Radiotherapy # of follow-up (yrs): 8.0	The proportion of women (aged 70-74) diagnosed with breast cancer who received radiotherapy in the continue screening strategy was 51.0 (50.3–51.8) and 39.9 (38.6–41.3) in the stop screening strategy group (absolute difference 111 more per 1,000)	The proportion of women (aged 75-84) diagnosed with breast cancer who received radiotherapy in the continue screening strategy was 41.2 (40.4–41.9) and 31.9 (30.7–33.1) in the stop screening strategy group (absolute difference 93 more per 1,000).	2,639,194 (1 study) ¹	⊕⊕⊖⊖ LOW ab.c.d.e	We found low certainty evidence comparing the proportions of women requiring radiotherapy among those who continued mammography screening and those who stopped screening in their 70s (70-74 and 75-84 age groups).			
Chemotherapy # of follow-up (yrs): 8.0	The proportion of women (aged 70-74) diagnosed with breast cancer who received chemotherapy in the continue screening strategy was 15.2 (14.7–15.8) and 21.1 (20.0–22.1) in the stop screening strategy group (absolute difference 59 fewer per 1,000)	The proportion of women (aged 75-84) diagnosed with breast cancer who received chemotherapy in the continue screening strategy was 8.6 (8.3–9.1) and 11.5 (10.6–12.3) in the stop screening strategy group (absolute difference 29 fewer per 1,000).	2,639,194 (1 study) ¹	LOW ab,c.d.e	We found low certainty evidence comparing the proportions of women requiring chemotherapy among those who continued mammography screening and those who stopped screening in their 70s (70-74 and 75-84 age groups).			

Table 16: Treatment-related morbidity (Observational studies, by age subgroup, stop screening analysis)

84

"Continue Screening" After Baseline Examination compared to "Stop Screening" After Baseline Examination

Outcomes	70-74 Age Subgroup	75-84 Age Subgroup	№ of participants (studies)	Quality of the evidence (GRADE)	Comments
Bibliography:					

Bibliography:

1: Garcia-Albeniz 202019

a. We did not downrate for risk of bias. Study was judged to be of moderate quality using the JBI critical appraisal tool for cohort studies.

b. We did not downrate for inconsistency (only one study included).

c. We did not downrate for indirectness. The study answers the question of stopping versus continuing screening and all patients have received at least one baseline mammography.

d. Unable to evaluate imprecision using thresholds, as the baseline rate of treatment is not provided in the "stop screening" group to allow the calculation of absolute effects. Therefore, a minimally contextualized approach was used. The total population is large (>2000) and there is a large event rate (>300). We did not downrate for imprecision.

e. According to Egger et al.¹¹, 10 studies are needed to asses publication bias. We cannot assess publication bias due to insufficient number of trials, therefore, we did not rate down for publication bias.

 Table 16 forest plots*

 *from Gøtzsche, P. C., & Jørgensen, K. J. (2013). Screening for breast cancer with mammography. Cochrane database of systematic reviews, (6).

Analysis 1.15: Comparison 1 Screening with mammography versus no screening, Outcome 15 Number of mastectomies.

Study or subgroup	Screening	No screening	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H, Fixed, 95% CI		M-H, Fixed, 95% CI
1.15.1 Adequately randomise	d trials				
Canada 1980a	183/25214	157/25216	+-+	14.65%	1.17[0.94,1.44]
Canada 1980b	197/19711	176/19694	+	16.43%	1.12[0.91,1.37]
Malmö 1976	424/21242	339/21244		31.63%	1.25[1.09,1.44]
Subtotal (95% CI)	66167	66154	-	62.71%	1.2[1.08,1.32]
Total events: 804 (Screening), 6	72 (No screening)				
Heterogeneity: Tau ² =0; Chi ² =0.8	36, df=2(P=0.65); l ² =0%				
Test for overall effect: Z=3.45(P=	=0)				
1.15.2 Suboptimally randomi	sed trials				
Kopparberg 1977	475/39051	196/18846		24.67%	1.17[0.99,1.38]
Stockholm 1981	263/40318	101/19943		12.61%	1.29[1.02,1.62]
Subtotal (95% CI)	79369	38789	-	37.29%	1.21[1.06,1.38]
Total events: 738 (Screening), 2	97 (No screening)				
Heterogeneity: Tau ² =0; Chi ² =0.4	I5, df=1(P=0.5); I ² =0%				
Test for overall effect: Z=2.78(P	=0.01)				
Total (95% CI)	145536	104943	•	100%	1.2[1.11,1.3]
Total events: 1542 (Screening),	969 (No screening)				
Heterogeneity: Tau ² =0; Chi ² =1.3	33, df=4(P=0.86); I ² =0%				
Test for overall effect: Z=4.43(P-	<0.0001)				
Test for subgroup differences: C	hi²=0.02, df=1 (P=0.9), I²=	0%			
		Favours screening 0.5	0.7 1 1.5	2 Favours no screening	

Analysis 1.16: Comparison 1 Screening with mammography versus no screening, Outcome 16 Number treated with radiotherapy.

Analysis 1.17: Comparison 1 Screening with mammography versus no screening, Outcome 17 Number treated with chemotherapy.

Study or subgroup	Screening	No screening	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H, Fixed, 95% CI		M-H, Fixed, 95% CI
1.17.1 Adequately randomised tria	ls				
Malmö 1976	26/21242	41/21244		22.78%	0.63[0.39,1.04]
Subtotal (95% CI)	21242	21244		22.78%	0.63[0.39,1.04]
Total events: 26 (Screening), 41 (No s	creening)				
Heterogeneity: Not applicable					
Test for overall effect: Z=1.82(P=0.07)					
1.17.2 Suboptimally randomised tr	ials				
Kopparberg 1977	226/39051	103/18846		77.22%	1.06[0.84,1.34]
Subtotal (95% CI)	39051	18846	•	77.22%	1.06[0.84,1.34]
Total events: 226 (Screening), 103 (No	o screening)				
Heterogeneity: Not applicable					
Test for overall effect: Z=0.48(P=0.63)					
Total (95% CI)	60293	40090	•	100%	0.96[0.78,1.19]
Total events: 252 (Screening), 144 (No	o screening)				
Heterogeneity: Tau ² =0; Chi ² =3.42, df=	=1(P=0.06); I ² =70.77	%			
Test for overall effect: Z=0.36(P=0.72)					
Test for subgroup differences: Chi ² =3	.42, df=1 (P=0.06), l ²	=70.77%			
		Favours screening 0.2	0.5 1 2	5 Favours no screening	

Table 17: Additional imaging (no cancer)

Table 17a: Additional imaging with or without biopsy (no cancer) – by age subgroup

Outcomes	Calculated Estimate (2011-2012 CPAC Data)**	Calculated Estimate (2019 British Columbia Data)**	Quality of the evidence (Based on GRADE*)	Comments
Additional imaging with or without biopsy (no cancer) over 10 years (40- 49 years)†	367.5 per 1000	477.6 per 1000	MODERATE a,b,c,d,e	Screening probably leads to at least 150 women requiring additional imaging with or without biopsy (no cancer) in 1000 women screened every 2-3 years over a 10-year period (40-49 years)
Additional imaging with or without biopsy (no cancer) over 10 years (50- 59 years)†	365.5 per 1000	410.5 per 1000	MODERATE a.b.c.d.e	Screening probably leads to at least 150 women requiring additional imaging with or without biopsy (no cancer) in 1000 women screened every 2-3 years over a 10-year period (50-59 years, started screening at age 50)
Additional imaging with or without biopsy (no cancer) over 10 years (50- 59 years)‡	286.4 per 1000	285.2 per 1000	MODERATE a.b.c.d.e	Screening probably leads to at least 150 women requiring additional imaging with or without biopsy (no cancer) in 1000 women screened every 2-3 years over a 10-year period (50-59 years, started screening prior to age 50)
Additional imaging with or without biopsy (no cancer) over 10 years (60- 69 years)‡	257.2 per 1000	252.4 per 1000	MODERATE a,b,c,d,e	Screening probably leads to at least 150 women requiring additional imaging with or without biopsy (no cancer) in 1000 women screened every 2-3 years over a 10-year period (60-69 years)
Additional imaging with or without biopsy (no cancer) over 10 years (70+ years)‡	220.4 per 1000	238.4 per 1000	MODERATE a,b,c,d,e	Screening probably leads to at least 150 women requiring additional imaging with or without biopsy (no cancer) in 1000 women screened every 2-3 years over a 10-year period (70+ years)

*GRADE ratings are not typically applied to the context of primary evidence sets generated by analyses of quality indicator surveillance data. However, our judgements of the overall certainty of evidence have been informed by similar considerations used in the GRADE process for effectiveness data.

+Scenario 1: Assuming started biennial screening in current age decade (calculated using one initial screen and three subsequent screens over a 10-year period).

\$Scenario 2: Assuming started biennial screening in prior age decade (calculated using four subsequent screens over a 10-year period).

**Data Sources: Using data from 2011- 2012 from the 2016 CPAC report⁴⁸, we estimated the approximate rate of additional imaging with or without biopsy (no cancer) for women in each age decade over a 10 year-period (Table 7A). The BC estimates were estimated using breast screening program outcome indicators by 10-year age groups for 2019 for the "overall" risk groups (Table 9). See supplemental KQ1 GRADE Material, Appendix 6, part E for an example calculation.

Additional imaging estimates per screening cycle were calculating by subtracting cancer detection rates (invasive + DCIS) from abnormal call rates, stratified by age decade and if data were related to an "initial" or "subsequent" screen. We assumed women received four screens over a 10-year period, if the majority of women would receive a screen every 2-3 years (approximating biennial screening for the majority noting that some provinces currently offer⁴⁹ or recommend⁵⁰ annual screening in women aged 40-49 or starting at age 45). Scenario 1 assumes women start screening in that age decade and receive four screens over 10 years (one initial and three subsequent) (age groups: 40-49 and 50-59†). Scenario 2 assumed women started screening in prior age decades and therefore received four subsequent screens over a 10-year period (age groups: 50-59‡, 60-69, 70+).

- a. The CPAC quality indicator data was used from the Canadian Breast Cancer Screening Database (CBCSD), which contained relatively complete data from participating provinces and territories for the quality indicators of interest in 2011-2012. The BC estimates were estimated using breast screening program outcome indicators by 10-year age groups for 2019, which should contain complete data. We did not downrate for risk of bias.
- b. Estimates were calculated using quality indicators from screen-level data. Thus, we have no measure of imprecision in the data. All point estimates cross the minimum threshold for important effect (150 women with no cancer who require either imaging alone or imaging plus biopsy per 1000 screens).
- c. We did not downrate for inconsistency. All age estimates for both the CPAC and the BC data fall above our threshold of 150 patients requiring additional imaging with or without biopsy (no cancer) per 1000 screens.
- d. There appears to be an increase in recall rates over time (see Supplemental KQ1 GRADE Material, Appendix 6) depending on the data source. However, our conclusions about the rates of additional imaging with or without biopsy (no cancer) are unlikely to change, as the rates remain relatively consistent using more recent CPAC data and provincial data and above our clinical decision threshold. We did not downrate for indirectness.
- e. We uprated our overall conclusion to moderate certainty of evidence as imaging recall estimates are similar across different data sources and consistently cross our threshold for clinical decision making.

Table 17b: – Additional imaging no biopsy (no cancer) – by age subgroup

Outcomes	Calculated Estimate (2011-2012 CPAC Data)**	Quality of the evidence (Based on GRADE*)	Comments
Additional imaging no biopsy (no cancer) over 10 years (40-49 years)†	312.8 per 1000	₩ MODERATE a.b.c.d	Screening probably leads to at least 150 women requiring additional imaging no biopsy (no cancer) in 1000 women screened every 2-3 years over a 10-year period (40-49 years)
Additional imaging no biopsy (no cancer) over 10 years (50-59 years)†	319.3 per 1000	₩ MODERATE a,b,c,d	Screening probably leads to at least 150 women requiring additional imaging no biopsy (no cancer) in 1000 women screened every 2-3 years over a 10-year period (50-59 years, started screening at age 50)
Additional imaging no biopsy (no cancer) over 10 years (50-59 years)‡	252.4 per 1000	₩ MODERATE a,b,c,d	Screening probably leads to at least 150 women requiring additional imaging no biopsy (no cancer) in 1000 women screened every 2-3 years over a 10-year period (50-59 years, started screening prior to age 50)
Additional imaging no biopsy (no cancer) over 10 years (60-69 years)‡	224.4 per 1000	₩ MODERATE a.b.c.d	Screening probably leads to at least 150 women requiring additional imaging no biopsy (no cancer) in 1000 women screened every 2-3 years over a 10-year period (60-69 years)
Additional imaging no biopsy (no cancer) over 10 years (70+ years)‡	190 per 1000	₩ MODERATE a,b,c,d	Screening probably leads to at least 150 women requiring additional imaging no biopsy (no cancer) in 1000 women screened every 2-3 years over a 10-year period (70+ years)

*GRADE ratings are not typically applied to the context of primary evidence sets generated by analyses of quality indicator surveillance data. However, our judgements of the overall certainty of evidence have been informed by similar considerations used in the GRADE process for effectiveness data.

+Scenario 1: Assuming started biennial screening in current age decade (calculated using one initial screen and three subsequent screens over a 10-year period).

\$\$Cenario 2: Assuming started biennial screening in prior age decade (calculated using four subsequent screens over a 10-year period).

**Data Sources: Using data from 2011- 2012 from the 2016 CPAC report⁴⁸, we estimated the approximate rate of additional imaging with or without biopsy (no cancer) for women in each age decade over a 10 year-period (Table 7A).

Additional imaging estimates per screening cycle were calculating by subtracting cancer detection rates (invasive + DCIS) and the additional imaging and biopsy (no cancer) from the abnormal call rates, stratified by age decade and if data were related to an "initial" or "subsequent" screen. See supplemental KQ1 GRADE Material, Appendix 6, part E for an example calculation.

We assumed women received four screens over a 10-year period, if the majority of women would receive a screen every 2-3 years (approximating biennial screening for the majority, noting that some provinces currently offer⁴⁹ or recommend⁵⁰ annual screening in women aged 40-49 or starting at age 45. Scenario 1 assumes women start screening in that age decade and receive four screens over 10 years (one initial and three subsequent) (age groups: 40-49 and 50-59†). Scenario 2 assumed women started screening in prior age decades and therefore received four subsequent screens over a 10-year period (age groups: 50-59‡, 60-69, 70+).

- a. The CPAC quality indicator data was used from the Canadian Breast Cancer Screening Database (CBCSD), which contained relatively complete data from participating provinces and territories for the quality indicators of interest in 2011-2012.
- b. Estimates were calculated using quality indicators from screen-level data. Thus, we have no measure of imprecision in the data. All point estimates cross the minimum threshold for important effect (threshold used was 150 women who do not have cancer and require additional imaging and no biopsy per 1000 screens).
- c. There appears to be an increase in recall rates over time (see Supplemental KQ1 GRADE Material, Appendix 6) depending on the data source. However, our conclusions about the rates of additional imaging no biopsy (no cancer) are unlikely to change, as the rates remain relatively consistent using more recent CPAC data and provincial data and above our clinical decision threshold. We did not downrate for indirectness.

d. We uprated our overall conclusion to moderate certainty of evidence as imaging recall estimates are similar across different data sources and consistently cross our threshold for clinical decision making.

Table 17c: – Additional imaging and biopsy (no cancer) – by age subgroup

Outcomes	Calculated Estimate (2011- 2012 CPAC Data)	Quality of the evidence (Based on GRADE*)	Comments
Additional imaging and biopsy (no cancer) over 10 years (40-49 years)†	54.7 per 1000	HODERATE a,b,c,d	Screening probably leads to at least 15 women requiring additional imaging and biopsy (no cancer) in 1000 women screened every 2-3 years over a 10-year period (40-49 years)
Additional imaging and biopsy (no cancer) over 10 years (50-59 years)†	46.2 per 1000	HODERATE a,b,c,d	Screening probably leads to at least 15 women requiring additional imaging and biopsy (no cancer) in 1000 women screened every 2-3 years over a 10-year period (50-59 years, started screening at age 50)
Additional imaging and biopsy (no cancer) over 10 years (50-59 years)‡	34.0 per 1000	HODERATE a,b,c,d	Screening probably leads to at least 15 women requiring additional imaging and biopsy (no cancer) in 1000 women screened every 2-3 years over a 10-year period (50-59 years, started screening prior to age 50)
Additional imaging and biopsy (no cancer) over 10 years (60-69 years)‡	32.8 per 1000	HODERATE a,b,c,d	Screening probably leads to at least 15 women requiring additional imaging and biopsy (no cancer) in 1000 women screened every 2-3 years over a 10-year period (60-69 years)
Additional imaging and biopsy (no cancer) over 10 years (70+ years)‡	30.4 per 1000	HODERATE a.b.c.d	Screening probably leads to at least 15 women requiring additional imaging and biopsy (no cancer) in 1000 women screened every 2-3 years over a 10-year period (70+ years)

*GRADE ratings are not typically applied to the context of primary evidence sets generated by analyses of quality indicator surveillance data. However, our judgements of the overall certainty of evidence have been informed by similar considerations used in the GRADE process for effectiveness data.

+Scenario 1: Assuming started biennial screening in current age decade (calculated using one initial screen and three subsequent screens over a 10-year period).

\$Scenario 2: Assuming started biennial screening in prior age decade (calculated using four subsequent screens over a 10-year period).

**Data Sources: Using data from 2011- 2012 from the 2016 CPAC report⁴⁸, we estimated the approximate rate of additional imaging with or without biopsy (no cancer) for women in each age decade over a 10 year-period (Table 7A).

Additional imaging estimates per screening cycle were based on reported non-malignant biopsy rates, stratified by age decade and if data were related to an "initial" or "subsequent" screen. See supplemental KQ1 GRADE Material, Appendix 6, part E for an example calculation.

We assumed women received four screens over a 10-year period, if the majority of women would receive a screen every 2-3 years (approximating biennial screening for the majority, noting that some provinces currently offer⁴⁹ or recommend⁵⁰ annual screening in women aged 40-49 or starting at age 45. Scenario 1 assumes women start screening in that age decade and receive four screens over 10 years (one initial and three subsequent) (age groups: 40-49 and 50-59†). Scenario 2 assumed women started screening in prior age decades and therefore received four subsequent screens over a 10-year period (age groups: 50-59‡, 60-69, 70+)

- a. The CPAC quality indicator data was used from the Canadian Breast Cancer Screening Database (CBCSD), which contained relatively complete data from participating provinces and territories for the quality indicators of interest in 2011-2012. The BC estimates were estimated using breast screening program outcome indicators by 10-year age groups for 2019, which should contain complete data. We did not downrate for risk of bias.
- b. Estimates were calculated using quality indicators from screen-level data. Thus, we have no measure of imprecision in the data. All point estimates cross the minimum threshold for important effect (15 women requiring additional imaging and biopsy per 1000 screens).
- c. The rates of additional imaging and biopsies (no cancer) appear to have remained consistent over time based on provincial data sources (Appendix 6, part B). We did not downrate for indirectness.
- d. We uprated our overall conclusion to moderate certainty of evidence as imaging recall estimates are similar across different data sources and consistently cross our threshold for clinical decision making.

Appendix 9 – Cohort and RCT forest plot

Reference	Study	Study Design	Mean Follow-up(yrs)	Screening period	log(RR)	SE	Risk Ratio	R	R	95%-CI	
Morrel 2017 Choi 2021 Duffy 2021 Coldman 2014 Tabar 2011 Nystrom 2016 Shapiro 1988 Nystrom 2016 Moss 2015 Nystrom 2016 Nystrom 2016 Miller 2014	New Zealand BSA KNCSP National Swedish Study Pan-Canadian Study Swedish Two County Gothenburg HIP Malmo II UK Age Malmo I Stockholm CNBSS II	OBS OBS OBS RCT RCT RCT RCT RCT RCT RCT RCT RCT	12* 14* 22 19 29** 24 18 22 17.7^ 30 25 21.9	2000-2011 2002-2015 1992-2016 1990-2009 1977-1984 1982-1989 1963-1966 1978-1990 1991-1999 1976-1988 1981-1985 1980-1984	-0.97 -0.84 -0.67 -0.51 -0.31 -0.30 -0.24 -0.16 -0.13 -0.13 -0.06 0.02	0.13 0.01 0.04 0.06 0.10 0.14 0.12 0.22 0.09 0.12 0.17 0.15		0.3 0.4 0.5 0.6 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.9 1.0	8 [0 1 [0 0 [0 3 [0	.29; 0.49] .42; 0.44] .47; 0.55] .53; 0.68] .60; 0.89] .56; 0.97] .62; 1.00] .55; 1.31] .74; 1.05] .69; 1.11] .69; 1.31] .76; 1.37]	
Miller 2014 CNBSS I RCT 21.9 1980-1984 0.05 0.11 1.05 [0.85; 1.30] 0.5 1 2 * Longest possible follow-up; ** Time since randomization; ^ Median; OBS: Observational studies; RCT: Randomized clinical trials; KNCSP: Korean National Cancer Screening Program; BSA: BreastScreen Aotearoa; CNBSS: Canadian National Breast Screening Study; HIP: Health Insurance Plan of Greater New York											

Appendix 10 - Final Working Group Thresholds for GRADE

Outcome	Threshold
Breast Cancer Mortality	Threshold One: For every 1,000 patients that undergo screening, there will be 1 less death due to breast cancer
	Threshold Two: For every 1,000 patients that undergo screening, there will be 0.5 less deaths due to breast cancer
All-Cause Mortality	For every 1,000 patients that undergo screening, there will be 1 less death due to any cause
Breast Cancers Requiring Chemotherapy	For every 1,000 patients that undergo screening, there will be 2 less breast cancers requiring chemotherapy
Breast Cancers Requiring a Full Mastectomy (Versus Lumpectomy)	For every 1,000 patients that undergo screening, there will be 2 less breast cancers requiring mastectomy
Breast Cancers Requiring Axial Lymph Node Dissection	For every 1,000 patients that undergo screening, there will be 2 less breast cancers requiring axial lymph node dissection
Breast Cancers Requiring Radiotherapy	For every 1,000 patients that undergo screening, there will be 5 less breast cancers requiring radiotherapy
Breast Cancers Being Diagnosed at Stage III or Higher	For every 1,000 patients that undergo screening, there will be 2 less breast cancers diagnosed at stage III or higher
Breast Cancers Being Diagnosed at Stage II or Higher	For every 1,000 patients that undergo screening, there will be 3 less breast cancers diagnosed at stage II or higher
Metastatic cancer (stage IV)	For every 1,000 patients that undergo screening, there will be 1 less metastatic breast cancer diagnosed.
Overdiagnosed Cancers	For every 1,000 patients that undergo screening, there will be 5 more overdiagnosed breast cancers
Additional imaging +/- biopsy	For every 1,000 patients that undergo screening, 150 will experience one or more additional imaging +/- biopsy.
Additional imaging with biopsy	For every 1,000 patients that undergo screening, 15 will experience one or more additional imaging with biopsy.
Interval cancers	For every 1,000 patients that undergo screening, 6 will have an interval cancer.

Appendix 11 - Working group survey for patient values and preferences towards screening for breast cancer

Purpose: To consider the working group's perspective on what effect (or risk reduction) patients would consider an important or trivial effect of a breast cancer screening program. An example of this effect could be: 1 less death per 1,000 patients screened. We want to know if you think this effect is important or trivial.

Survey: We will present a series of questions based on certain effects (i.e., different risk reduction scenarios for each outcome). We want to determine one threshold (e.g., 50 less per 1,000 patients) for each outcome that the working group agrees would be important to the majority of patients during decision-making (or a minimally important effect). At this point, the question is abstract because only one outcome is considered at a time (all the other benefits, harms, or burdens of interventions and their magnitude are not considered). These judgments are challenging. If possible, reflect on the question based on your knowledge of primary studies, previous focus groups, conversations with friends or family, or shared decision-making with patients.

A few items to note:

- All effects are measured per 1,000 patients screened. If the risk reduction is <1 person (e.g., 0.4 less deaths per 1,000) you can think about it as per 10,000 patients screened (e.g., 4 less deaths per 10,000).
- Some scenarios involve a decrease (e.g., 1 less death per 1,000), while others involve an increase (e.g., 100 more false positives per 1,000) or simply state an associated rate (e.g., 2 interval cancers per 1,000).
- Please consider your answers in relation to a screening program consisting of 3 to 4 rounds of (annual or biannual) screening where patients are followed for 10 years after baseline.
- There's no right or wrong answer. All thresholds can be trivial, all can be important, or it can vary.
- 1. Patients are considering the possibility of participating in a breast cancer screening program to reduce their risk of **dying from breast cancer**. Breast cancer screening lowers their risk in different scenarios in the table below over a period of 10 years. **Please choose an option that will reflect whether the majority of patients (>50%) would think this reduction in risk is an important or trivial effect.**

	Risk reduction scenarios	Answer
a.	For every 1,000 patients that participate in screening, there will	Choose an item.
	be 0.4 less deaths due to breast cancer over 10 years.	
b.	For every 1,000 patients that participate in screening, there will	Choose an item.
	be 0.6 less deaths due to breast cancer over 10 years.	
C.	For every 1,000 patients that participate in screening, there will	Choose an item.
	be 0.8 less deaths due to breast cancer over 10 years.	
d.	For every 1,000 patients that participate in screening, there will	Choose an item.
	be 1 less death due to breast cancer over 10 years.	
e.	For every 1,000 patients that participate in screening, there will	Choose an item.
	be 1.2 less deaths due to breast cancer over 10 years.	
f.	For every 1,000 patients that participate in screening, there will	Choose an item.
	be 1.4 less deaths due to breast cancer over 10 years.	

If you would like to propose a different value in risk of dying from breast cancer, please note it here, otherwise please leave blank:

[Response]

2. Patients are considering the possibility of participating in a breast cancer screening program to reduce their risk of **dying from any cause**. Breast cancer screening lowers their risk in different scenarios in the table below over a period of 10 years. **Please choose an option that will reflect whether the majority of patients (>50%) would think this reduction in risk is an important or trivial effect.**

	Risk reduction scenarios	Answer
a.	For every 1,000 patients that participate in screening, there will	Choose an item.
	be 0.4 less deaths due to any cause over 10 years.	
b.	For every 1,000 patients that participate in screening, there will	Choose an item.
	be 0.6 less deaths due to any cause over 10 years.	
C.	For every 1,000 patients that participate in screening, there will	Choose an item.
	be 0.8 less deaths due to any cause over 10 years.	
d.	For every 1,000 patients that participate in screening, there will	Choose an item.
	be 1 less death due to any cause over 10 years.	
e.	For every 1,000 patients that participate in screening, there will	Choose an item.
	be 1.2 less deaths due to any cause over 10 years.	
f.	For every 1,000 patients that participate in screening, there will	Choose an item.
	be 1.4 less deaths due to any cause over 10 years.	

If you would like to propose a different value in risk of dying from any cause, please note it here, otherwise please leave blank:

[Response]

3. Patients are considering the possibility of participating in a breast cancer screening program to reduce their risk of **breast cancers requiring chemotherapy (and associated complications)**. Breast cancer screening lowers their risk in different scenarios in the table below over a period of 10 years. **Please** choose an option that will reflect whether the majority of patients (>50%) would think this reduction in risk is an important or trivial effect.

	Risk reduction scenarios	Answer
a.	For every 1,000 patients that participate in screening, there will	Choose an item.
	be 1 less breast cancer requiring chemotherapy over 10 years.	
b.	For every 1,000 patients that participate in screening, there will	Choose an item.
	be 2 less breast cancers requiring chemotherapy over 10 years.	

C.	For every 1,000 patients that participate in screening, there will	Choose an item.
	be 3 less breast cancers requiring chemotherapy over 10 years.	
d.	For every 1,000 patients that participate in screening, there will	Choose an item.
	be 4 less breast cancers requiring chemotherapy over 10 years.	
e.	For every 1,000 patients that participate in screening, there will	Choose an item.
	be 5 less breast cancers requiring chemotherapy over 10 years.	
f.	For every 1,000 patients that participate in screening, there will	Choose an item.
	be 6 less breast cancers requiring chemotherapy over 10 years.	

If you would like to propose a different value in risk of breast cancers requiring chemotherapy, please note it here, otherwise please leave blank:

[Response]

If you would like to propose a value in risk of breast cancers requiring a full mastectomy (vs lumpectomy, please note it here, otherwise please leave blank:

[Response]

If you would like to propose a value in risk of breast cancers requiring axial lymph node dissection (vs sentinel lymph node biopsy), please note it here, otherwise please leave blank:

[Response]

If you would like to propose a value in risk of breast cancers requiring radiotherapy, please note it here, otherwise please leave blank:

[Response]

4. Patients are considering the possibility of participating in a breast cancer screening program to reduce their risk of being diagnosed with stage II or higher cancer. Breast cancer screening lowers their risk in different scenarios in the table below over a period of 10 years. Please choose an option that will reflect whether the majority of patients (>50%) would think this reduction in risk is an important or trivial effect.

	Risk reduction scenarios	Answer
a.	For every 1,000 patients that participate in screening, there will	Choose an item.
	be 1 less ≥ stage II cancer diagnosed over 10 years.	
b.	For every 1,000 patients that participate in screening, there will	Choose an item.
	be 2 less ≥ stage II cancer diagnosed over 10 years.	
C.	For every 1,000 patients that participate in screening, there will	Choose an item.
	be 3 less \geq stage II cancer diagnosed over 10 years.	
d.	For every 1,000 patients that participate in screening, there will	Choose an item.
	be 4 less ≥ stage II cancer diagnosed over 10 years.	
e.	For every 1,000 patients that participate in screening, there will	Choose an item.
	be 5 less ≥ stage II cancer diagnosed over 10 years.	
f.	For every 1,000 patients that participate in screening, there will	Choose an item.
	be 6 less ≥ stage II cancer diagnosed over 10 years.	

If you would like to propose a different value in risk of being diagnosed with stage II or higher cancer, please note it here, otherwise please leave blank:

[Response]

5. Patients are considering the possibility of participating in a breast cancer screening program to reduce their risk of being diagnosed with stage III or higher cancer. Breast cancer screening lowers their risk in different scenarios in the table below over a period of 10 years. Please choose an option that will reflect whether the majority of patients (>50%) would think this reduction in risk is an important or trivial effect.

	Risk reduction scenarios	Answer
a.	For every 1,000 patients that participate in screening, there will	Choose an item.
	be 0.5 less ≥ stage III cancer diagnosed over 10 years.	
b.	For every 1,000 patients that participate in screening, there will	Choose an item.
	be 1 less ≥ stage III cancer diagnosed over 10 years.	
C.	For every 1,000 patients that participate in screening, there will	Choose an item.
	be 1.5 less ≥ stage III cancer diagnosed over 10 years.	
d.	For every 1,000 patients that participate in screening, there will	Choose an item.
	be 2 less ≥ stage III cancer diagnosed over 10 years.	
e.	For every 1,000 patients that participate in screening, there will	Choose an item.
	be 2.5 less ≥ stage III cancer diagnosed over 10 years.	
f.	For every 1,000 patients that participate in screening, there will	Choose an item.
	be 3 less ≥ stage III cancer diagnosed over 10 years.	

If you would like to propose a different value in risk of being diagnosed with stage III or higher, please

note it

[Response]

6. Patients are considering the possibility of participating in a breast cancer screening program. Breast cancer screening may <u>increase</u> their risk of having an **overdiagnosed cancer** (i.e., a cancer that may never cause any harm or symptoms but leads to having a diagnosis (i.e., label) of cancer and may lead to unnecessary treatments or medications). Please choose an option that will reflect whether the majority of patients (>50%) would think this increase in risk is an important or trivial effect.

	Risk reduction scenarios	Answer
a.	For every 1,000 patients that participate in screening, there will	Choose an item.
	be 1 more overdiagnosed cancer over 10 years.	
b.	For every 1,000 patients that participate in screening, there will	Choose an item.
	be 2 more overdiagnosed cancers over 10 years.	
с.	For every 1,000 patients that participate in screening, there will	Choose an item.
	be 3 more overdiagnosed cancers over 10 years.	
d.	For every 1,000 patients that participate in screening, there will	Choose an item.
	be 4 more overdiagnosed cancers over 10 years.	
e.	For every 1,000 patients that participate in screening, there will	Choose an item.
	be 5 more overdiagnosed cancers over 10 years.	
f.	For every 1,000 patients that participate in screening, there will	Choose an item.
	be 6 more overdiagnosed cancers over 10 years.	

If you would like to propose a different value in risk of having an overdiagnosed cancer, please note it here, otherwise please leave blank:

[Response]

7. Patients are considering the possibility of participating in a breast cancer screening program. Breast cancer screening may lead to at least one **false positive result which could require either imaging alone or imaging plus biopsy** (i.e., a false alarm). **Please choose an option that will reflect whether the majority of patients (>50%) would think this increase in risk is an important or trivial effect.**

	Risk reduction scenarios	Answer
a.	For every 1,000 patients that participate in screening, 100 will	Choose an item.
	experience one or more false positives over 10 years.	
b.	For every 1,000 patients that participate in screening, 125 will	Choose an item.
	experience one or more false positives over 10 years.	
C.	For every 1,000 patients that participate in screening, 150 will	Choose an item.
	experience one or more false positives over 10 years.	

d.	For every 1,000 patients that participate in screening, 175 will experience one or more false positives over 10 years.	Choose an item.
e.	For every 1,000 patients that participate in screening, 200 will experience one or more false positives over 10 years.	Choose an item.
f.	For every 1,000 patients that participate in screening, 225 will experience one or more false positives over 10 years.	Choose an item.

If you would like to propose a different value in having a false positive result which could require either imaging alone or imaging plus biopsy, please note it here, otherwise please leave blank:

[Response]

8. Patients are considering the possibility of participating in a breast cancer screening program. Breast cancer screening may lead to at least one **false positive result that requires biopsy and imaging** (i.e., a false alarm). Please choose an option that will reflect whether the majority of patients (>50%) would think this increase in risk is an important or trivial effect.

	Risk reduction scenarios	Answer
a.	For every 1,000 patients that participate in screening, 10 will	Choose an item.
b.	For every 1,000 patients that participate in screening, 12 will experience one or more false positives over 10 years.	Choose an item.
C.	For every 1,000 patients that participate in screening, 15 will experience one or more false positives over 10 years	Choose an item.
d.	For every 1,000 patients that participate in screening, 18 will experience one or more false positives over 10 years.	Choose an item.
е.	For every 1,000 patients that participate in screening, 20 will experience one or more false positives over 10 years.	Choose an item.
f.	For every 1,000 patients that participate in screening, 25 will experience one or more false positives over 10 years.	Choose an item.

If you would like to propose a different value in risk of having a false positive result that requires biopsy and imaging, please note it here, otherwise please leave blank:

[Response]

9. Patients are considering the possibility of participating in a breast cancer screening program. Breast cancer screening may lead to interval cancers (i.e., breast cancer that was not recognized during the screening or that develops between regular screens). These interval cancers may be more likely to occur with certain screening strategies (e.g., annual vs biannual). Please choose an option that will reflect whether the majority of patients (>50%) would think this associated risk is an important or trivial effect.

	Risk reduction scenarios	Answer
a.	For every 1,000 patients that participate in screening, 2 will have	Choose an item.
	an interval cancer over 10 years.	
b.	For every 1,000 patients that participate in screening, 6 will have	Choose an item.
	an interval cancer over 10 years.	
C.	For every 1,000 patients that participate in screening, 8 will have	Choose an item.
	an interval cancer over 10 years.	
d.	For every 1,000 patients that participate in screening, 10 will	Choose an item.
	have an interval cancer over 10 years.	
e.	For every 1,000 patients that participate in screening, 12 will	Choose an item.
	have an interval cancer over 10 years.	
f.	For every 1,000 patients that participate in screening, 15 will	Choose an item.
	have an interval cancer over 10 years.	

If you would like to propose a different value in risk of having an interval cancer, please note it here, otherwise please leave blank:

[Response]

10. If you would like to leave any notes about any considerations you took when answering the survey or general comments, please note it here, otherwise please leave blank:

[Response]

Thank you!

Appendix 12 – Baseline and lifetime risk calculations

Age	Breast cancer mortality rate per 1,000 in screened group <i>Coldman</i>	SMR from screening Coldman	Breast cancer mortality rate per 1,000 in an unscreened group (General population risk)	Breast cancer mortality rate per 1,000 in an unscreened group (Moderately increased risk, family history)	Breast cancer mortality rate per 1,000 in an unscreened group (Moderately increased risk, dense breasts)
40-49	1.02	0.56	1.8	2.9	3.5
50-59	1.98	0.60	3.3	5.3	6.3
60-69	2.50	0.58	4.3	6.9	8.2
70-79	3.97	0.65	6.1	9.7	11.6

Table 1: Calculated general population baseline risk and moderately increased risk for breast cancer mortality

• Breast cancer mortality rate in a Canadian population was estimated from the Pan-Canadian study (Coldman et al., 2014)

- One first degree relative increases the lifetime risk by 1.6 times (Engmann et al., 2017)
 - *E.g., For 40-49, the general population risk at 1.8 per 1,000 multiplied by 1.6 gives you 2.9 per 1,000 for family history.*
- Dense breasts increases risk by 1.9 times (Yueh-Hsia Chiu et al., 2010)
 - E.g., For 40-49, the general population risk at 1.8 per 1,000 multiplied by 1.9 gives you 3.5 per 1,000 for dense breasts.
- We assume the cancers diagnosed within the elevated risk population in unscreened women would have similar survival rates as those in the general risk population.

Age	Number of deaths in Canadian females 2021	All-cause mortality rate per 1,000 over 10 years
40-49	3,144	12.7
50-59	7,889	30.6
60-69	17,643	71.3
70-74	13,603	140.6

Table 2: Calculated baseline risk for all-cause mortality

 Baseline risk has been calculated using death and age-specific mortality rate data from <u>Statistics</u> <u>Canada</u> in 2021

Calculation to Estimate Potential Lifetime Breast Cancer Mortality Reduction for Screening Women in their 40s

The lifetime risk of a Canadian woman dying of breast cancer is about 27.8/1000⁵¹. 17.5% of those deaths arise from cancers diagnosed in women between ages 40 and 49⁵², so the risk of dying from those cancers is 4.86 / 1000. This rate is the result of some women who are unscreened and some who receive screening. Let p represent the fraction of women who are regularly screened.

An additional factor is that the cancer mortality statistics derive from a combination of women at general risk and those at increased risk. Let's assume that 95% are at general risk of dying from breast cancer if unscreened and 5% are at twice that risk. Further, we will make the somewhat arbitrary assumption that for these higher risk women screening with mammography does not reduce their risk of breast cancer death.

Let R_u represent the risk of dying of breast cancer if unscreened for those at general risk. From the Pan Canadian Study, the relative risk of dying of breast cancer for women who begin screening in their 40s is 0.56. We can then write for the overall mortality risk:

 $R_u [0.56 * p * .95] + R_u [(1-p) * .95] + 2 R_u * .05 = 4.86/1000$

where the first term refers to the women at general risk who are screened, the second term to those at general risk who do not participate in screening and the third to those at elevated risk regardless of screening

So that $R_u = 4.86/1000 / \{[0.56 * p * .95] + R_u [(1-p) * .95] + 2 R_u * .05\}$

Then, if 60% of women historically participated in screening, Ru = 6.1/1000 and the absolute breast cancer mortality reduction for those who participate in screening is estimated as $0.44 \times 6.1/1000 = 2.68$ per 1000.

Appendix 13 – List of excluded studies

List of full-text articles excluded with reasons (n=175)

Ineligible comparator (n=63)

Autier, Philippe, Boniol, Magali, Koechlin, Alice, Pizot, Cecile, Boniol, Mathieu (2017). Effectiveness of and overdiagnosis from mammography screening in the Netherlands: population based study *BMJ (Clinical research ed.)*, 359(#issue#), j5224

Baines, Cornelia J., To, Teresa, Miller, Anthony B. (2016). Revised estimates of overdiagnosis from the Canadian National Breast Screening Study *Preventive medicine*, 90(#issue#), 66-71

Brunetti, Nicole, De Giorgis, Sara, Tosto, Simona, Garlaschi, Alessandro, Rescinito, Giuseppe, Massa, Barbara, Calabrese, Massimo, Tagliafico, Alberto Stefano (2022). A Prospective Comparative Evaluation of Handheld Ultrasound Examination (HHUS) or Automated Ultrasound Examination (ABVS) in Women with Dense Breast *Diagnostics (Basel, Switzerland)*, 12(9), #Pages#

Chang, Jung Min, Koo, Hye Ryoung, Moon, Woo Kyung (2015). Radiologist-performed hand-held ultrasound screening at average risk of breast cancer: results from a single health screening center *Acta radiologica* (*Stockholm, Sweden : 1987*), 56(6), 652-8

de Munck, L., Siesling, S., Fracheboud, J., den Heeten, G. J., Broeders, M. J. M., de Bock, G. H. (2020). Impact of mammographic screening and advanced cancer definition on the percentage of advanced-stage cancers in a steady-state breast screening programme in the Netherlands *British Journal of Cancer*, 123(7), 1191-1197

Domingo, L., Sala, M., Louro, J., Bare, M., Barata, T., Ferrer, J., Carmona-Garcia, M. C., Comas, M., Castells, X. (2019). Exploring the Role of Breast Density on Cancer Prognosis among Women Attending Population-Based Screening Programmes *Journal of Oncology*, 2019(#issue#), 1781762

Duffy, Stephen W., Dibden, Amanda, Michalopoulos, Dimitrios, Offman, Judith, Parmar, Dharmishta, Jenkins, Jacquie, Collins, Beverley, Robson, Tony, Scorfield, Suzanne, Green, Kathryn, Hall, Clare, Liao, Xiao-Hui, Ryan, Michael, Johnson, Fiona, Stevens, Guy, Kearins, Olive, Sellars, Sarah, Patnick, Julietta (2016). Screen detection of ductal carcinoma in situ and subsequent incidence of invasive interval breast cancers: a retrospective population-based study *The Lancet. Oncology*, 17(1), 109-14

Elshof, Lotte E., Schaapveld, Michael, Rutgers, Emiel J., Schmidt, Marjanka K., de Munck, Linda, van Leeuwen, Flora E., Wesseling, Jelle (2017). The method of detection of ductal carcinoma in situ has no therapeutic implications: results of a population-based cohort study *Breast cancer research : BCR*, 19(1), 26

Garcia, Marilina, Redondo, Maximino, Zarcos, Irene, Louro, Javier, Rivas-Ruiz, Francisco, Tellez, Teresa, Perez, Diego, Medina Cano, Francisco, Machan, Kenza, Domingo, Laia, Del Mar Vernet, Maria, Padilla-Ruiz, Maria, Castells, Xavier, Sala, Maria (2022). Impact of Detection Mode in a Large Cohort of Women Taking Part in a Breast Screening Program *European journal of breast health*, 18(2), 182-189

Garcia-Fernandez, A., Barco, I., Fraile, M., Lain, J. M., Carmona, A., Gonzalez, S., Pessarrodona, A., Gimenez, N., Garcia-Font, M. (2016). Factors predictive of mortality in a cohort of women surgically treated for breast cancer from 1997 to 2014 *International Journal of Gynecology and Obstetrics*, 134(2), 212-216

Gram, Emma Grundtvig, Manso, Tulia Filipa Roberto, Heleno, Bruno, Siersma, Volkert, A Rogvi, Jessica, Brodersen, John Brandt (2023). The long-term psychosocial consequences of screen-detected ductal carcinoma in situ and invasive breast cancer *Breast (Edinburgh, Scotland)*, 70(#issue#), 41-48

Gram, Emma Grundtvig, Siersma, Volkert, Brodersen, John Brandt (2023). Long-term psychosocial consequences of false-positive screening mammography: a cohort study with follow-up of 12-14 years in Denmark *BMJ open*, 13(4), e072188

Greenwald, Z. R., Fregnani, J. H., Longatto-Filho, A., Watanabe, A., Mattos, J. S. C., Vazquez, F. L., Franco, E. L. (2018). The performance of mobile screening units in a breast cancer screening program in Brazil *Cancer causes & control : CCC*, 29(2), 233-241

Han, Hsin-Ju, Chu, Yuan-Chia, Wang, Jane, Lai, Yi-Chen, Tseng, Ling-Ming, Huang, Chi-Cheng (2023). Characteristics of breast cancers detected by screening mammography in Taiwan: a single institute's experience *BMC women's health*, 23(1), 330

Harding, C., Pompei, F., Burmistrov, D., Welch, H. G., Abebe, R., Wilson, R. (2015). Breast cancer screening, incidence, and mortality across US counties *JAMA Internal Medicine*, 175(9), 1483-1489

Harding, C., Pompei, F., Burmistrov, D., Wilson, R. (2019). Long-term relationships between screening rates, breast cancer characteristics, and overdiagnosis in US counties, 1975-2009 *International Journal of Cancer*, 144(3), 476-488

Heinavaara, Sirpa, Sarkeala, Tytti, Anttila, Ahti (2016). Impact of organised mammography screening on breast cancer mortality in a case-control and cohort study *British journal of cancer*, 114(9), 1038-44

Hellquist, Barbro Numan, Czene, Kamila, Hjalm, Anna, Nystrom, Lennarth, Jonsson, Hakan (2015). Effectiveness of population-based service screening with mammography for women ages 40 to 49 years with a high or low risk of breast cancer: socioeconomic status, parity, and age at birth of first child *Cancer*, 121(2), 251-8

Hersch, Jolyn, Barratt, Alexandra, McGeechan, Kevin, Jansen, Jesse, Houssami, Nehmat, Dhillon, Haryana, Jacklyn, Gemma, Irwig, Les, McCaffery, Kirsten (2021). Informing Women About Overdetection in Breast Cancer Screening: Two-Year Outcomes From a Randomized Trial *Journal of the National Cancer Institute*, 113(11), 1523-1530

Hofvind, Solveig, Skaane, Per, Elmore, Joann G., Sebuodegard, Sofie, Hoff, Solveig Roth, Lee, Christoph I. (2014). Mammographic performance in a population-based screening program: before, during, and after the transition from screen-film to full-field digital mammography *Radiology*, 272(1), 52-62

Ilenko, Anna, Sergent, Fabrice, Mercuzot, Antonin, Zitoun, Mickael, Chauffert, Bruno, Foulon, Arthur, Gondry, Jean, Chevreau, Julien (2017). Could Patients Older than 75 Years Benefit from a Systematic Breast Cancer Screening Program? *Anticancer research*, 37(2), 903-907

Ip, Eugenia C., Cohen-Hallaleh, Ruben B., Ng, Alexander K. (2020). Extending Screening in "Elderly" Patients: Should We Consider a Selective Approach? *Clinical breast cancer*, 20(5), 377-381

Jiang, Shu, Bennett, Debbie L., Rosner, Bernard A., Colditz, Graham A. (2023). Longitudinal Analysis of Change in Mammographic Density in Each Breast and Its Association With Breast Cancer Risk *JAMA*

Johns, Louise E., Coleman, Derek A., Swerdlow, Anthony J., Moss, Susan M. (2017). Effect of population breast screening on breast cancer mortality up to 2005 in England and Wales: an individual-level cohort study *British journal of cancer*, 116(2), 246-252

Johnson, Kristin, Olinder, Jakob, Rosso, Aldana, Andersson, Ingvar, Lang, Kristina, Zackrisson, Sophia (2023). False-positive recalls in the prospective Malmo Breast Tomosynthesis Screening Trial *European radiology*, #volume#(#issue#), #Pages#

Kadhel, P., Borja De Mozota, D., Gaumond, S., Deloumeaux, J. (2017). Characteristics of invasive breast cancer and overall survival of patients eligible for mass breast cancer screening in Guadeloupe compared to those of the preceding age group *Cancer Epidemiology*, 50(#issue#), 268-271

Kelly, Caitriona, Fitzpatrick, Patricia, Quinn, Cecily, Flanagan, Fidelma, Connors, Alissa, Larke, Aideen, Mooney, Therese, Kennedy, Maria, Sheehan, Margaret, Bennett, Michael W., Brodie, Caroline, O'Doherty, Ann (2022). Screen-detected ductal carcinoma in situ, 2008-2020: An observational study *Journal of medical screening*, 29(3), 172-177

Kerlikowske, Karla, Scott, Christopher G., Mahmoudzadeh, Amir P., Ma, Lin, Winham, Stacey, Jensen, Matthew R., Wu, Fang Fang, Malkov, Serghei, Pankratz, V. Shane, Cummings, Steven R., Shepherd, John A., Brandt, Kathleen R., Miglioretti, Diana L., Vachon, Celine M. (2018). Automated and Clinical Breast Imaging Reporting and Data System Density Measures Predict Risk for Screen-Detected and Interval Cancers: A Case-Control Study *Annals of internal medicine*, 168(11), 757-765

Kerlikowske, Karla, Sprague, Brian L., Tosteson, Anna N. A., Wernli, Karen J., Rauscher, Garth H., Johnson, Dianne, Buist, Diana S. M., Onega, Tracy, Henderson, Louise M., O'Meara, Ellen S., Miglioretti, Diana L. (2019). Strategies to Identify Women at High Risk of Advanced Breast Cancer During Routine Screening for Discussion of Supplemental Imaging *JAMA internal medicine*, 179(9), 1230-1239

Kikuchi, M., Tsunoda, H., Koyama, T., Kawakita, T., Suzuki, K., Yamauchi, H., Takahashi, O., Saida, Y. (2014). Opportunistic breast cancer screening by mammography in Japan for women in their 40s at our preventive medical center: Harm or benefit? *Breast Cancer*, 21(2), 135-139

Kim, Soo-Yeon, Kim, Min Jung, Moon, Hee Jung, Yoon, Jung Hyun, Kim, Eun-Kyung (2016). Application of the downgrade criteria to supplemental screening ultrasound for women with negative mammography but dense breasts *Medicine*, 95(44), e5279

Koroukian, Siran M., Bakaki, Paul M., Htoo, Phyo Than, Han, Xiaozhen, Schluchter, Mark, Owusu, Cynthia, Cooper, Gregory S., Rose, Johnie, Flocke, Susan A. (2017). The Breast and Cervical Cancer Early Detection Program, Medicaid, and breast cancer outcomes among Ohio's underserved women *Cancer*, 123(16), 3097-3106

Lambeth, Chris, Burgess, Philip, Curtis, Jackie, Currow, David, Sara, Grant (2023). Breast cancer screening participation in women using mental health services in NSW, Australia: a population study *Social psychiatry and psychiatric epidemiology*, #volume#(#issue#), #Pages#

Lousdal, Mette Lise, Lash, Timothy L., Flanders, W. Dana, Brookhart, M. Alan, Kristiansen, Ivar Sonbo, Kalager, Mette, Stovring, Henrik (2020). Negative controls to detect uncontrolled confounding in

observational studies of mammographic screening comparing participants and non-participants *International journal of epidemiology*, 49(3), 1032-1042

Lynge, Elsebeth, Vejborg, Ilse, Lillholm, Martin, Nielsen, Mads, Napolitano, George, von Euler-Chelpin, My (2023). Breast density and risk of breast cancer *International journal of cancer*, 152(6), 1150-1158

Ma, K. K., Lau, S. S. S., Cheung, P. S. Y. (2014). Ductal carcinoma in situ in Chinese women undergoing opportunistic breast cancer screening *Surgical Practice*, 18(1), 8-14

Masala, Giovanna, Assedi, Melania, Bendinelli, Benedetta, Pastore, Elisa, Gilio, Maria Antonietta, Mazzalupo, Vincenzo, Querci, Andrea, Fontana, Miriam, Duroni, Giacomo, Facchini, Luigi, Saieva, Calogero, Palli, Domenico, Ambrogetti, Daniela, Caini, Saverio (2023). The FEDRA Longitudinal Study: Repeated Volumetric Breast Density Measures and Breast Cancer Risk *Cancers*, 15(6), #Pages#

Morris, Melanie, Woods, Laura M., Rachet, Bernard (2016). What might explain deprivation-specific differences in the excess hazard of breast cancer death amongst screen-detected women? Analysis of patients diagnosed in the West Midlands region of England from 1989 to 2011 *Oncotarget*, 7(31), 49939-49947

Nagel, G., Oberaigner, W., Peter, R. S., Ulmer, H., Concin, H. (2015). Evaluation of a mammography screening program within the population-based Vorarlberg Health Monitoring & Prevention Program (VHM&PP) *Cancer Epidemiology*, 39(6), 812-818

Nelson, H. D., O'Meara, E. S., Kerlikowske, K., Balch, S., Miglioretti, D. (2016). Factors associated with rates of false-positive and false-negative results from digital mammography screening: An analysis of registry data *Annals of Internal Medicine*, 164(4), 226-235

Park, Hannah Lui, Chang, Jenny, Haridass, Vikram, Wang, Sophia S., Ziogas, Argyrios, Anton-Culver, Hoda (2021). Mammography screening and mortality by risk status in the California teachers study *BMC cancer*, 21(1), 1341

Pattacini, P., Nitrosi, A., Rossi, P. G., Duffy, S. W., Iotti, V., Ginocchi, V., Ravaioli, S., Vacondio, R., Mancuso, P., Ragazzi, M., Campari, C. (2022). A Randomized Trial Comparing Breast Cancer Incidence and Interval Cancers after Tomosynthesis Plus Mammography versus Mammography Alone *Radiology*, 303(2), 256-266

Roman, M., Castells, X., Hofvind, S., von Euler-Chelpin, M. (2016). Risk of breast cancer after false-positive results in mammographic screening *Cancer Medicine*, 5(6), 1298-1306

Roman, Marta, Hofvind, Solveig, von Euler-Chelpin, My, Castells, Xavier (2019). Long-term risk of screendetected and interval breast cancer after false-positive results at mammography screening: joint analysis of three national cohorts *British journal of cancer*, 120(2), 269-275

Romero, A., Tora-Rocamora, I., Bare, M., Barata, T., Domingo, L., Ferrer, J., Tora, N., Comas, M., Merenciano, C., Macia, F., Castells, X., Sala, M. (2016). Prevalence of persistent pain after breast cancer treatment by detection mode among participants in population-based screening programs *BMC Cancer*, 16(1), 735

Sala, Maria, Domingo, Laia, Louro, Javier, Tora-Rocamora, Isabel, Bare, Marisa, Ferrer, Joana, Carmona-Garcia, Maria Carmen, Barata, Teresa, Roman, Marta, Macia, Francesc, Castells, Xavier (2018). Survival and Disease-Free Survival by Breast Density and Phenotype in Interval Breast Cancers *Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology*, 27(8), 908-916

Schoenborn, Nancy L., Sheehan, Orla C., Roth, David L., Cidav, Tansu, Huang, Jin, Chung, Shang-En, Zhang, Talan, Lee, Sei, Xue, Qian-Li, Boyd, Cynthia M. (2021). Association Between Receipt of Cancer Screening and All-Cause Mortality in Older Adults *JAMA network open*, 4(6), e2112062

Seely, Jean Morag, Peddle, Susan Elizabeth, Yang, Huiming, Chiarelli, Anna M., McCallum, Megan, Narasimhan, Gopinath, Zakaria, Dianne, Earle, Craig C., Fung, Sharon, Bryant, Heather, Nicholson, Erika, Politis, Chris, Berg, Wendie A. (2022). Breast Density and Risk of Interval Cancers: The Effect of Annual Versus Biennial Screening Mammography Policies in Canada *Canadian Association of Radiologists journal = Journal l'Association canadienne des radiologistes*, 73(1), 90-100

Seneviratne, Sanjeewa, Campbell, Ian, Scott, Nina, Shirley, Rachel, Lawrenson, Ross (2015). Impact of mammographic screening on ethnic and socioeconomic inequities in breast cancer stage at diagnosis and survival in New Zealand: a cohort study *BMC public health*, 15(#issue#), 46

Sprague, Brian L., Chen, Shuai, Miglioretti, Diana L., Gard, Charlotte C., Tice, Jeffrey A., Hubbard, Rebecca A., Aiello Bowles, Erin J., Kaufman, Peter A., Kerlikowske, Karla (2023). Cumulative 6-Year Risk of Screen-Detected Ductal Carcinoma In Situ by Screening Frequency *JAMA network open*, 6(2), e230166

Timmermans, Lore, Bleyen, Luc, Bacher, Klaus, Van Herck, Koen, Lemmens, Kim, Van Ongeval, Chantal, Van Steen, Andre, Martens, Patrick, De Brabander, Isabel, Goossens, Mathieu, Thierens, Hubert (2017). Screen-detected versus interval cancers: Effect of imaging modality and breast density in the Flemish Breast Cancer Screening Programme *European radiology*, 27(9), 3810-3819

Toth, D., Varga, Z., Toth, J., Arkosy, P., Sebo, E. (2018). Short- and Long-Term (10-year) Results of an Organized, Population-Based Breast Cancer Screening Program: Comparative, Observational Study from Hungary *World journal of surgery*, 42(5), 1396-1402

Vacek, P. M., Skelly, J. M. (2015). A prospective study of the use and effects of screening mammography in women aged 70 and older *Journal of the American Geriatrics Society*, 63(1), 1-7

van Bommel, Rob M. G., Weber, Roy, Voogd, Adri C., Nederend, Joost, Louwman, Marieke W. J., Venderink, Dick, Strobbe, Luc J. A., Rutten, Matthieu J. C., Plaisier, Menno L., Lohle, Paul N., Hooijen, Marianne J. H., Tjan-Heijnen, Vivianne C. G., Duijm, Lucien E. M. (2017). Interval breast cancer characteristics before, during and after the transition from screen-film to full-field digital screening mammography *BMC cancer*, 17(1), 315

van der Waal, D., Verbeek, A. L. M., Broeders, M. J. M. (2018). Breast density and breast cancer-specific survival by detection mode *BMC Cancer*, 18(1), 386

van Luijt, P. A., Heijnsdijk, E. A. M., Fracheboud, J., Overbeek, L. I. H., Broeders, M. J. M., Wesseling, J., den Heeten, G. J., de Koning, H. J. (2016). The distribution of ductal carcinoma in situ (DCIS) grade in 4232 women and its impact on overdiagnosis in breast cancer screening *Breast Cancer Research*, 18(1), 47

Waheed, Naima, Hameed, Maha, Alendijani, Yaser Abdullah, Al-Juwaid, Shorouq, Alkhenizan, Abdullah H. (2023). Breast Cancer Diagnosis and Survival among Patients Diagnosed by a Structured Community
Based Screening Program Compared to Opportunistic Diagnosis: A Case Control Study Asian Pacific journal of cancer prevention : APJCP, 24(3), 923-927

Walbaum, Benjamin, Puschel, Klaus, Medina, Lidia, Merino, Tomas, Camus, Mauricio, Razmilic, Dravna, Navarro, Maria Elena, Dominguez, Francisco, Cordova-Delgado, Miguel, Pinto, Mauricio P., Acevedo, Francisco, Sanchez, Cesar (2021). Screen-detected breast cancer is associated with better prognosis and survival compared to self-detected/symptomatic cases in a Chilean cohort of female patients *Breast cancer research and treatment*, 189(2), 561-569

Walpole, Euan, Dunn, Nathan, Youl, Philippa, Harden, Hazel, Furnival, Colin, Moore, Julie, Taylor, Kate, Evans, Elizabeth, Philpot, Shoni (2020). Nonbreast cancer incidence, treatment received and outcomes: Are there differences in breast screening attendees versus nonattendees? *International journal of cancer*, 147(3), 856-865

Weigel, Stefanie, Heindel, Walter, Dietz, Caroline, Meyer-Johann, Ulrike, Graewingholt, Axel, Hense, Hans Werner (2020). Stratification of Breast Cancer Risk in Terms of the Influence of Age and Mammographic density *Stratifizierung des Brustkrebsrisikos hinsichtlich der Einflusse von Alter und mammografischer Dichte.*, 192(7), 678-685

Woods, L. M., Rachet, B., O'Connell, D. L., Lawrence, G., Coleman, M. P. (2016). Are international differences in breast cancer survival between Australia and the UK present amongst both screen-detected women and non-screen-detected women? survival estimates for women diagnosed in West Midlands and New South Wales 1997-2006 International Journal of Cancer, 138(10), 2404-2414

Yi, Ann, Jang, Myoung-Jin, Yim, Dahae, Kwon, Bo Ra, Shin, Sung Ui, Chang, Jung Min (2021). Addition of Screening Breast US to Digital Mammography and Digital Breast Tomosynthesis for Breast Cancer Screening in Women at Average Risk *Radiology*, 298(3), 568-575

Yuan, Yan, Li, Maoji, Yang, Jing, Elliot, Tracy, Dabbs, Kelly, Dickinson, James A., Fisher, Stacey, Winget, Marcy (2016). Factors related to breast cancer detection mode and time to diagnosis in Alberta, Canada: a population-based retrospective cohort study *BMC health services research*, 16(#issue#), 65

Ineligible study design (n=41)

Amorim, R. B. F., Campos, F. S. M., Silveira, L. L., Archangelo Junior, I., Novo, N. F., Ferreira, L. M., Veiga, D. F. (2021). Effectiveness of Brazilian national health policy for mammogram screening in women aged over 50 years *Breast Journal*, 27(1), 82-83

Anonymous (2015). Mammographic screening for breast cancer. Overdiagnosis: an insidious adverse effect of screening *Prescrire international*, 24(162), 186-191

Anonymous (2015). Mammographic breast cancer screening. Part II. Non-randomised comparisons: results similar to those of randomised trials *Prescrire international*, 24(159), 99-102

Bahl, M., Lehman, C. D. (2019). Breast Cancer Screening Using Digital Breast Tomosynthesis: Not All Mammography Is Equal *JAMA Oncology*, 5(5), 642-643

Bahl, Manisha (2022). Screening MRI in Women at Intermediate Breast Cancer Risk: An Update of the Recent Literature *Journal of breast imaging*, 4(3), 231-240

Beau, Anna-Belle, Napolitano, George M., Ewertz, Marianne, Vejborg, Ilse, Schwartz, Walter, Andersen, Per K., Lynge, Elsebeth (2020). Impact of chronic diseases on effect of breast cancer screening *Cancer medicine*, 9(11), 3995-4003

Bulliard, Jean-Luc, Beau, Anna-Belle, Njor, Sisse, Wu, Wendy Yi-Ying, Procopio, Pietro, Nickson, Carolyn, Lynge, Elsebeth (2021). Breast cancer screening and overdiagnosis *International journal of cancer*, #volume#(#issue#), #Pages#

Chang, R. W. J., Jen, G. H. H., Lin, K. C., Cheng, T. C., Chuang, S. Y., Pan, S. L., Chen, T. H. H., Yen, A. M. F. (2022). Evaluating the effectiveness of population-based breast cancer service screening: an analysis of parsimonious patient survival information with the time-varying Cox model *International Journal of Epidemiology*, 51(6), 1910-1919

de Gelder, Rianne, Heijnsdijk, Eveline A. M., Fracheboud, Jacques, Draisma, Gerrit, de Koning, Harry J. (2015). The effects of population-based mammography screening starting between age 40 and 50 in the presence of adjuvant systemic therapy *International journal of cancer*, 137(1), 165-72

Fletcher, S. W. (2014). Annual mammography screening did not reduce long-term breast cancer mortality in women 40 to 59 years of age *ACP journal club*, 160(10), 1

Garcia-Albeniz, X., Hernan, M. A., Logan, R. W. (2020). Continuation of mammography screening in women older than 70 years *Annals of Internal Medicine*, 172(6), I-22

Houssami, Nehmat (2017). Overdiagnosis of breast cancer in population screening: does it make breast screening worthless? *Cancer biology & medicine*, 14(1), 1-8

Huang, X., Do, K. A. (2015). A novel case-control design to estimate the extent of over-diagnosis of breast cancer due to organised population-based mammography screening *Breast Diseases*, 26(3), 211-214

Hubner, J., Katalinic, A., Waldmann, A., Kraywinkel, K. (2020). Long-term Incidence and Mortality Trends for Breast Cancer in Germany *Geburtshilfe und Frauenheilkunde*, 80(6), 611-618

Jacklyn, G., Howard, K., Irwig, L., Houssami, N., Hersch, J., Barratt, A. (2017). Impact of extending screening mammography to older women Information to support informed choices *International Journal of Cancer*, 141(8), 1540-1550

Jacklyn, Gemma, McGeechan, Kevin, Irwig, Les, Houssami, Nehmat, Morrell, Stephen, Bell, Katy, Barratt, Alexandra (2017). Trends in stage-specific breast cancer incidence in New South Wales, Australia: insights into the effects of 25 years of screening mammography *Breast cancer research and treatment*, 166(3), 843-854

Jorgensen, Karsten Juhl, Gotzsche, Peter C., Kalager, Mette, Zahl, Per-Henrik (2017). Breast Cancer Screening in Denmark: A Cohort Study of Tumor Size and Overdiagnosis *Annals of internal medicine*, 166(5), 313-323

Kalager, M., Loberg, M., Bretthauer, M., Adami, H. O. (2014). Comparative analysis of breast cancer mortality following mammography screening in Denmark and Norway *Annals of oncology : official journal of the European Society for Medical Oncology*, 25(6), 1137-43

Kopans, D. B. (2014). Twenty five year follow-up for breast cancer incidence and mortality of the Canadian National Breast Screening Study: Randomised screening trial *Breast Diseases*, 25(3), 223-226

Kroenke, K. (2014). Are the harms of false-positive screening test results minimal or meaningful? *JAMA Internal Medicine*, 174(6), 961-963

Kuhl, C. K. (2019). Underdiagnosis is the main challenge in breast cancer screening *The Lancet Oncology*, 20(8), 1044-1046

Lousdal, Mette L., Moller, Mette H., Kristiansen, Ivar S., Kalager, Mette, Wisloff, Torbjorn, Stovring, Henrik (2018). The Screening Illustrator: separating the effects of lead-time and overdiagnosis in mammography screening *European journal of public health*, 28(6), 1138-1142

Miller, A. B. (2020). Final results of the UK Age trial on breast cancer screening age *The Lancet Oncology*, 21(9), 1125-1126

Miller, A. B., Fletcher, S. W. (2014). Annual mammography screening did not reduce long-term breast cancer mortality in women 40 to 59 years of age *Annals of Internal Medicine*, 160(10), JC7

Miller, A. B., Wall, C., Baines, C. J., Sun, P., To, T., Narod, S. A. (2014). Twenty-five-year follow-up for breast cancer incidence and mortality of the canadian national breast screening study: Randomized screening trial *Obstetrical and Gynecological Survey*, 69(6), 329-330

Molassiotis, A., Tyrovolas, S., Gine-Vazquez, I., Yeo, W., Aapro, M., Herrstedt, J. (2021). Organized breast cancer screening not only reduces mortality from breast cancer but also significantly decreases disability-adjusted life years: analysis of the Global Burden of Disease Study and screening programme availability in 130 countries *ESMO Open*, 6(3), 100111

Moller, Mette H., Lousdal, Mette Lise, Kristiansen, Ivar S., Stovring, Henrik (2019). Effect of organized mammography screening on breast cancer mortality: A population-based cohort study in Norway *International journal of cancer*, 144(4), 697-706

Movik, Espen, Dalsbo, Therese Kristine, Fagelund, Beate Charlotte, Friberg, Eva Godske, Haheim, Lise Lund, Skar, Ase (2017). Digital Breast Tomosynthesis with Hologic 3D Mammography Selenia Dimensions System for Use in Breast Cancer Screening: A Single Technology Assessment *#journal#*, #volume#(#issue#), #Pages#

Plaxco, J. S., Geiser, W., Yang, W. (2015). Effect of integrating 3D-mammography (digital breast tomosynthesis) with 2D-mammography on radiologists' true-positive and false-positive detection in a population breast screening trial *Breast Diseases*, 26(1), 45-48

Rosenberg, Karen (2019). Benefits Of Screening Ultrasonography For Breast Cancer May Not Outweigh Harms *The American journal of nursing*, 119(7), 62-63

Sebuodegard, S., Botteri, E., Hofvind, S. (2020). Breast cancer mortality after implementation of organized population-based breast cancer screening in Norway *Journal of the National Cancer Institute*, 112(8), 839-846

Shen, S. J., Xu, Y. L., Zhou, Y. D., Ren, G. S., Jiang, J., Jiang, H. C., Zhang, J., Li, B., Jin, F., Li, Y. P., Xie, F. M., Shi, Y., Wang, Z. D., Sun, M., Yuan, S. H., Yu, J. J., Chen, Y., Sun, Q. (2021). [A comparative study of

breast cancer mass screening and opportunistic screening in Chinese women] *Zhonghua wai ke za zhi* [Chinese journal of surgery], 59(2), 109-115

Slomski, A. (2020). Long-term Mortality Outcomes in Early Breast Cancer Screening Trial *JAMA*, 324(20), 2020

Stout, N. K., Lee, S. J., Schechter, C. B., Kerlikowske, K., Alagoz, O., Berry, D., Buist, D. S. M., Cevik, M., Chisholm, G., De Koning, H. J., Huang, H., Hubbard, R. A., Miglioretti, D. L., Munsell, M. F., Trentham-Dietz, A., Van Ravesteyn, N. T., Tosteson, A. N. A., Mandelblatt, J. S. (2014). Benefits, harms, and costs for breast cancer screening after US implementation of digital mammography *Journal of the National Cancer Institute*, 106(6), #Pages#

Tabar, Laszlo, Yen, Amy Ming-Fang, Wu, Wendy Yi-Ying, Chen, Sam Li-Sheng, Chiu, Sherry Yueh-Hsia, Fann, Jean Ching-Yuan, Ku, May Mei-Sheng, Smith, Robert A., Duffy, Stephen W., Chen, Tony Hsiu-Hsi (2015). Insights from the breast cancer screening trials: how screening affects the natural history of breast cancer and implications for evaluating service screening programs *The breast journal*, 21(1), 13-20

Van Ravesteyn, N. T., Schechter, C. B., Hampton, J. M., Alagoz, O., Van Den Broek, J. J., Kerlikowske, K., Mandelblatt, J. S., Miglioretti, D. L., Sprague, B. L., Stout, N. K., De Koning, H. J., Trentham-Dietz, A., Tosteson, A. N. A. (2021). Trade-Offs between Harms and Benefits of Different Breast Cancer Screening Intervals among Low-Risk Women *Journal of the National Cancer Institute*, 113(8), 1017-1026

Worcester, S. (2014). Annual mammography at age 40-59 provided no survival benefit *Oncology Report*, #volume#(MAR), 13

Yip, C. H. (2019). Downstaging is more important than screening for asymptomatic breast cancer *The Lancet Global Health*, 7(6), e690-e691

Yoshida, Y., Schmaltz, C. L., Jackson-Thompson, J., Simoes, E. J. (2018). The impact of screening on cancer incidence and mortality in Missouri, USA, 2004-2013 *Public Health*, 154(#issue#), 51-58

Zahl, Per-Henrik, Kalager, Mette, Suhrke, Pal, Nord, Erik (2020). Quality-of-life effects of screening mammography in Norway *International journal of cancer*, 146(8), 2104-2112

Systematic or scoping review (n=31)

Autier, Philippe, Boniol, Mathieu, Smans, Michel, Sullivan, Richard, Boyle, Peter (2016). Observed and Predicted Risk of Breast Cancer Death in Randomized Trials on Breast Cancer Screening *PloS one*, 11(4), e0154113

Autier, Philippe, Boniol, Mathieu, Smans, Michel, Sullivan, Richard, Boyle, Peter (2015). Statistical analyses in Swedish randomised trials on mammography screening and in other randomised trials on cancer screening: a systematic review *Journal of the Royal Society of Medicine*, 108(11), 440-50

Braithwaite, Dejana, Walter, Louise C., Izano, Monika, Kerlikowske, Karla (2016). Benefits and Harms of Screening Mammography by Comorbidity and Age: A Qualitative Synthesis of Observational Studies and Decision Analyses *Journal of general internal medicine*, 31(5), 561-72

Canelo-Aybar, Carlos, Ferreira, Diogenes S., Ballesteros, Monica, Posso, Margarita, Montero, Nadia, Sola, Ivan, Saz-Parkinson, Zuleika, Lerda, Donata, Rossi, Paolo G., Duffy, Stephen W., Follmann, Markus, Grawingholt, Axel, Alonso-Coello, Pablo (2021). Benefits and harms of breast cancer mammography screening for women at average risk of breast cancer: A systematic review for the European Commission Initiative on Breast Cancer *Journal of medical screening*, 28(4), 389-404

Canelo-Aybar, Carlos, Posso, Margarita, Montero, Nadia, Sola, Ivan, Saz-Parkinson, Zuleika, Duffy, Stephen W., Follmann, Markus, Grawingholt, Axel, Giorgi Rossi, Paolo, Alonso-Coello, Pablo (2022). Benefits and harms of annual, biennial, or triennial breast cancer mammography screening for women at average risk of breast cancer: a systematic review for the European Commission Initiative on Breast Cancer (ECIBC) *British journal of cancer*, 126(4), 673-688

Dibden, Amanda, Offman, Judith, Duffy, Stephen W., Gabe, Rhian (2020). Worldwide Review and Meta-Analysis of Cohort Studies Measuring the Effect of Mammography Screening Programmes on Incidence-Based Breast Cancer Mortality *Cancers*, 12(4), #Pages#

Flemban, Arwa F. (2023). Overdiagnosis Due to Screening Mammography for Breast Cancer among Women Aged 40 Years and Over: A Systematic Review and Meta-Analysis *Journal of personalized medicine*, 13(3), #Pages#

Hamashima, Chisato, Hamashima C, Chisato, Hattori, Masakazu, Honjo, Satoshi, Kasahara, Yoshio, Katayama, Takafumi, Nakai, Masahiro, Nakayama, Tomio, Morita, Takako, Ohta, Koji, Ohnuki, Koji, Sagawa, Motoyasu, Saito, Hiroshi, Sasaki, Seiju, Shimada, Tomoyuki, Sobue, Tomotaka, Suto, Akihiko (2016). The Japanese Guidelines for Breast Cancer Screening *Japanese journal of clinical oncology*, 46(5), 482-92

Hill, C. (2014). Breast cancer screening Presse Medicale, 43(5), 501-509

Houssami, Nehmat, Hunter, Kylie (2017). The epidemiology, radiology and biological characteristics of interval breast cancers in population mammography screening *NPJ breast cancer*, 3(#issue#), 12

Irvin, Veronica L., Kaplan, Robert M. (2014). Screening mammography & breast cancer mortality: metaanalysis of quasi-experimental studies *PloS one*, 9(6), e98105

Jacklyn, Gemma, Glasziou, Paul, Macaskill, Petra, Barratt, Alexandra (2016). Meta-analysis of breast cancer mortality benefit and overdiagnosis adjusted for adherence: improving information on the effects of attending screening mammography *British journal of cancer*, 114(11), 1269-76

Khrouf, Salim, Letaief Ksontini, Feryel, Ayadi, Mouna, Belhaj Ali Rais, Henda, Mezlini, Amel (2020). Breast cancer screening: a dividing controversy *La Tunisie medicale*, 98(1), 22-34

Li, T., Marinovich, M. L., Houssami, N. (2018). Digital breast tomosynthesis (3D mammography) for breast cancer screening and for assessment of screen-recalled findings: review of the evidence *Expert Review of Anticancer Therapy*, 18(8), 785-791

Loberg, Magnus, Lousdal, Mette Lise, Bretthauer, Michael, Kalager, Mette (2015). Benefits and harms of mammography screening *Breast cancer research : BCR*, 17(#issue#), 63

Mandrik, Olena, Zielonke, Nadine, Meheus, Filip, Severens, J. L. Hans, Guha, Neela, Herrero Acosta,

Rolando, Murillo, Raul (2019). Systematic reviews as a 'lens of evidence': Determinants of benefits and harms of breast cancer screening *International journal of cancer*, 145(4), 994-1006

Meggetto, Olivia, Peirson, Leslea, Yakubu, Mafo, Farid-Kapadia, Mufiza, Costa-Fagbemi, Michelle, Baidoobonso, Shamara, Moffatt, Jessica, Chun, Lauren, Chiarelli, Anna M., Muradali, Derek (2019). Breast cancer risk and breast screening for trans people: an integration of 3 systematic reviews *CMAJ open*, 7(3), E598-E609

Melnikow, Joy, Fenton, Joshua J., Whitlock, Evelyn P., Miglioretti, Diana L., Weyrich, Meghan S., Thompson, Jamie H., Shah, Kunal (2016). Supplemental Screening for Breast Cancer in Women With Dense Breasts: A Systematic Review for the U.S. Preventive Service Task Force *#journal#*, *#volume#*(*#issue#*), *#Pages#*

Myers, Evan R., Moorman, Patricia, Gierisch, Jennifer M., Havrilesky, Laura J., Grimm, Lars J., Ghate, Sujata, Davidson, Brittany, Mongtomery, Ranee Chatterjee, Crowley, Matthew J., McCrory, Douglas C., Kendrick, Amy, Sanders, Gillian D. (2015). Benefits and Harms of Breast Cancer Screening: A Systematic Review *JAMA*, 314(15), 1615-34

Nelson, Heidi D., Cantor, Amy, Humphrey, Linda, Fu, Rochelle, Pappas, Miranda, Daeges, Monica, Griffin, Jessica (2016). Screening for Breast Cancer: A Systematic Review to Update the 2009 U.S. Preventive Services Task Force Recommendation *#journal#*, #volume#(#issue#), #Pages#

Nelson, Heidi D., Fu, Rochelle, Cantor, Amy, Pappas, Miranda, Daeges, Monica, Humphrey, Linda (2016). Effectiveness of Breast Cancer Screening: Systematic Review and Meta-analysis to Update the 2009 U.S. Preventive Services Task Force Recommendation *Annals of internal medicine*, 164(4), 244-55

Nelson, Heidi D., Pappas, Miranda, Cantor, Amy, Griffin, Jessica, Daeges, Monica, Humphrey, Linda (2016). Harms of Breast Cancer Screening: Systematic Review to Update the 2009 U.S. Preventive Services Task Force Recommendation *Annals of internal medicine*, 164(4), 256-67

Oeffinger, K. C., Fontham, E. T. H., Etzioni, R., Herzig, A., Michaelson, J. S., Shih, Y. C. T., Walter, L. C., Church, T. R., Flowers, C. R., LaMonte, S. J., Wolf, A. M. D., DeSantis, C., Lortet-Tieulent, J., Andrews, K., Manassaram-Baptiste, D., Saslow, D., Smith, R. A., Brawley, O. W., Wender, R. (2015). Breast cancer screening for women at average risk: 2015 Guideline update from the American cancer society *JAMA - Journal of the American Medical Association*, 314(15), 1599-1614

Pace, L. E., Keating, N. L. (2014). A systematic assessment of benefits and risks to guide breast cancer screening decisions *JAMA*, 311(13), 1327-1335

Raichand, S., Dunn, A. G., Ong, M. S., Bourgeois, F. T., Coiera, E., Mandl, K. D. (2017). Conclusions in systematic reviews of mammography for breast cancer screening and associations with review design and author characteristics *Systematic Reviews*, 6(1), 105

Saquib, Nazmus, Saquib, Juliann, Ioannidis, John P. A. (2015). Does screening for disease save lives in asymptomatic adults? Systematic review of meta-analyses and randomized trials *International journal of epidemiology*, 44(1), 264-77

Siu, A. L. (2016). Screening for breast cancer: U.S. Preventive services task force recommendation statement *Annals of Internal Medicine*, 164(4), 279-296

van den Ende, Caroline, Oordt-Speets, Anouk M., Vroling, Hilde, van Agt, Heleen M. E. (2017). Benefits and harms of breast cancer screening with mammography in women aged 40-49 years: A systematic review *International journal of cancer*, 141(7), 1295-1306

Velentzis, Louiza S., Freeman, Victoria, Campbell, Denise, Hughes, Suzanne, Luo, Qingwei, Steinberg, Julia, Egger, Sam, Mann, G. Bruce, Nickson, Carolyn (2023). Breast Cancer Risk Assessment Tools for Stratifying Women into Risk Groups: A Systematic Review *Cancers*, 15(4), #Pages#

Voss, Theis, Krag, Mikela, Martiny, Frederik, Heleno, Bruno, Jorgensen, Karsten Juhl, Brandt Brodersen, John (2023). Quantification of overdiagnosis in randomised trials of cancer screening: an overview and re-analysis of systematic reviews *Cancer epidemiology*, 84(#issue#), 102352

Zielonke, Nadine, Gini, Andrea, Jansen, Erik E. L., Anttila, Ahti, Segnan, Nereo, Ponti, Antonio, Veerus, Piret, de Koning, Harry J., van Ravesteyn, Nicolien T., Heijnsdijk, Eveline A. M. (2020). Evidence for reducing cancer-specific mortality due to screening for breast cancer in Europe: A systematic review *European journal of cancer (Oxford, England : 1990)*, 127(#issue#), 191-206

Cohort study (all participants have breast cancer) (n=18)

Barco, Israel, Chabrera, Carol, Garcia Font, Marc, Gimenez, Nuria, Fraile, Manel, Lain, Josep Maria, Piqueras, Merce, Vidal, M. Carmen, Torras, Merce, Gonzalez, Sonia, Pessarrodona, Antoni, Barco, Josep, Cassado, Jordi, Garcia Fernandez, Antonio (2015). Comparison of Screened and Nonscreened Breast Cancer Patients in Relation to Age: A 2-Institution Study Clinical breast cancer, 15(6), 482-9

Beau, Anna-Belle, Andersen, Per Kragh, Vejborg, Ilse, Lynge, Elsebeth (2018). Limitations in the Effect of Screening on Breast Cancer Mortality Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 36(30), 2988-2994

Cedolini, Carla, Bertozzi, Serena, Londero, Ambrogio P., Bernardi, Sergio, Seriau, Luca, Concina, Serena, Cattin, Federico, Risaliti, Andrea (2014). Type of breast cancer diagnosis, screening, and survival Clinical breast cancer, 14(4), 235-40

Choi, Kui Son, Yoon, Minjoo, Song, Seung Hoon, Suh, Mina, Park, Boyoung, Jung, Kyu Won, Jun, Jae Kwan (2018). Effect of mammography screening on stage at breast cancer diagnosis: results from the Korea National Cancer Screening Program Scientific reports, 8(1), 8882

Duffy, S. W., Tabar, L., Yen, A. M. F., Dean, P. B., Smith, R. A., Jonsson, H., Tornberg, S., Chen, S. L. S., Chiu, S. Y. H., Fann, J. C. Y., Ku, M. M. S., Wu, W. Y. Y., Hsu, C. Y., Chen, Y. C., Svane, G., Azavedo, E., Grundstrom, H., Sunden, P., Leifland, K., Frodis, E., Ramos, J., Epstein, B., Akerlund, A., Sundbom, A., Bordas, P., Wallin, H., Starck, L., Bjorkgren, A., Carlson, S., Fredriksson, I., Ahlgren, J., Ohman, D., Holmberg, L., Chen, T. H. H. (2020). Mammography screening reduces rates of advanced and fatal breast cancers: Results in 549,091 women Cancer, 126(13), 2971-2979

Garcia Fernandez, A., Chabrera, C., Garcia Font, M., Fraile, M., Lain, J. M., Gonzalez, S., Corral, C., Torras, M., Torres, J., Teixido, M., Barco, I., Lopez, R., Gonzalez, C., Pessarrodona, A., Gimenez, N. (2014). Mortality and recurrence patterns of breast cancer patients diagnosed under a screening programme versus comparable non-screened breast cancer patients from the same population: Analytical survey from 2002 to 2012 Tumor Biology, 35(3), 1945-1953 **Herrmann, C., Vounatsou, P., Thurlimann, B., Probst-Hensch, N., Rothermundt, C., Ess, S.** (2018). Impact of mammography screening programmes on breast cancer mortality in Switzerland, a country with different regional screening policies BMJ Open, 8(3), e017806

Lim, Zi Lin, Ho, Peh Joo, Khng, Alexis Jiaying, Yeoh, Yen Shing, Ong, Amanda Tse Woon, Tan, Benita Kiat Tee, Tan, Ern Yu, Tan, Su-Ming, Lim, Geok Hoon, Lee, Jung Ah, Tan, Veronique Kiak-Mien, Hu, Jesse, Li, Jingmei, Hartman, Mikael (2022). Mammography screening is associated with more favourable breast cancer tumour characteristics and better overall survival: case-only analysis of 3739 Asian breast cancer patients BMC medicine, 20(1), 239

Luu, Xuan Quy, Lee, Kyeongmin, Jun, Jae Kwan, Suh, Mina, Jung, Kyu-Won, Choi, Kui Son (2022). Effect of mammography screening on the long-term survival of breast cancer patients: results from the National Cancer Screening Program in Korea Epidemiology and health, 44(#issue#), e2022094

Niraula, Saroj, Biswanger, Natalie, Hu, PingZhao, Lambert, Pascal, Decker, Kathleen (2020). Incidence, Characteristics, and Outcomes of Interval Breast Cancers Compared With Screening-Detected Breast Cancers JAMA network open, 3(9), e2018179

Oberaigner, W., Geiger-Gritsch, S., Edlinger, M., Daniaux, M., Knapp, R., Hubalek, M., Siebert, U., Marth, C., Buchberger, W. (2017). Reduction in advanced breast cancer after introduction of a mammography screening program in Tyrol/Austria Breast, 33(#issue#), 178-182

Plecha, Donna, Salem, Nelly, Kremer, Mallory, Pham, Ramya, Downs-Holmes, Catherine, Sattar, Abdus, Lyons, Janice (2014). Neglecting to screen women between 40 and 49 years old with mammography: what is the impact on treatment morbidity and potential risk reduction? AJR. American journal of roentgenology, 202(2), 282-8

Politi, Julieta, Sala, Maria, Domingo, Laia, Vernet-Tomas, Maria, Roman, Marta, Macia, Francesc, Castells, Xavier (2020). Readmissions and complications in breast ductal carcinoma in situ: A retrospective study comparing screen- and non-screen-detected patients Women's health (London, England), 16(#issue#), 1745506520965899

Roder, David, Farshid, Gelareh, Gill, Grantley, Kollias, Jim, Koczwara, Bogda, Karapetis, Chris, Adams, Jacqui, Joshi, Rohit, Keefe, Dorothy, Powell, Kate, Fusco, Kellie, Eckert, Marion, Buckley, Elizabeth, Beckmann, Kerri (2017). Breast cancer screening-opportunistic use of registry and linked screening data for local evaluation Journal of evaluation in clinical practice, 23(3), 508-516

Savaridas, S. L., Gierlinski, M., Warwick, V. R., Evans, A. E. (2022). Opting into breast screening over the age of 70 years: seeking evidence to support informed choice Clinical Radiology, 77(9), 666-672

Taylor, Richard, Gregory, Marli, Sexton, Kerry, Wharton, Jessica, Sharma, Nisha, Amoyal, Georgina, Morrell, Stephen (2019). Breast cancer mortality and screening mammography in New Zealand: Incidencebased and aggregate analyses Journal of medical screening, 26(1), 35-43

Tomsic, S., Zagar, T., Mihor, A., Mlakar, M., Lokar, K., Jarm, K., Zadnik, V. (2022). Prognostic factors and outcomes in women with breast cancer in Slovenia in relation to step-wise implementation of organized screening PLoS ONE, 17(11 November), e0278384

Wozniacki, Piotr, Skokowski, Jaroslaw, Bartoszek, Krzystof, Kosowska, Anna, Kalinowski, Leszek, Jaskiewicz, Janusz (2017). The impact of the Polish mass breast cancer screening program on prognosis in the Pomeranian Province Archives of medical science : AMS, 13(2), 441-447

Screening initiation date <2000 (n=9)

Beau, Anna-Belle, Lynge, Elsebeth, Njor, Sisse Helle, Vejborg, Ilse, Lophaven, Soren Nymand (2017). Benefit-to-harm ratio of the Danish breast cancer screening programme *International journal of cancer*, 141(3), 512-518

Lynge, Elsebeth, Beau, Anna-Belle, von Euler-Chelpin, My, Napolitano, George, Njor, Sisse, Olsen, Anne Helene, Schwartz, Walter, Vejborg, Ilse (2020). Breast cancer mortality and overdiagnosis after implementation of population-based screening in Denmark *Breast cancer research and treatment*, 184(3), 891-899

Narod, S. A., Sun, P., Wall, C., Baines, C., Miller, A. B. (2014). Impact of screening mammography on mortality from breast cancer before age 60 in women 40 to 49 years of age *Current oncology (Toronto, Ont.)*, 21(5), 217-21

Natal, Carmen, Caicoya, Martin, Prieto, Miguel, Tardon, Adonina (2015). [Breast cancer incidence related with a population-based screening program] *Incidencia de cancer de mama en relacion con la participacion en un programa de cribado poblacional.*, 144(4), 156-60

Sankatsing, Valerie D. V., van Ravesteyn, Nicolien T., Heijnsdijk, Eveline A. M., Looman, Caspar W. N., van Luijt, Paula A., Fracheboud, Jacques, den Heeten, Gerard J., Broeders, Mireille J. M., de Koning, Harry J. (2017). The effect of population-based mammography screening in Dutch municipalities on breast cancer mortality: 20 years of follow-up *International journal of cancer*, 141(4), 671-677

Tabar, Laszlo, Chen, Tony Hsiu-Hsi, Yen, Amy Ming-Fang, Chen, Sam Li-Sheng, Fann, Jean Ching-Yuan, Chiu, Sherry Yueh-Hsia, Ku, May M. S., Wu, Wendy Yi-Ying, Hsu, Chen-Yang, Chen, Yu-Ying, Beckmann, Kerri, Smith, Robert A., Duffy, Stephen W. (2018). Effect of Mammography Screening on Mortality by Histological Grade Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 27(2), 154-157

van der Waal, Danielle, Broeders, Mireille J. M., Verbeek, Andre L. M., Duffy, Stephen W., Moss, Sue M. (2015). Case-control Studies on the Effectiveness of Breast Cancer Screening: Insights from the UK Age Trial *Epidemiology (Cambridge, Mass.)*, 26(4), 590-6

Van Ourti, T., O'Donnell, O., Koc, H., Fracheboud, J., de Koning, H. (2019). Effect of screening mammography on breast-cancer mortality: Quasi-experimental evidence from rollout of the Dutch population-based program with 17-year follow-up of a cohort *International journal of cancer*, #volume#(#issue#), #Pages#

Van Ourti, Tom, O'Donnell, Owen, Koc, Hale, Fracheboud, Jacques, de Koning, Harry J. (2020). Effect of screening mammography on breast cancer mortality: Quasi-experimental evidence from rollout of the Dutch population-based program with 17-year follow-up of a cohort *International journal of cancer*, 146(8), 2201-2208

Yang, Lei, Wang, Shengfeng, Huang, Yubei (2020). An exploration for quantification of overdiagnosis and its effect for breast cancer screening *Chinese journal of cancer research = Chung-kuo yen cheng yen chiu*, 32(1), 26-35

Previously included in 2018 review (n=4)

Nystrom, Lennarth, Bjurstam, Nils, Jonsson, Hakan, Zackrisson, Sophia, Frisell, Jan (2017). Reduced breast cancer mortality after 20+ years of follow-up in the Swedish randomized controlled mammography trials in Malmo, Stockholm, and Goteborg *Journal of medical screening*, 24(1), 34-42

Bjurstam, Nils G., Bjorneld, Lena M., Duffy, Stephen W. (2016). Updated results of the Gothenburg Trial of Mammographic Screening *Cancer*, 122(12), 1832-5

Moss, Sue M., Wale, Christopher, Smith, Robert, Evans, Andrew, Cuckle, Howard, Duffy, Stephen W. (2015). Effect of mammographic screening from age 40 years on breast cancer mortality in the UK Age trial at 17 years' follow-up: a randomised controlled trial *The Lancet. Oncology*, 16(9), 1123-1132

Miller, Anthony B., Wall, Claus, Baines, Cornelia J., Sun, Ping, To, Teresa, Narod, Steven A. (2014). Twenty-five-year follow-up for breast cancer incidence and mortality of the Canadian National Breast Screening Study: randomised screening trial *BMJ (Clinical research ed.)*, 348(#issue#), g366

Ineligible intervention (n=3)

Iwamoto, T., Kumamaru, H., Miyata, H., Tomotaki, A., Niikura, N., Kawai, M., Anan, K., Hayashi, N., Masuda, S., Tsugawa, K., Aogi, K., Ishida, T., Masuoka, H., Iijima, K., Matsuoka, J., Doihara, H., Kinoshita, T., Nakamura, S., Tokuda, Y. (2016). Distinct breast cancer characteristics between screen- and self-detected breast cancers recorded in the Japanese Breast Cancer Registry *Breast Cancer Research and Treatment*, 156(3), 485-494

Jaffar Al Bahrani, Bassim, Mehdi, Itrat, Al Lawati, Taha Mohsin, Al Farsi, Abdulaziz M., Al Lawati, Najla A., Al Harthi, Hasina (2022). Impact of Screening Programs on Stage Migration in Breast Cancer *The Gulf journal of oncology*, 1(38), 38-46

Mittra, Indraneel, Mishra, Gauravi A., Dikshit, Rajesh P., Gupta, Subhadra, Kulkarni, Vasundhara Y., Shaikh, Heena Kauser A., Shastri, Surendra S., Hawaldar, Rohini, Gupta, Sudeep, Pramesh, C. S., Badwe, Rajendra A. (2021). Effect of screening by clinical breast examination on breast cancer incidence and mortality after 20 years: prospective, cluster randomised controlled trial in Mumbai *BMJ (Clinical research ed.)*, 372(#issue#), n256

No outcomes of interest (n=2)

Hemminki, K., Forsti, A. (2022). Incidence, Mortality and Survival Trends in Breast Cancers Coincident with Introduction of Mammography in the Nordic Countries *Cancers*, 14(23), 5907

Kang, Stella K., Jiang, Miao, Duszak, Richard, Jr., Heller, Samantha L., Hughes, Danny R., Moy, Linda (2018). Use of Breast Cancer Screening and Its Association with Later Use of Preventive Services among Medicare Beneficiaries *Radiology*, 288(3), 660-668

Not English or French (n=2)

Giudici, Fabiola, Bortul, Marina, Clagnan, Elena, Del Zotto, Stefania, Franzo, Antonella, Giordano, Livia, Gobbato, Michele, Puliti, Donella, Serraino, Diego, Zucchetto, Antonella, Zanier, Loris, Zanconati, Fabrizio, Bucchi, Lauro (2020). [Early effects of attendance to the Friuli Venezia Giulia (Northern Italy) mammography screening programme on the incidence of advanced-stage breast cancer: a cohort study] *Effetti precoci dell'adesione al programma di screening mammografico della Regione Friuli Venezia Giulia sull'incidenza del cancro della mammella in stadio avanzato: uno studio di coorte.*, 44(2-3), 145-153

Santos, Renata Oliveira Maciel Dos, Assis, Monica de, Dias, Maria Beatriz Kneipp, Tomazelli, Jeane Glaucia (2023). [Risk of false-positive result in mammography screening in Brazil] *Risco de resultado falso positivo no rastreamento mamografico do Brasil.*, 39(5), e00117922

Not a "very high" HDI country (n=2)

Charaka, Hafida, Khalis, Mohamed, Elfakir, Samira, Chami Khazraji, Youssef, Zidouh, Ahmed, Abousselham, Loubna, El Rhazi, Karima, Lyoussi, Badiaa, Nejjari, Chakib (2016). Organization and Evaluation of Performance Indicators of a Breast Cancer Screening Program in Meknes-Tafilalt Region, Morocco *Asian Pacific journal of cancer prevention : APJCP*, 17(12), 5153-5157

Su, Shih-Yung (2022). Nationwide mammographic screening and breast cancer mortality in Taiwan: an interrupted time-series analysis *Breast cancer (Tokyo, Japan)*, 29(2), 336-342

Appendix 14 – Study characteristics table

Study	y Participants and Intervention		Control	Outcomes
RCTs (n=3)				
Duffy 2020 ⁵³ ,United Kingdom and Duffy 2020 ⁴³ , United Kingdom	Participants: Women aged 39– 41 years were recruited from 23 screening units in England, Wales, and Scotland within the NHSBSP	n=53,914 Type of mammography: NR Number of screeping intervals: NR	n=107,007 The control group received usual care during the intervention periods.	BC mortality, other/all-cause mortality, overdiagnosis
Trial/Screening Program: UK Age Trial - National Health Service Breast Screening Programme (NHSBSP)	Study design: RCT Follow-up: For Duffy 2020 ⁵³ and Duffy 2020 ⁴³ : Mean of 23 years; median of 22.8 years (IQR 21.8–24.0)	The intervention group was invited to an annual breast screen with film mammography, two view at first screen and single view thereafter, up to and including the calendar year of their 48th birthday. All screening in the trial was completed by 2006.	At the age of 50 years, the control group became eligible for invitation to screening every 3 years as part of the NHSBSP and received their first invitation between age 50 and 52 years.	
Tarone 1995 ³⁶ , Canada Trial/Screening Program: CNBSS I – Additional analysis for Swedish Two County (Kopparberg & Ostergotland), Malmo I, HIP, Stockholm	Participants: Women aged 40-49 years were recruited from 15 urban centres in Canada with expertise in the diagnosis and treatment of Breast Cancer Study design: RCT Follow-up: Mean follow-up: 8.5 years	n=44,925 (CNBSS-I) Type of mammography: Two-view film screen mammography The screening group was invited to annual mammography and physical examination	n=44,910 (CNBSS-I) Participants in the control group received a single physical examination at enrollment into the study and usual medical care thereafter.	Stage at Diagnosis (stage II and higher, stage III and higher)
Observational studies (n=26)				
Choi 2021 ¹⁵ , Korea Screening Program/Database: Korean National Cancer Screening Program (KNCSP)	Participants: Women born between 1923-1963 (aged 40-79 years) who received an invitation to the KNCSP for breast cancer screening between 2002 and 2003 Study design: Cohort Follow-up: Maximum 14 years for mortality outcomes (2002 to 2015); Mean 8.42 years screened and 7.52 years in non-screened	n=1,099,417 (screened at first invitation); n=5,026,186 (from non-screened to screened) Type of mammography: Women were invited for screen-film mammography, computed radiography, and full-field digital mammography Number of screening intervals: Over 70% of the screened women attended screening more than once during follow-up 2 rounds: 21.0%	n=2,047,569 (never screened); n=5,153,696 (from non- screened to screened) Women who never underwent BC screening during the follow- up period. Additionally, the control included the women- years of women who were eventually screened from the date of initial invitation (January 1, 2002; January 1, 2003) to the date of their first screening attendance	Breast cancer mortality, all- cause mortality, incidence of invasive BC

Study	Participants and Study Design	Intervention	Control	Outcomes
		3 rounds: 21.6% 4 rounds: 19.5% 5 rounds: 11.0% 6+ rounds: 3.0%		
Duffy 2021 ¹⁷ , Sweden Screening Program/Database: Swedish Cause of Death Register of the Swedish National Board of Health and Welfare; Screening data: Sectra Medical Systems, Linköping	Participants: Swedish women eligible for screening mammography in nine counties from 1992 to 2016 (aged 40-69 years); 37078/549091 (~7%) participants previously had BC Study design: Cohort Follow-up: Mean 22 years, maximum 22 years (mortality outcomes); Mean 13 years, maximum 16 years for fatal BC cases within 10 years after diagnosis	n=392,135 serial participants, defined as women who participated in both of their last two scheduled screening examinations. Type of mammography: NR Number of screening intervals: 2	n=84,265 serial non-participants Women who did not participate in either of their last two scheduled screening examinations.	BC mortality
Dunn 2021 ⁵⁴ , Australia Screening Program/Database: BreastScreen Australia	Participants: Women (aged 50– 65 years) recorded on the Queensland Electoral Roll in the year 2000 Study design: Cohort Follow-up: Maximum 16 years	n= 74792 unscreened Women with no mammography record from 2000 up to 31/12/2005. Women with no record of screening prior to the beginning of the accrual period contributed person-years in the non-screened cohort until the date of first attendance for screening during the accrual period.	BC mortality	
Morrell 2017 ¹⁸ , New Zealand Screening Program/Database: BreastScreen Aotearoa (BSA) programme	 Participants: A cohort comprising all New Zealand women aged 45– 69 years during 1999–2011 Study design: Cohort Follow-up: Maximum 11 years (2000-2011) 	 n= 542,234 ever screened Person-years of participation in screening are calculated from the time of first screen to the beginning of each successive year, or to the year of diagnosis for women diagnosed with breast cancer. Type of mammography: Two-view bilateral mammograms (initially), digital mammogram began in 2006 	n=327, 623 never screened Women with no recorded screening participation in a given year, inferred by subtraction from ethnic- and age-specific census derived populations for that year, as provided by Statistics New Zealand	Breast cancer mortality

Study	Participants and Study Design	Intervention	Control	Outcomes
		Number of screening intervals: Up to 3		
Lund 2018 ⁴⁴ , Norway Screening Program/Database: The Norwegian Breast Cancer Screening Program (NBCSP)	Participants: Women aged 49 to 79 during the first 9 years of national coverage of the NBCSP (2005-2013) were selected for the present analysis. Women living in Norway with no previous cancer diagnosis were included. Study design: Cohort Follow-up: Maximum 8 years (2005-2013)	n= 83,963 screened Women who have received at a NBCSP mammogram. Additionally, person years from women were categorised as unscreened until their first NBCSP mammogram, at which they were moved to the screened category. Type of mammography: Digital mammography	n=9,974 never screened Women who had never taken a mammogram at time of recruitment	Overdiagnosis
Puliti 2017 ³⁷ , Italy Screening Program/Database: Italian National Centre for Screening Monitoring	 Participants: Nine health care districts in central and northern Italy participated in this study. The cohort included all women 50-69 years old who were invited to the first round of their local mammography screening programme. Study design: Cohort Follow-up: Median duration 11 years (IQR: 9-13); Total study period 1991-2009 with follow-up truncated at 13 years 	n= 276,322 attenders Type of mammography: NR Number of screening intervals: At least one round (two rounds of screening invitations)	n=137,125 non-attenders Women who did not attend either of the first two screening rounds to which they received an invitation.	Stage at diagnosis
Weedon-Fekjaer 2014 ⁵⁵ , Norway Screening Program/Database: Norwegian breast cancer screening programme	Participants: All Norwegian women aged 50 to 79 years between 1986 and 2009 were eligible for inclusion. Data were obtained from the Norwegian Cancer Registry and women were followed until they were censored (death, reached 80 years or they had reached the end of follow-up). Study design: Cohort	 N= 2,407,709 person-years invited to screening Type of mammography: NR Number of screening intervals: NR Biennial invitations sent to women aged 50-69 years. Two-view screening mammograms are taken in breast diagnostic centres 	n=12,785,325 person-years not invited to screening Person-time of those not invited to the Norwegian mammography screening programme, 1986- 2009.	BC mortality

Study	Participants and Study Design	Intervention	Control	Outcomes
	Follow-up: Maximum follow-up 5- 10 years after invitations to screening ended (1986-2009)	exclusively dedicated to the diagnosis and treatment of breast diseases.		
Coldman 2014 ¹⁶ , Canada Screening Program/Database: Canadian Breast Cancer Screening Initiative (CBCSI), including seven provincial screening programs: British Columbia, Manitoba, Ontario, Québec, New Brunswick, Nova Scotia, and Newfoundland and Labrador	Participants: Separate cohorts were assembled for each screening program, consisting of women who had at least one program screen between ages 40 and 79 years in the period between January 1, 1990, and December 31, 2009 Study design: Population-based study Follow-up: Maximum 19 years (1990-2009)	Screening Cohort Province: British Columbia n=787815 Manitoba n= 132306 Ontario n= 797648 Québec n= 758912 New Brunswick n= 127039 Nova Scotia n= 162379 Newfoundland and Labrador n= 30373 Type of mammography: NR Number of screening intervals: NR	Referent rates were derived from nonparticipants in each province defined to be those not in, or before entry to, the participant cohort, n=NR	Standardized mortality ratios (SMRs) by age at entry, including 40 to 49 years
Richman 2023 ⁴⁵ , United States Screening Program/Database: SEER (Surveillance, Epidemiology, and End Results)-Medicare registry	 Participants: Study included women aged 70 years and older by January 1, 2003, had no breast cancer detected before 2002 screening mammogram and had Medicare fee-for-service insurance through 2005. Study design: Cohort Follow-up: Median 13.7 years (IQR, 9.2 to 14.4 years) among women aged 70 to 74 years, 10 years (IQR, 5.8 to 13.9 years) for women aged 75 to 84 years, 5.7 years (IQR, 3.1 to 9.1 years) for women 85 years and older 	n=44,485 Type of mammography: Study adapted a validated algorithm that distinguishes screening mammograms from diagnostic mammograms based on Current Procedural Terminology (CPT) and Healthcare Common Procedure Coding System (HCPCS) codes. Number of screening intervals: NR	n=10,150 Women who did not have a screening mammogram in three years after their 2002 mammogram were included in the non-screening group.	Overdiagnosis
Garcia-Albeniz 2020 ¹⁹ , United States Screening program/Database: Medicare Data	Participants: Women aged 70-84 years who had a life expectancy of at least 10 years, had no previous breast cancer diagnosis, and underwent screening mammography. Women were US Medicare enrollees between 1999 and 2008 who have screening mammography the day they enter the trial.	N= 264,274 "Continue screening" strategy (Women continue annual screening mammography (with a 3-month grace period and are excused from further screening after a breast cancer diagnosis)	n= 264,274 "Stop screening" strategy (women do not have further screening after baseline)	BC mortality, treatment- related morbidity, and overdiagnosis

Study	Participants and Study Design	Intervention	Control	Outcomes
	Study design: Population-based cohort study Follow-up: 8 years			
Wilkinson 2023 ³⁰ , Canada Screening program/Database: Canadian Community Health Survey (CCHS), Canadian Cancer Registry and population data from Statistics Canada	Participants: Women aged 40-49 years diagnosed with Breast Cancer between 2002 and 2007 Study design: Population-based study Follow-up: 10 years	n=5,680 (breast cancer cases) Number of screening intervals: NR Five jurisdictions with organized screening programs, including self- referral and annual recall, were designated as screeners: British Columbia, Alberta, Nova Scotia, Prince Edward Island, and the Northwest Territories.	n=15,408 (breast cancer cases) Jurisdictions with no organized screening programs and only limited opportunistic screening (Newfoundland and Labrador, New Brunswick, Quebec, Ontario, Manitoba, Saskatchewan, and Yukon Territory)	Incidence-based BC mortality
Wilkinson 2022 ⁴⁰ , Canada Screening Program/Database: Canadian Community Health Survey (CCHS), Canadian Cancer Registry and population data from Statistics Canada	 Participants: Women aged 40-49 and 50-59 years diagnosed with invasive breast cancer between 2010 and 2017 Study design: Population-based study Follow-up: unclear 	n= 20,965 (breast cancer cases) Number of screening intervals: NR Five jurisdictions with organized screening programs, including self- referral and annual recall, were designated as screeners: British Columbia, Alberta, Nova Scotia, Prince Edward Island, and the Northwest Territories.	n= 34,525 (breast cancer cases) Jurisdictions with no organized screening programs and only limited opportunistic screening (Newfoundland and Labrador, New Brunswick, Quebec, Ontario, Manitoba, Saskatchewan, and Yukon Territory)	Stage at diagnosis
Blyuss 2023 ⁵⁶ , United Kingdom Screening Program/Database: UK National Health Service Breast Screening Program	Participants: The population were those invited to BC screening. Cases were women who were diagnosed with primary breast cancer (invasive or in situ) in 2010 or 2011 and aged between 47 and 89 years. Controls were women sampled from the general population of those invited for screening and alive at the time of their corresponding case's date of diagnosis, matched on date of birth (within 1 month) and screening area at date of their case's diagnosis. Study design: Case-control	n= 144,699 ever screened (93,020 controls and 51,679 cases) Type of mammography: NR Number of screening intervals: Mean number of screening rounds, excluding those never screened (range): cases 3.4 (1.0–13.0); controls 3.3 (1.0–12.0)	n=18,447 never screened (12,633 controls and 5,814 cases)	Overdiagnosis

Study	Participants and Study Design	Intervention	Control	Outcomes
	Follow-up: Maximum 2 3 years			
De Troeyer 2023 ²⁶ , Belgium Screening Program/Database: Flemish population-based mammography screening program (PMSP)	Participants: The study population was all women aged 50-69 years and eligible for the Flemish PMSP between 2005- 2012. Cases were women from the study population who died from BC between 2005-2017 and had the opportunity to be screened within the program at least once prior to diagnosis. For each case, four referents were randomly selected among the women of the study population who were still alive at the time of death of the corresponding case and who had the opportunity to be screened prior to the date of diagnosis of the case ('pseudodiagnosis' date). Study design: Case-control Follow-up: Outcomes assessed between 2005-2017; screening exposure period is within 4 years prior to BC diagnosis for cases/pseudodiagnosis for controls	N= 4217 screened (620 cases and 3597 referents) Type of mammography: Digital mammography introduced in 2005. Number of screening intervals: At least one	n= 3638 not screened (2687 referents and 951 cases)	BC mortality
Maroni 2021 ²⁵ , United Kingdom	Participants: England-wide study of women who died of primary BC or matched controls invited to	n= 19946 (6547 cases and 13399 controls) screened	n= 3544 never screened (1803 controls and 1741 cases)	BC mortality
Program/Database: UK National Health Service Breast Screening Program	Study design: Case-control Follow-up: Maximum 21 years (1990-2011)	Number of screening intervals: 62.3% controls had 2+ rounds; 53.5% cases had 2+ rounds		
van der Waal 2017 ²⁴ , Netherlands	Participants: Case subjects were women who died of BC in Nijmegen between 1975 and 2008. Each case subject was	n= 1460 screened (220 cases and 1240 controls)	n= 538 not screened (425 controls and 113 cases)	BC mortality

Study	Participants and Study Design	Intervention	Control	Outcomes
Screening Program/Database: Nijmegen (Dutch) screening program	matched to five control subjects, alive at the time of death of the matched case. All subjects had been invited to screening in the index round. The proportion of women with dense breasts among the interval cases ranged from 38.7% to 54.5%, and these proportions were always greater than for the screen-detected cases (ranged from 20.7% to 30.5%). Study design: Case-control Follow-up: Maximum 33 years (1975 – 2008)	Screening exposure was defined as attending the index screening round and/or the screening examination preceding the index round (pre-index round). This reflects the screening participation within the 4 years before (pseudo-)diagnosis. Type of mammography: Only screen- film mammograms Number of screening intervals: 1-2		
Massat 2016 ²² , United Kingdom Screening Program/Database: UK National Health Service Breast Screening Program	 Participants: Women residing in the London region, who had been invited to participate in the NHS BSP from 1988 onward. Cases were women who died of primary BC aged 47 to 89 years between 2008-2009, and who were diagnosed with primary BC (invasive) between the ages of 47 to 89 years after 1990. Each case was matched based on age and geographical area to 1-2 general population controls. Study design: Case-control Follow-up: Maximum 11 years (1998-2009; over 80% of women in our dataset selected were diagnosed from the year 2000 onward) 	n=1991 screened at least once and invited at least once (649 cases and 1342 controls) n= 1286 screened >1 and invited at least twice (406 cases and 880 controls) Type of mammography: NR Number of screening intervals: Median (range) 2.0 (0-7) controls, 1.0 (0-8) cases	n=520 never screened and invited at least once (220 cases and 300 controls) n=299 never screened and invited at least twice (121 cases and 178 controls)	BC mortality
Beckmann 2015 ⁵⁷ , Australia Screening Program/Database: BreastScreen South Australia (BSSA)	Participants: Cases were selected from the South Australian Cancer Registry (SACR) and consisted of all women diagnosed with breast cancer, between 2006 and 2010, who were aged	n= 17664 (3370 cases and 14294 controls) screened Type of mammography: Analogue screen-film technology	n= 7709 no screening records (1,213 cases and 6,496 controls)	Overdiagnosis

Study	Participants and Study Design	Intervention	Control	Outcomes
	between 45 and 85 years and resident in SA at the time of diagnosis. Five age-matched controls per case with the same month and year of birth were randomly sampled from the South Australian electoral rolls (ER) using an incidence density sampling approach. Study design: Case-control Follow-up: Maximum 21 years (1989-2010)	Number of screening intervals: At least 1 BreastScreen SA; Mean rounds of screening excluding never screened: 5.1 (1–18) cases; 4.9 (1–16) controls		
Pocobelli 2015 ²¹ , Canada Screening Program/Database: Screening Program for Breast Cancer (SPBC)	Participants: Cases were women who died of BC at 50–79 years of age during 1990–2008 and who had continuous Saskatchewan healthcare coverage for at least 5 years prior to their first primary BC diagnosis (index date). For each case, 15 potential controls were randomly sampled, with the same birth year and the same duration of continuous health coverage. Study design: Case-control Follow-up: Maximum 13 years (1995–2008)	n=2833 (186 cases + 2647 controls) screened within the two years prior to and including the index date. SPBC began in selected regions of Saskatchewan. Women 50–69 years of age are identified from the population registry and are mailed a letter of invitation to receive a screening mammogram (women >70 years of age may attend, but they are not mailed a letter of invitation). Type of mammography: NR Number of screening intervals: NR	n=2677 not screened (315 cases and 2362 controls) No screening within the two years prior to and including the index date.	BC mortality
Paap 2014 ²⁰ , Netherlands Screening Program/Database: Dutch breast cancer screening program	 Participants: All women aged 50- 75 years who received at least one invitation to the service screening program in the five participating screening regions. Cases originated from the source population and were defined as women who died from breast cancer in 2004 or 2005. Cases were individually matched to referents from the population invited to screening. Study design: Case-control 	 n= NR (overall 80.8% participation rate) screened Participated in the screening examination following their index invitation and/or the invitation in the screening round before the index invitation Type of mammography: NR Number of screening intervals: Maximum 2 	n=NR (overall 19.2 non- participation rate) non-screened No participation in either the screening examination following their index invitation or the invitation in the screening round before the index invitation	BC mortality

Study	Participants and Study Design	Intervention	Control	Outcomes
	Follow-up: Maximum 15 years (1990-2005)			
Ripping 2016 ²³ , Netherlands Screening Program/Database: Nijmegen (Dutch) screening program	 Participants: The case-control study was conducted within the population invited to the biennial mammographic screening program in Nijmegen, the Netherlands. Cases were defined as women who were aged 50 to 75 years at diagnosis and died from BC before 2013. For each case, five controls were matched based on age and invitation date to screening program. Study design: Case-control Follow-up: Maximum 38 years (1975-2013); analytic screening period 4 years before case diagnosis 	N= 10,264 screened (1,541 cases and 8,723 controls) Type of mammography: Film before 2007, digital after 2007 Number of screening intervals: NR – Analytic period for screening was 4 years before the diagnosis of the case, covering 2 consecutive screening invitations.	n=3,328 unscreened (724 cases and 2,604 controls)	BC mortality
Katalinic 2020 ⁵⁸ , Germany Screening Program/Database: German National mammography BC screening program	Participants: Study used anonymized individual data of female patients with first (incident) registered ductal carcinoma in situ (DCIS, ICD10: D05.1, representing about 95% of all in situ BCs) or invasive BC diagnosis (ICD-10:C50) Study design: Time-trend analysis Follow-up: NA	Active-screening period (2015-2016); n=NR Type of mammography: NR Number of screening intervals: NR The German screening program follows the European guidelines on BC screening and includes an invitation every two years.	Pre-screening period (non- screened; 2003-2004); n=NR	BC mortality (age-specific rate/100,000) by age group)
de Glas 2014 ³⁸ , Netherlands Screening Program/Database: National Cancer Registry Netherlands	Participants: From the Netherlands cancer registry, we selected all patients aged 70-75 with a diagnosis of invasive and ductal carcinoma in situ BC between 1995 and 2011 Study design: Time-trend analysis	Active screening (2003-2011) time period; n= 3,394,055 person-years Type of mammography: NR Number of screening intervals: NR Study assessed the incidence of early stage and advanced stage breast	Pre-screening (1995-1997) time period; n=1,115,508 person- years	Stage at diagnosis for 70– 75-year age group

Study	Participants and Study Design	Intervention	Control	Outcomes
	Follow-up: NA	cancer before and after implementation of the mass screening programme in women aged 70-75 years in the Netherlands.		
Parvinen 2015 ²⁸ , Finland Screening Program/Database: Finish Cancer Registry	Participants: Since 1992, all Finnish women aged 50–59 years receive screening invitations every second year. The screening in Turku targeted female inhabitants aged 40–74 years. Study design: Time-trend analysis Follow-up: NA	Active-screening period (1987-2009); n= 468,195 person-years (1987-1997) and 541,096 person-years (1997- 2009) Type of mammography: NR Number of screening intervals: NR The aim of this study was to evaluate the effectiveness of a large-scale screening programme for breast cancer (BC) in Turku, Finland. In Turku, women aged 40–49 years were invited at modified invitation intervals from 1987 to 2009. Women born in even years were invited annually, and those born in odd years, triennially.	Pre-screening time period (1976-1986); n= 430,462 person-years	BC mortality (for screening ages of interest 40-49 years)
Helvie 2014 ³⁹ , United States Screening Program/Database: Surveillance, Epidemiology and End Results (SEER) database	Participants: Women aged 40 or greater in the U.S. that participated in the National Cancer Institute's SEER program Study design: Time-trend analysis Follow-up: NA	Active screening period (2007-2009); n=NR Type of mammography: NR Number of screening intervals: NR	Pre-screening time period (1977 to 1979); n=NR	Stage specific breast cancer (early stage, late stage)
Tabar 2019 ²⁹ , Sweden Screening program/Database: the National Death Registry of the Swedish National Board of Health and Welfare	 Participants: All women aged 40 to 69 years in the county of Dalarna, Sweden, during 39 years of the screening era (1977-2015). Study design: Time-trend analysis Follow-up: 10 years (for those diagnosed with BC through 2005) and 20 years (those diagnosed with BC through 1995) 	n=NR Type of mammography: NR Number of screening intervals: NR In the service screening program, women aged 40 to 54 years are invited to mammography screening every 18 months, and those aged 55 to 69 years are invited to mammography screening every 24 months.	n=NR (Unscreened and Pre- screening control group) Unscreened population included women who did not participate in mammography screening. Pre-screening control means doing historical comparisons of the rate of death from breast cancer among women before	Breast cancer mortality

Study	Participants and Study Design	Intervention	Control	Outcomes
		The screening protocol is 2-view mammography.	the onset of the screening programs (1958-1976)	

Appendix 15 – Summary characteristics of RCTs (taken from previous 2017 review)

	Malmo I	Malmo II	Stockholm	Gothenburg	CNBSS 1	CNBSS2	AGE	HIP	Swedish Two County (Ostergotland)	Swedish Two County (Kopparberg)
Year of study	1976	1978	1981	1982	1980	1980	1991	1963	1977	1978
Country (Rural/Urban)	Sweden (Urban)	Sweden (Urban)	Sweden (Urban)	Sweden (Urban)	Canada (Urban)	Canada (Urban)	UK (Urban)	USA (Urban)	Sweden (Urban)	Sweden (Urban)
Study Design	RCT	RCT	Quasi-RCT	Quasi-RCT	RCT	RCT	RCT	RCT	Cluster-RCT	Cluster-RCT
Age at Entry	45-70	43-49	39-65	39-59	40-49	50-59	39-41	40-64	40-74	40-74
Total Randomized (n)	N=42,283	N=17,793	N=60,117	N=50,200	N=50,489	N=39,459	N=160,921	N=61,004^{B}	N=75,894	N=57,171
Ethnicity	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
SES	NR	NR	NR	NR	Level of Education, Occupation	Level of Education, Occupation	NR	NR	NR	NR
% Breast density	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Longest follow-up reported	30 yrs (mean)*	22 yrs (mean)*	25 yrs (mean)*	24 yrs (mean)*	21.9 yrs (mean)*	21.9 yrs (mean)*	17.7 yrs (median)*	18 yrs (mean)	25.7 yrs (mean)	25.7 yrs (mean)
Intervention type	M (Film)	M (Film)	M (Film)	M (Film)	M (Film) +	M (Film) + CBE	M (NR)	M (Film) + CBE	M (NR)	M (NR)
Intervention n randomized	(n=21,088)	(n=9,581)	(n=39,139)	(n=21,000)	(n=25,246)	(n=19,735)	(n=53,914)	(n=30,239)	(n=38,491)	(n=38,589)
Comparator type	UC	UC	UC	UC	UC	СВЕ	UC	UC	UC	UC
Comparator n randomized	(n=21,195)	(n=8,212)	(n=20,978)	(n=29,200)	(n=25,243)	(n=19,724)	(n=107,007)	(n=30,765)	(n=37,403)	(n=18,582)
Received screening at end of study period?	No	Yes	Yes	Yes	No	No	Yes	NR	Yes	Yes
# of views	2	2	1	2	2	2	2	2	1	1
# of readers	2	2	1	1	NR	NR	NR	NR	1	1
Screening interval	18-24 mo.	18-24 mo.	28 mo.	18 mo.	12 mo.	12 mo.	12 mo.	12 mo.	24-33 mo.	24-33 mo.
Duration of screening	12 yrs	12 yrs	4 yrs	7 yrs	4 yrs	4 yrs	8 yrs	3 yrs	7 yrs	7 yrs
Attendance rate	74%	74%	82%	84%	88%	88%	81%	65%	85%	85%

Appendix 16 – Risk of bias summary tables

	JBI critical appraisal tool for cohort studies											
Author, Year	Were the two groups similar and recruited from the same population?	Were the exposures measured similarly to assign people to both exposed and unexposed	Was the exposure measured in a valid and reliable way?	Were confounding factors identified?	Were strategies to deal with confounding factors stated?	Were the groups/participants free of the outcome at the start of the study (or at the moment	Were the outcomes measured in a valid and reliable way?	Was the follow up time reported and sufficient to be long enough for outcomes to occur?	Was follow up complete, and if not, were the reasons to loss to follow up described and	Were strategies to address incomplete follow up utilized?	Was appropriate statistical analysis used?	Overall Assessment of Risk of Bias
Choi, 2021												
Duffy, 2020												
Dunn, 2021												
Morrell, 2017												
Lund, 2018												
Puliti, 2018												
Weedon- Fekjaer, 2014												
Coldman, 2014												
Richman, 2023												
Garcia- Albeniz, 2020												
		J	BI critica	al appra	isal too	I for cas	e-contr	ol studie	es			

Table 1. Risk of bias ratings for observational studies using JBI critical appraisal tools

	Were the groups comparable other than the presence of disease in cases or the	Were cases and controls matched appropriately?	Were the same criteria used for identification of cases and controls?	Was exposure measured in a standard, valid and reliable way?	Was exposure measured in the same way for cases and controls?	Were confounding factors identified?	Were strategies to deal with confounding factors stated?	Were outcomes assessed in a standard, valid and reliable way for cases and controls?	Was the exposure period of interest long enough to be meaningful?	Was appropriate statistical analysis used?	Overall Assessment of Risk of Bias
Blyuss, 2023											
De Troeyer, 2023											
Maroni, 2021											
van der Waal, 2017											
Massat, 2016											
Beckmann, 2015											
Pocobelli, 2015											
Paap, 2014											
Ripping, 2016											
	JBI critical appraisal tool for Quasi Experimental studies										

	is it clear in the study what is the cause 'and what is the 'effect'(i.e. there is no	Were the participants included in any comparisons similar?	Were the participants included in any comparisons receiving similar treatment/care, other	Was there a control group?	Were there multiple measurements of the outcome both pre and post the	Was follow up complete and if not, were differences between groups in terms of their follow	Were the outcomes of participants included in any comparisons measured in the	Were outcomes measured in a reliable way?	Was appropriate statistical analysis used?		Overall Assessment of Risk of Bias
Katalinic, 2020											
de Glas, 2014											
Parvinen, 2015											
Helvie, 2014											
Tabar, 2019											
Wilkinson, 2022											
Wilkinson, 2023											

Colour coding: Green: Yes/Low; Yellow: Unclear/Moderate; Red: No/High. For the overall score, observational studies were colour-coded as "high", "moderate" or "low" based on tallied scores of 75-100%, 50-75% of items, or below 50% of checklist items sufficiently met (Yes).

Study	Randomizatio n	Allocation Concealment	Blinding (patients/ personnel)	Blinding (outcomes)	Incomplete Outcome Assessments	Selective Outcome Reporting	Other	Overall Judgement
Swedish Two County (Kopparberg & Ostergotland) (Tabar 1995)	yes	no	unclear	yes	unclear	unclear	unclear	high
Malmo I (Nystrom 2016)	unclear	unclear	unclear	yes	unclear	unclear	yes	moderate
CNBSS 1 (Miller 2014)	no	unclear	unclear	yes	unclear	unclear	yes	high
HIP (Shapiro 1988)	unclear	unclear	unclear	no	unclear	unclear	unclear	high
Stockholm (Nystrom 2016)	no	no	unclear	yes	unclear	unclear	yes	high

Table 2. Risk of bias ratings for Stage at Diagnosis Outcomes (Randomized Controlled Trials)

Assessments performed using the Cochrane RoB-2 tool. The study is judged to be at overall high risk of bias if at least one domain had this result, moderate risk of bias if there were some concerns observed, and low risk of bias if all domains had this rating.

Table 3. Risk of bias ratings for Treatment-related Morbidity Outcomes (Randomized Controlled Trials)

Study	Randomizatio n	Allocation Concealment	Blinding (patients/ personnel)	Blinding (outcomes)	Incomplete Outcome Assessments	Selective Outcome Reporting	Other	Overall Judgement
CNBSS 1 (Miller 2014)	no	unclear	unclear	yes	unclear	unclear	yes	high
CNBSS 2 (Miller 2014)	no	unclear	unclear	yes	unclear	unclear	yes	high

Malmo I (Nystrom 2016)	unclear	unclear	unclear	yes	unclear	unclear	yes	moderate
Swedish Two County (Kopparberg) (Tabar 1995)	yes	no	unclear	yes	unclear	unclear	unclear	high
Stockholm (Nystrom 2016)	no	no	unclear	yes	unclear	unclear	yes	high

Assessments performed using the Cochrane RoB-2 tool. The study is judged to be at overall high risk of bias if at least one domain had this result, moderate risk of bias if there were some concerns observed, and low risk of bias if all domains had this rating.

Appendix 17 – Breast cancer mortality findings summary for exploratory analyses

Moderately increased risk (for family history)

The following data are extrapolations. We did not extract this data, however, used data from previously reported literature² and extrapolated.

a) 40 to 49 years

From RCT data, we extrapolated 0.44 fewer breast cancer deaths per 1,000 and from observational studies values ranged from 1.28 to 1.51 fewer deaths per 1,000, depending on the study design.

b) 50 to 59 years

From RCT data, we extrapolated 0.79 fewer breast cancer deaths per 1,000 and from observational studies values ranged from 2.33 to 2.76 fewer deaths per 1,000.

c) 60 to 69 years

From RCT data, we extrapolated 1.04 fewer breast cancer deaths per 1,000 and from observational studies values ranged from 3.04 to 3.59 fewer deaths per 1,000.

d) 70 to 74 years

From RCT data, we extrapolated 1.47 fewer breast cancer deaths per 1,000 and from observational studies values ranged from 4.31 to 5.10 fewer deaths per 1,000.

Moderately increased risk (for dense breasts)

The following data are extrapolations. We did not extract this data, however used data from previously reported literature³ and extrapolated.

a) 40 to 49 years

From RCT data, we extrapolated 0.53 fewer breast cancer deaths per 1,000 and from observational studies, values ranged from 1.54 to 1.82 fewer deaths per 1,000, depending on the study design.

b) 50 to 59 years

From RCT data, we extrapolated 0.95 fewer breast cancer deaths per 1,000 and from observational studies values ranged from 2.77 to 3.28 fewer deaths per 1,000.

c) 60 to 69 years

From RCT data, we extrapolated 1.23 fewer breast cancer deaths per 1,000 and from observational studies values ranged from 3.61 to 4.26 fewer deaths per 1,000.

d) 70 to 74 years

From RCT data we extrapolated 1.74 fewer breast cancer deaths per 1,000 and from observational studies values ranged from 5.10 to 6.03 fewer deaths per 1,000.

Appendix 18 - Sensitivity analysis by RoB - Breast cancer mortality RCTs

1. **New analysis:** Breast cancer mortality (RCTs, short-case accrual, stratified by age) Rated as moderate: Malmo I & II, AGE

Study or Subgroup	log[]	SE	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.23.1 Moderate risk of bias	(40-49 years)				_
Moss 2015- UK Age	-0.12783337	0.08681802	80.5%	0.88 [0.74, 1.04]	
Nystrom 2002- Malmo I	-0.30110509	0.28626091	7.4%	0.74 [0.42, 1.30]	
Nystrom 2016- Maimo II Subtotal (95% CI)	-0.16251893	0.22429226	12.1%	0.85 [0.55, 1.32]	-
Heterogeneity: Tau ² = 0.00: C	hi ² = 0.34. df =	2 (P = 0.84); I ²	= 0%	0.01 [011 1] 101]	•
Test for overall effect: Z = 1.86	6 (P = 0.06)	- (
1.23.2 High risk of bias (40-4	9 years)	0.45005000	20.40	4 00 10 00 4 401	
Miller 2014- UNBSS-1 Nyetrom 2016, Gothenburg	0.0801777	0.15865298	20.1%	1.09 [0.80, 1.49]	
Nystrom 2016- Stockholm	0.32703274	0.21993498	11 5%	1.50 [0.35, 0.91]	
Shapiro 1988- HIP	-0.32850407	0.19684153	22.2%	0.72 [0.49, 1.06]	_
Tabar 2011- Two-County	-0.05129329	0.21848782	20.2%	0.95 [0.62, 1.46]	
Subtotal (95% CI)			100.0%	0.89 [0.67, 1.17]	
Heterogeneity: Tau ² = 0.05; C	hi ² = 8.59, df =	4 (P = 0.07); I ²	= 53%		
Test for overall effect: $Z = 0.84$	4 (P = 0.40)				
1.23.3 Moderate risk of bias	(50-59 years)				
Nystrom 2016- Malmo I	0	0.16611811	100.0%	1.00 [0.72, 1.38]	
Subtotal (95% CI)			100.0%	1.00 [0.72, 1.38]	
Heterogeneity: Not applicable	9 (P = 4.00)				
l est for overall effect: Z = 0.00	J (P = 1.00)				
1.23.4 High risk of bias (50-5	9 years)				
Miller 2014- CNBSS-2	0.01980263	0.14511466	28.1%	1.02 [0.77, 1.36]	_
Nystrom 2016- Gothenburg	-0.11653382	0.19724232	18.6%	0.89 [0.60, 1.31]	
Nystrom 2016- Stockholm	-0.49429632	0.26816583	11.4%	0.61 [0.36, 1.03]	
Shapiro 1988- HIP	-0.22314355	0.18356644	20.6%	0.80 [0.56, 1.15]	
Subtotal (95% CI)	-0.4462871	0.1796421	21.3%	0.64 [0.45, 0.91]	
Heterogeneity: Tau ² = 0.01; C	hi² = 5.57, df =	4 (P = 0.23); I ²	= 28%	0101 [0101] 0100]	-
Test for overall effect: Z = 2.16	6 (P = 0.03)				
1.23.5 Moderate risk of bias	(60-69 years)				
Nystrom 2016- Maimo I	-0.31471074	0.25594441	100.0%	0.73 (0.44, 1.21)	
Subtotal (95% CI)			100.0%	0.73 [0.44, 1.21]	
Heterogeneity: Not applicable	1				
Test for overall effect: Z = 1.23	3 (P = 0.22)				
1.23.6 High risk of bias (60-6	9 vears)				
Nystrom 2002- Stockholm	-0.0618754	0.37745569	15.8%	0.94 (0.45, 1.97)	
Shapiro 1988- HIP	-0.03045921	0.32593381	20.5%	0.97 [0.51, 1.84]	
Tabar 2011- Two-County	-0.49429632	0.1530757	63.7%	0.61 [0.45, 0.82]	
Subtotal (95% CI)	LIZ 0.44 JK	o (D. 0.00)- 17	100.0%	0.72 [0.53, 0.98]	
Test for overall effect: 7 = 2.02	nr= 2.41, ar= 3 (P = 0.04)	2 (P = 0.30); P	= 17%		
1.23.7 Moderate risk of bias	(70-74 years)				<u> </u>
Nystrom 2002- Malmo I	-0.02020271	0.9653545	100.0%	0.98 [0.15, 6.50]	← →
Subtotal (95% CI)			100.0%	0.98 [0.15, 6.50]	
Test for overall effect: Z = 0.02	2 (P = 0.98)				
	· ····,				
1.23.8 High risk of bias (70-7	4 years)				_
Labar 2011- Two-County Subtotal (95% CI)	-0.11653382	0.22740374	100.0%	0.89 [0.57, 1.39]	
Heterogeneity: Not applicable	•		100.0%	0.00 [0.07, 1.09]	
Test for overall effect: Z = 0.51	(P = 0.61)				
					0.5 0.7 1 1.5 2
					Mammography Usual Care/ No Screening

2. **Original analysis 2018 systematic review:** Breast cancer mortality (RCTs, short-case accrual, stratified by age)

-		Mean	Risk Ratio	
Reference	Study	Follow-up(yrs)	[95%CI]	IV, Random, 95% CI
40-49 years				
Miller 2014	CNBSS 1	21.9	1.09 [0.80, 1.49]	
Moss 2015	AGE	17.7*	0.88 [0.74, 1.04]	
Nystrom 2002	Malmo I	18.2	0.74 [0.42, 1.30]	· · · · · · · · · · · · · · · · · · ·
Nystrom 2016	Gothenburg	24.0	0.59 [0.38, 0.91]	· · · · · · · · · · · · · · · · · · ·
Nystrom 2016	Malmo II	22.0	0.85 [0.55, 1.32]*	
Nystrom 2016	Stockholm	25.0	1.50 [0.75, 2.98]	
Shapiro 1988	HIP	18.0	0.72 [0.49, 1.06]	· · · · · · · · · · · · · · · · · · ·
Tabar 2011 Subtotal (95% CI)	Swedish Two County	25.7	0.95 [0.62, 1.46] 0.87 [0.75, 1.01]	•
Heterogeneity: Tau ² = Test for overall effect	= 0.01; Chi² = 8.98, df = 7 (P t: Z = 1.85 (P = 0.06)	= 0.25); P = 22%		
50-59 years				
Miller 2014	CNBSS 2	21.9	1.02 [0.77, 1.36]	
Nystrom 2016	Gothenburg	24.0	0.89 [0.60, 1.31]	
Nystrom 2016	Malmo I	30.0	1.00 [0.72, 1.38]	
Nystrom 2016	Stockholm	25.0	0.61 [0.36, 1.03]	A CONTRACTOR OF A CONTRACTOR OFTA CONTRACTOR O
Shapiro 1988	HIP	18.0	0.80 [0.56, 1.15]	
Tabar 2011 Subtotal (95% CI)	Swedish Two County	23.6	0.64 [0.45, 0.91] 0.84 [0.71, 1.00]	
Heterogeneity: Tau ² = Test for overall effect	= 0.01; Chi² = 6.72, df = 5 (P t; Z = 1.97 (P = 0.05)	= 0.24); F = 26%		
60-69 years				
Nystrom 2002	Stockholm	13.1	0.94 [0.45, 1.97]	
Nystrom 2016	Malmo 1	30.0	0.73 [0.44, 1.21]**	· · · · · · · · · · · · · · · · · · ·
Shapiro 1988	HIP	18.0	0.97 [0.51, 1.84]	
Tabar 2011 Subtotal (95% CI)	Swedish Two County	18.6	0.61 [0.45, 0.82] 0.70 [0.56, 0.88]	
Heterogeneity: Tau ² = Test for overall effect	= 0.00; Chi² = 2.45, df = 3 (P t; Z = 3.09 (P = 0.002)	= 0.48); F = 0%		
70-74 years				
Nystrom 2002	Malmo 1	13.6	0.98 [0.15, 6.50]	•
Tabar 2011 Subtotal (95% CI)	Swedish Two County	13.2	0.89 [0.57, 1.39] 0.89 [0.58, 1.38]	
Heterogeneity: Tau ² = Test for overall effect	= 0.00; Chi² = 0.01, df = 1 (P t: Z = 0.50 (P = 0.61)	= 0.92); l² = 0%		
Median; *Age Adjuste	ed; ≊Data for60-70 yearolds	3 .;	1.	0.5 0.7 1 1.5 2
				Mammography +/- CBE Usual Care

3. New analysis: Breast cancer mortality sensitivity analysis (RCTs, short-case accrual, all ages)

				Risk Ratio	Risk Ratio
Study or Subgroup	log[Risk Ratio]	SE V	Veight	IV, Random, 95% CI	IV, Random, 95% CI
1.25.1 Moderate risk of bias					
Moss 2015- UK Age	-0.12783337 0).08681781 5	58.2%	0.88 [0.74, 1.04]	
Nystrom 2016- Malmo I	-0.12783337 0	0.11530233 3	33.0%	0.88 [0.70, 1.10]	
Nystrom 2016- Malmo II	-0.16251893	0.22412	8.7%	0.85 [0.55, 1.32]	
Subtotal (95% CI)		1	00.0%	0.88 [0.77, 1.00]	\bullet
Heterogeneity: Tau ² = 0.00; C	hi² = 0.02, df = 2 (P =	= 0.99); I ^z = 0%)		
Test for overall effect: Z = 1.98	8 (P = 0.05)				
1.25.2 High risk of blas					
Miller 2014- CNBSS 1 & 2	0.04879016 0	0.10838857 2	23.4%	1.05 [0.85, 1.30]	
Nystrom 2016- Gothenburg	-0.30110509 0	0.14275913 1	17.5%	0.74 [0.56, 0.98]	
Nystrom 2016- Stockholm	-0.0618754	0.1729285 1	13.7%	0.94 [0.67, 1.32]	
Shapiro 1988- HIP	-0.23572233 0	0.11938405 2	21.3%	0.79 [0.63, 1.00]	
Tabar 2011- Two-County	-0.31471074 0	0.10487217 2	24.1%	0.73 [0.59, 0.90]	
Subtotal (95% CI)		1	00.0%	0.84 [0.72, 0.98]	\bullet
Heterogeneity: Tau ² = 0.01; C	hi² = 7.50, df = 4 (P =	= 0.11); l ² = 479	%		
Test for overall effect: Z = 2.28	3 (P = 0.02)				
					Mammography +/- CBE Usual Care/ No Screening
Test for subgroup differences	s: Chi ² = 0.20, df = 1 ((P = 0.66), I ² =	0%		

4. Original analysis 2018 systematic review: Breast cancer mortality (RCTs, short-case accrual, all ages)

Reference	Study	Age (at entry)	Mean Follow-up(yrs)	log [RR]	SE	Weight	Risk Ratio [95%CI]	Risk Ratio (RR) IV, Random, 95% Cl
Miller 2014	CNBSS 1 & 2	40-69	21.9	0.05	0.11	15.3%	1.05 [0.85, 1.30]	
Moss 2015	AGE	39-41	17.7*	-0.13	0.09	22.2%	0.88 [0.74, 1.04]	
Nystrom 2016	Gothenburg	40-59	24.0	-0.30	0.14	9.3%	0.74 [0.56, 0.98]	
Nystrom 2016	Malmo I	45-70	30.0	-0.13	0.12	13.7%	0.88 [0.70, 1.10]	
Nystrom 2016	Malmo II	43-49	22.0	-0.16	0.22	4.0%	0.85 [0.55, 1.32]*	
Nystrom 2016	Stockholm	40-65	25.0	-0.06	0.17	6.5%	0.94 [0.67, 1.32]	
Shapiro 1988	HIP	40-64	18.0	-0.24	0.12	12.9%	0.79 [0.63, 1.00]	
Tabar 2011	Swedish Two County	40-74	29.0°	-0.31	0.10	16.2%	0.73 [0.59, 0.90]**	
Total (95% CI)						100.0%	0.85 [0.78, 0.93]	▲
Heterogeneity:	Tau ² = 0.00; Ch	i ² = 7.80, d1	f = 7 (P = 0.35); P =	10%				
Test for overall	effect: Z = 3.49	(P = 0.000	5)					0.5 0.7 1 1.5 2
Median; ^o Time s	since randomiza	ition; *Adjus	ted for Age; ** Adju	usted for o	lusterin	a		Mammography +/- CBE Usual Care

5. **New analysis:** All-cause mortality (RCTs, stratified by age)

				Risk Ratio	Risk Ratio
Study or Subgroup	log[Risk Ratio]	SE	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.24.1 Moderate risk of bias	s (40-49 years)				
Moss 2015- UK Age	-0.02020271	0.02605344	89.5%	0.98 [0.93, 1.03]	
Nystrom 2002- Malmo II	0.0295588	0.07623862	10.5%	1.03 [0.89, 1.20]	
Subtotal (95% CI)			100.0%	0.99 [0.94, 1.03]	•
Heterogeneity: Tau ² = 0.00; 0	Chi² = 0.38, df = 1 (P	= 0.54); I ² = 0	%		
Test for overall effect: Z = 0.6	1 (P = 0.54)				
1.24.2 High risk of bias (40-	49 years)				
Bjurstam 1997- Gothenburg	-0.02020271	0.06738561	36.9%	0.98 [0.86, 1.12]	
Frisell 1997- Stockholm	0.11332869	0.37690402	1.4%	1.12 [0.54, 2.34]	
Miller 2002- CNBSS-1	0	0.07117994	33.7%	1.00 [0.87, 1.15]	
Tabar 1989- Kopparberg	0.28517894	0.1481964	9.0%	1.33 [0.99, 1.78]	
Tabar 1989- Ostergotland	-0.07257069	0.09891978	19.0%	0.93 [0.77, 1.13]	-
Subtotal (95% CI)			100.0%	1.01 [0.92, 1.10]	•
Heterogeneity: Tau ² = 0.00; C	Chi² = 4.42, df = 4 (P	= 0.35); I ² = 9	%		
Test for overall effect: Z = 0.1	3 (P = 0.90)				
1.24.4 High risk of bias (50-	50 years)				
Miller 2000- CNBSS-2	0.05826891	0.05263685	46.2%	1.06 [0.96, 1.18]	
Tabar 1989- Kopparberg	0	0.0785272	20.7%	1.00 [0.86, 1.17]	
Tabar 1989- Ostergotland	-0.02020271	0.06214849	33.1%	0.98 [0.87, 1.11]	
Subtotal (95% CI)			100.0%	1.02 [0.95, 1.09]	•
Heterogeneity: Tau* = 0.00; C Test for overall effect: Z = 0.5	2hi≝ = 1.01, df = 2 (P 7 (P = 0.57)	= 0.60); I* = 0	%		
1 24 6 High rick of bigs (60)	60 voara)				
Tabor 1000 Konnerborg	0 05400000	0.04550400	20.402	0.05/0.07 4.041	
Tabar 1989- Kopparperg	-0.05129329	0.04003132	39.1%	0.95 [0.87, 1.04]	
Subtotal (95% CI)	-0.02020271	0.03650532	100.9%	0.98 [0.91, 1.05]	
Heterogeneity: Tau ² = 0.00° 0	:hi≧=0.28 df=1.(P	= 0.59); IF = 0	%	0.01 [0.02, 1.02]	•
Test for overall effect: Z = 1.1	4 (P = 0.26)	- 0.55), 1 - 0	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
1.24.8 High risk of bias (70-)	74 years)				
Tabar 1989- Kopparberg	0.04879016	0.04873858	46.9%	1.05 (0.95, 1.16)	
Tabar 1989- Ostergotland	-0.07257069	0.03806439	53.1%	0.93 [0.86, 1.00]	
Subtotal (95% CI)			100.0%	0.98 [0.87, 1.11]	•
Heterogeneity: Tau ² = 0.01; C	Chi² = 3.85, df = 1 (P	= 0.05); I ² = 7	4%		
lest for overall effect: Z = 0.2	ь (н = 0.80)				
					0.5 0.7 F 1.5 Z Mammography Usual Care/ No Screening
Test for subgroup differences	s: Chi ² = 1.49, df = 4	(P = 0.83), I ²	= 0%		inaninography obdaroarchito oreening

6. **Original analysis 2018 systematic review:** All-cause mortality (RCTs, stratified by age)

				Risk Ratio	Risk Ratio
Study or Subgroup	log[Risk Ratio]	SE	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.6.1 40-49 years					
Bjurstam 1997- Gothenburg	-0.02020271	0.06738561	9.9%	0.98 [0.86, 1.12]	— • —
Frisell 1997- Stockholm	0.11332869	0.37690402	0.3%	1.12 [0.54, 2.34]	
Miller 2002- CNBSS-1	0	0.07117994	8.9%	1.00 [0.87, 1.15]	
Moss 2015- UK Age	-0.02020271	0.02605344	66.4%	0.98 [0.93, 1.03]	•
Nystrom 2002- Malmo II	0.0295588	0.07623862	7.8%	1.03 [0.89, 1.20]	_ _
Tabar 1989- Kopparberg	0.28517894	0.1481964	2.1%	1.33 [0.99, 1.78]	
Tabar 1989- Ostergotland	-0.07257069	0.09891978	4.6%	0.93 [0.77, 1.13]	
Subtotal (95% CI)			100.0%	0.99 [0.95, 1.03]	•
Heterogeneity: Tau ² = 0.00; C	hi² = 4.94, df = 6 (F	° = 0.55); I² = 0	%		
Test for overall effect: Z = 0.48	8 (P = 0.63)				
1.6.2 50-59 years					
Miller 2000- CNBSS-2	0.05826891	0.05263685	46.2%	1.06 [0.96, 1.18]	
Tabar 1989- Kopparberg	0	0.0785272	20.7%	1.00 [0.86, 1.17]	
Tabar 1989- Ostergotland	-0.02020271	0.06214849	33.1%	0.98 [0.87, 1.11]	
Subtotal (95% CI)			100.0%	1.02 [0.95, 1.09]	•
Heterogeneity: Tau² = 0.00; C	hi² = 1.01, df = 2 (F	P = 0.60); I ² = 0	%		
Test for overall effect: Z = 0.57	' (P = 0.57)				
4 6 2 60 60					
1.6.3 60-69 years					
Tabar 1989- Kopparberg	-0.05129329	0.04553132	39.1%	0.95 [0.87, 1.04]	
Tabar 1989- Ostergotland	-0.02020271	0.03650532	60.9%	0.98 [0.91, 1.05]	
Subiolal (95% CI)			100.0%	0.97 [0.92, 1.02]	•
Heterogeneity: Taur = 0.00; C	hif= 0.28, ατ= 1 (F	² = 0.59); I* = 0	%		
Test for overall effect: $Z = 1.14$	F (P = 0.26)				
16470.74 years					
Tohor 1000 Kopporborg	0.04070046	0.04072050	46.00	1 05 00 05 1 161	
Tabar 1989- Kupparberg	0.04879010	0.048/3858	40.9%		_
Subtotal (95% CI)	-0.07257069	0.03806439	03.1% 100.0%	0.93 [0.86, 1.00]	
Hotorogonoity: Tou ² = 0.01: C	hi≧ - 2 05 df - 1 /E	0 - 0 05) 13 - 7	100.070	0.00[0.07, 1.11]	Ť
Tect for overall effect: 7 = 0.29	m = 3.65, ur= 1 (F 3/P = 0.90)	- 0.00), 1 = 7	4.0		
restion overall effect. Z = 0.20	(i = 0.00)				
					0.5 0.7 1 1.5 2
Toot for outparoun differences		0 (D = 0 7 0) IZ	_ 00/		Mammography Usual Care/ No Screening

Test for subgroup differences: Chi² = 1.33, df = 3 (P = 0.72), l² = 0%

Appendix 19 – Sensitivity analysis: Overdiagnosis RCTs removing high risk of bias trials

Mammography +/- CBE compared to Usual Care

Outcomes	Absolute effects		Relative effect	№ of participants	Quality of the	Comments
	Incident rates with usual care (Assumed rate) ‡	Absolute risk (95% Cl)	(95% CI)	(studies)	evidence (GRADE)	
Main analysis: Overdiagnosis invasive + in situ cancers (40- 49 years)	17.4 per 1,000	1.57 more per 1,000 (from 0.35 more to 2.78 more)	RR 1.09 (1.02 to 1.16)	293,152 (2 ^{1,2} RCTs)	₩₩ LOW a,b,c,d,e	Using a threshold of 5, screening may lead to little to no difference in overdiagnosed cancers in individuals aged 40 to 49.
Range of follow-up (yrs): 9 to 15 years						
Other analysis: Overdiagnosis invasive cancers only (40-49 years)	16.2 per 1.000	0.49 more per 1,000 (from 0.65 fewer to 1.78 more)	RR 1.03 (0.96 to 1.11)	293,152 (2 ^{1,2} RCTs)	⊕⊕ ⊖⊖ LOW a,b,c,d,e	Using a threshold of 5, screening may lead to little to no difference in overdiagnosed invasive cancers in individuals aged 40 to 49 years
Range of follow-up (yrs): 9 to 15 years						
Main analysis: Overdiagnosis invasive + in situ cancers (50- 59 years)	32.9 per 1.000	3.95 more per 1,000 (from 0.66 more to 7.9 more)	RR 1.12 (1.02 to 1.24)	132,231 (1 ¹ RCTs)	⊕⊕⊖⊖ LOW a,c,d,e,f	Using a threshold of 5, screening may lead to little to no difference in overdiagnosed cancers in individuals aged 50 to 59 years.
Range of follow-up (yrs): 10 to 15 years						
Other analysis: Overdiagnosis invasive cancers only (50-59 years)	31.2 per 1,000	2.81 more per 1,000 (from 0.62 fewer to 6.55 more)	RR 1.09 (0.98 to 1.21)	132,231 (1 ¹ RCTs)	€€ LOW a,c,d,e,f	Using a threshold of 5, screening may lead to little to no difference in overdiagnosed invasive cancers in individuals aged 50 to 59 years.
Range of follow-up (yrs): 10 to 15 years						

‡The assumed rate was calculated using the control event rates across included studies. CI: Confidence interval

Bibliography: 1: Malmo I (Zackrisson 2006⁴¹); 2: AGE (Duffy 2020⁴³)
Mammography +/- CBE compared to Usual Care

Outcomes	Absolute effects		Relative effect	Nº of participants	Quality of the	Comments
	Incident rates with usual care (Assumed rate) ‡	Absolute risk (95% Cl)	(95% CI)	(studies)	evidence (GRADE)	

GRADE Working Group grades of evidence

High quality: We are very confident that the true effect lies close to that of the estimate of the effect

Moderate quality: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different

Low quality: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect

Very low quality: We have very little confidence in the effect estimate. The true effect is likely to be substantially different from the estimate of effect

Explanations

a. We downrated once for risk of bias. Randomisation and allocation concealment were not reported or unclear.

b. Not downrated for inconsistency; all point estimates in our pooled analysis lie to one side of our threshold.

c. Downrated once for indirectness. Data are from trials initiated in the 1960s-1990s and some trial estimates included participants outside the previously defined age decades (e.g., in the 40-49 age decade, one study included some individuals in their 50s).

d. Not rated down for imprecision. Clinical decision threshold set at 5.

e. According to Egger et al.¹¹, 10 trials are needed to asses publication bias. We cannot assess publication bias due to insufficient number of trials, therefore, we did not rate down for publication bias.

f. Only one trial evaluated, we did not downrate for inconsistency.

Forest plots

Age 40-49 (invasive + in situ)

		Interve	ntion	Con	trol		Risk Ratio			Risk	Ratio	
Study or Subgroup		Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year		M-H, Rando	m, 95% Cl	
Malmo I	Age:[45-69]	540	21088	507	21195	30.0%	1.07 [0.95, 1.21]	2006		-	-	
AGE	Age:[39-41]	953	53914	1731	107007	70.0%	1.09 [1.01, 1.18]	2020				
Total (95% CI)			75002		128202	100.0%	1.09 [1.02, 1.16]				•	
Total events		1493		2238								
Heterogeneity: Tau ² = 0.00; Chi ² = 0.08, df = 1 (P = 0.78); i ² = 0% Test for overall effect: Z = 2.47 (P = 0.01)						0.2	0.5 1 Intervention	2 Control	 5			

Age 40-49 (invasive only)

		Interve	ntion	Con	trol		Risk Ratio			Risk Ratio	
Study or Subgroup	0	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year		M-H, Random, 95% C	l
Malmo I	Age:[45-54]	481	21088	454	21195	29.9%	1.06 [0.94, 1.21]	2006			
AGE	Age:[39-41]	835	53914	1628	107007	70.1%	1.02 [0.94, 1.11]	2020		•	
Total (95% CI)			75002		128202	100.0%	1.03 [0.96, 1.11]			•	
Total events		1316		2082							
Heterogeneity: Tau² = 0.00; Chi² = 0.34, df = 1 (P = 0.56); l² = 0% Test for overall effect: Z = 0.88 (P = 0.38)							0.2	0.5 1 2	2 5		
										Intervention Control	

Appendix 20 – Supplementary data on additional imaging (no cancers)

Part A: Additional imaging (no cancer) resolved by <u>imaging or biopsy</u> per 1,000 screens from provincial sources

Voor	Per 1,000	screens
Teal	Initial screen	Subsequent screen
2004	120.5	60.5
2005	120.6	58.4
2006	120.2	56.4
2007	102.7	56.5
2008	111.5	58.3
2009	121.6	58.4
2010	131.4	60.3
2011	142	67.7
2012	150.4	70.3
2013	159.9	72
2014	160.6	71.7
2015	161.9	73.8
2016	166.6	75.2

1. Canada (excluding YT and NU), aged 50-69 by year (2004-2016), initial vs subsequent screen

Source: {FP=number of abnormal calls that were not confirmed as cancers per 1000 screens} from the CPAC 2020 report Includes all provinces and territories, except YT and NU. Data prior to 2007 excludes AB. Abnormal call rate: Data after 2014 do not include NS.

Invasive cancer detection rate: Data from 2013 to 2016 do not include NS and NB. MB data in 2016 might be underestimated.

2. Quebec, aged 50-69 by year (2011-2021), initial vs subsequent screen

Vaar	Per 1,000 screens					
rear	Initial screen	Subsequent screen	Total			
2011	176.2	80.6	97.5			
2012	197	91.5	110.3			
2013	204.2	92.8	112.7			
2014	204.3	90.8	109.6			
2015	205.5	87.7	106.5			
2016	220	88.7	109.5			
2017	211.4	82.7	101.4			
2018	216.7	81.9	100.6			
2019	219.3	81.9	101.5			
2020	210	83.7	97.4			
2021	227.5	86.8	107.5			
5 years average	217.4	83.8	102.5			
10 years average	211.1	86.9	105.6			

Source: Programme Québécois de Dépistage du Cancer du Sein, released October 2023, available from : <u>https://www.inspq.qc.ca/sites/default/files/documents/pqdcs/tableaubordpqdcs.pdf</u> Notes: Number of abnormal calls that were not confirmed as cancers per 1000 screens calculated using total reference rate minus total cancer detection rate

3. British Columbia, by age group (40-49, 50-59, 50-69, 70-79) during 2015-2019

Additional imaging (no cancer) rates	Per 1,000 screens					
Age group	40-49 yrs	50-59 yrs	60-69 yrs	70-79 yrs		
British Columbia (2015-2019)						
{calculated based on Specificity = (1 -	123	84	71	65		
false positive rate)}						

Source : BC Cancer Breast Screening 2019 Program Results, September 2020, available from:

http://www.bccancer.bc.ca/screening/Documents/Breast-Screening-Program-Report-2019.pdf (Table 13)

4. BC, ON, QC (different age groups) screened in 2017

Calculated additional imaging (no cancer) rates rate per 1000 screens (2017)					
British Columbia	84 (40-74 yrs)				
Ontario	83 (50-74 yrs)				
Quebec	101.4 (50-69 yrs)				

Sources:

 BC Source : BC Cancer Breast Screening 2019 Program Results, September 2020, available from: <u>http://www.bccancer.bc.ca/screening/Documents/Breast-Screening-Program-Report-2019.pdf</u> (Table 12)

- BC additional imaging (no cancer) rate (2017) = 1- specificity = 1- 91.6% = 8.4% = 84 per 1000
- Quebec Source: Source: Programme Québécois de Dépistage du Cancer du Sein, released October 2023, available from : <u>https://www.inspq.qc.ca/sites/default/files/documents/pqdcs/tableaubordpqdcs.pdf</u>
- Quebec additional imaging (no cancer) rate per 1000 (Total) (2017)= reference rate cancer diagnosis rate = 108 6.6 = 101.4 per 1000
- Ontario Source: The Ontario Cancer Screening Performance Report 2020, available from: <u>https://www.cancercareontario.ca/sites/ccocancercare/files/assets/OntarioCancerScreeningReport2020.pdf</u> (Tables 15-17)
- Ontario additional imaging (no cancer) rate (2017) = FP/(FP+TN) {reconstructed a 2x2 table}= (53,535 /643,564) x 100 = 8.3% = 83 per 1000

5. Nova Scotia (different age groups) followed from 2000-2011

Additional imaging (no cancer) rates per 1000 women screened	40-49 yrs	50-69 yrs	70-74 yrs	
Nova Scotia (2000-2011) (based on the Nova Scotia breast screening program) {as reported}	210	143	76	

Source: Nova Scotia Annual 2017 Report, available from:

https://breastscreening.nshealth.ca/sites/default/files/sites/default/files/annual report2017.pdf (Table 11.3)

Note: This data is not directly comparable to the CPAC data as it is measured per 1000 women over 11 years

Part B: Additional imaging and biopsy (no cancer), per 1,000 screens

FPs per 1000 screens		Age group (40-74 years)
British Columbia	Needle Core	7.3
(2019)	Surgical	1.0
	Biopsy (core or surgical)	8.3

1. British Columbia, aged 40-74, by biopsy type in 2019

• Source: BC Cancer Breast Screening 2019 Program Results, September 2020, available from:

http://www.bccancer.bc.ca/screening/Documents/Breast-Screening-Program-Report-2019.pdf (Figure 11) Calculations:

- Total additional imaging and biopsy (no cancer) rate for core/FNA biopsies = 1944/266405 = 0.73% or 7.3/1000
- Total additional imaging and biopsy (no cancer) rate for open (surgical) biopsies = 269/266405 = 0.10% or 1.0/1000
- Total additional imaging and biopsy (no cancer) rate for biopsies = 2213/266405 = 0.83% or 8.3/1000

2. British Columbia, aged 50-69, by biopsy type and initial vs rescreen, in 2020

Age 50-69	Biopsy type	Screen type	Per 1000 screens (2020)
British Columbia	Core	Initial screen	27.6
(2020)		Re-screen	5.4
	Open (surgical)	Initial screen	3.0
		Re-screen	0.8

• Source: BC Cancer Breast Screening 2019 Program Results, September 2020, available from: http://www.bccancer.bc.ca/screening/Documents/Breast-Screening-Program-Report-2019.pdf (Table 16)

3. Quebec, aged 50-69, resolved by <u>open surgical biopsy</u>, by initial vs rescreen and year (2011-2021)

Voor	Per 1,000 screens					
Teal	Initial screen	Subsequent screen	Total			
2011	2.2	1	1.3			
2012	2.7	1.1	1.4			
2013	2.3	1.1	1.3			
2014	2.3	1.1	1.3			
2015	2.7	1.2	1.4			
2016	2.7	1	1.3			
2017	2.2	1	1.2			
2018	2.9	0.9	1.2			
2019	2.2	0.9	1			
2020	2.3	1	1.1			
2021	2.6	0.8	1			
5 years average	2.4	0.9	1.1			
10 years average	2.5	1	1.2			

 Quebec Source: Source: Programme Québécois de Dépistage du Cancer du Sein, released October 2023, available from : <u>https://www.inspq.qc.ca/sites/default/files/documents/pqdcs/tableaubordpqdcs.pdf</u>

4. Nova Scotia, aged 50-69, resolved by core biopsy, by initial vs rescreen and year (2013-2016)

Ago 50-60	Scroon type	Per 1,000 women screened (by year)					
Age 50-09	Screen type	2013	2014	2015	2016		
Nova Scotia	Initial screen	49.8	31	29.5	39.4		
	Re-screen	10.2	10.2	9.5	9.7		

Source: Nova Scotia Annual 2017 Report, available from:

https://breastscreening.nshealth.ca/sites/default/files/sites/default/files/annual_report2017.pdf (Table 10.2)

Part C: Additional imaging with or without biopsy (No Cancer) rate using 2019-2020 CPAC data, ages 40-49

	BC 2019	BC 2020	PE 2019
Rate per 1000 screens ¹	129.4	127.5	108.4
Rate per 1000 screens estimated over 10 years (four rounds of screening) ²	517.6	510	433.6

Data source: Provincial Breast Cancer Screening Program

Additional imaging rate per screening round calculated by subtracting the cancer detection rates from the abnormal call rate. Abnormal calls were among individuals aged 40-49, who were screened within screening mammography program, by jurisdiction. The screening cancer detection rate (per 1,000) was used among individuals aged 40-49, who were screened within screening mammography program.

 Additional imaging rate estimated using four rounds of screening over a 10-year period, assuming that the majority of women would receive a screen every 2-3 years.

Part D: Additional imaging with or without biopsy (No Cancer) using 2019-2020 CPAC data, ages 50-74

	All ages	50-59	60-69	70-74
Rate per 1000 screens ¹	77.1	90.6	67.6	63.3
Rate per 1000 screens estimated over 10 years (four rounds of screening) ²	308.4	362.4	270.4	253.2

Data source: Provincial Breast Cancer Screening Program

 Abnormal calls were among individuals aged 50-74, who were screened within screening mammography program. Data include BC, AB, ON, NB, PE and NL. In PE, if a woman was screened a second time within 9 months of the previous screen, these screens were dropped because they were likely follow-ups to the first screens. Cancer detection rate (per 1,000) among individuals aged 50-74, who were screened within screening mammography program. Jurisdictions combined: Data include BC, AB, ON, NB, PE and NL. In NB and NL, screens that were lost to follow-up within 6 months of screening were not excluded.

2. Additional imaging rate estimated using four rounds of screening over a 10-year period, assuming that the majority of women would receive a screen every 2-3 years.

Part E: Additional imaging example calculations

Women aged 50-59 years using 2011-2012 CPAC data

1. Additional imaging with or without biopsy (no cancer):

Abnormal call rate per 1000 screens

- Initial = 156 per 1000
- Subsequent = 75 per 1000

Cancer detection rate (CDR) per 1000 screens

- Initial = invasive CDR + in situ CDR = 4.1 per 1000 + 1.2 per 1000 = 5.3 per 1000
- Subsequent = invasive CDR + in situ CDR = 2.7 per 1000 + 0.7 per 1000 = 3.4 per 1000

Calculated additional imaging rates (no cancer):

- Initial = 156 5.3 = 150.7 per 1000
- Subsequent = 75 3.4 = 71.6 per 1000

Rates over 10 years:

- Assuming started screening in this age decade (initial screen and three subsequent): 150.7 + (71.6*3) = 365.5 per 1000 in a 10-year period
- Assuming started screening in 40s (four subsequent screens): 71.6*4 = 286.4 per 1000 in a 10-year period

2. Additional imaging and biopsy (no cancer):

Non-malignant biopsy rate, initial screen (per 1,000 screens) = 20.7

Non-malignant biopsy rate, subsequent screen (per 1,000 screens) = 8.5

Rates over 10 years:

- Assuming started screening in this age decade (initial screen and three subsequent): 20.7 + (8.5*3) = 46.2 per 1000 in a 10-year period
- Assuming started screening in 40s (four subsequent screens): 8.5*4 = 34 per 1000 in a 10-year period

3. Additional imaging no biopsy (no cancer):

Additional imaging no biopsy (no cancer) = recall rate – (cancer detection rate + non-malignant biopsy rate)

Initial Screening:

Additional imaging no biopsy (no cancer) = 156 per 1000 – (5.3 per 100 + 20.7 per 1000) = 130 per 1000

Subsequent Screening:

• Additional imaging no biopsy (no cancer) = 75 per 1000 – (3.4 per 100 + 8.5 per 1000) = 63.1 per 1000

Rates over 10 years:

- Assuming started screening in this age decade (initial screen and three subsequent): 130 + (63.1*3) = 319.3 per 1000
- Assuming started screening in 40s (four subsequent screens): 63.1*4 = 252.4 per 1000

Appendix 21 – Sensitivity analysis: Observational studies

The following sensitivity analysis includes our adherence to screen analysis for breast cancer mortality. There were notable differences between studies, and we teased out how removing certain studies impacted the overall estimate. A few items to note:

- Coldman reported standardized mortality, different from others that reported RR
- Morrel reported 3 totals based on screening types (ever screened, not screened regularly, and screened regularly)

A1) All adherence to screen papers: Coldman, Morrel, Duffy, Choi

				Risk Ratio	Risk Ratio
Study or Subgroup	log[Risk Ratio]	SE	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Choi 2021	-0.844 (0.0117	28.3%	0.43 [0.42, 0.44]	•
Coldman 2014	-0.5108 (0.0563	26.3%	0.60 [0.54, 0.67]	•
Duffy 2021	-0.5798 (0.0681	25.4%	0.56 [0.49, 0.64]	+
Morrell 2017	-0.9676 (0.1297	20.0%	0.38 [0.29, 0.49]	+
Total (95% CI)			100.0%	0.49 [0.40, 0.60]	•
Heterogeneity: Tau ² = Test for overall effect:	: 0.04; Chi² = 47.95, Z = 6.68 (P < 0.000	, df = 3 (001)	P < 0.000	101); I² = 94%	0.01 0.1 1 10 100 Favours [experimental] Favours [control]

The cohort adherence to screen: Morrel reported BC mortality for ever screened cohort (control group is never screened).

A2) All adherence to screen papers: Coldman, Morrel, Duffy, Choi

				Risk Ratio	Risk Ratio	
Study or Subgroup	log[Risk Ratio]	SE	Weight	IV, Random, 95% CI	IV, Random, 95% CI	
Choi 2021	-0.844	0.0117	27.9%	0.43 [0.42, 0.44]	•	
Coldman 2014	-0.5108	0.0563	25.8%	0.60 [0.54, 0.67]	•	
Duffy 2021	-0.5798	0.0681	24.9%	0.56 [0.49, 0.64]	•	
Morrell 2017	-0.8675	0.109	21.3%	0.42 [0.34, 0.52]	+	
Total (95% CI)			100.0%	0.50 [0.41, 0.61]	•	
Heterogeneity: Tau ² = Test for overall effect:	: 0.04; Chi² = 46.89 Z = 6.78 (P ≤ 0.00	9, df = 3 (1001)	(P ≺ 0.000	001); I² = 94%	0.01 0.1 1 10 Favours [experimental] Favours [control]	100

The cohort adherence to screen: Morrel reported BC mortality for not regularly screened cohort (control group is never screened).

A3) All adherence to screen papers: Coldman, Morrel, Duffy, Choi

Study or Subgroup	log[Risk Ratio]	SE	Weight	Risk Ratio IV, Random, 95% Cl	Risk Ratio IV, Random, 95% Cl	
Choi 2021 Coldman 2014 Duffy 2021 Morrell 2017	-0.844 -0.5108 -0.5798 -1.1087	0.0117 0.0563 0.0681 0.2513	30.8% 28.8% 27.9% 12.6%	0.43 [0.42, 0.44] 0.60 [0.54, 0.67] 0.56 [0.49, 0.64] 0.33 [0.20, 0.54]		
Total (95% CI) Heterogeneity: Tau ² = Test for overall effect:	0.04; Chi² = 48.01 Z = 6.11 (P < 0.00	, df = 3 (001)	100.0% P < 0.000	0.49 [0.39, 0.62] 001); I ² = 94%	0.01 0.1 1 10 Favours [experimental] Favours [control]	100

The cohort adherence to screen: Morrel reported BC mortality for regularly screened cohort (control group is never screened).

B) Low risk of bias papers: Coldman, Duffy, Choi

			Risk Ratio		Risk	Ratio
Study or Subgroup	log[Risk Ratio]	SE Weight	IV, Random, 95% CI	Year	IV, Rando	om, 95% Cl
Coldman 2014	-0.5108 0.05	563 32.9%	0.60 [0.54, 0.67]	2014		
Choi 2021	-0.844 0.01	117 35.2%	0.43 [0.42, 0.44]	2021		
Duffy 2021	-0.5798 0.06	681 31.9%	0.56 [0.49, 0.64]	2021		
Total (95% CI)		100.0%	0.52 [0.41, 0.67]		•	
Heterogeneity: Tau ² = Test for overall effect:	: 0.04; Chi² = 46.72, df: Z = 5.20 (P ≤ 0.00001)	= 2 (P < 0.000)	101); I² = 96%		0.01 0.1 Interval	1 10 100 Control

C) Low risk of bias papers: Duffy, Choi (presenting relative risks only)

				Risk Ratio		Risk Ratio
Study or Subgroup	log[Risk Ratio]	SE	Weight	IV, Random, 95% CI	Year	r IV, Random, 95% Cl
Choi 2021	-0.844	0.0117	53.2%	0.43 [0.42, 0.44]	2021	1 📕
Duffy 2021	-0.5798	0.0681	46.8%	0.56 [0.49, 0.64]	2021	1 •
Total (95% CI)			100.0%	0.49 [0.38, 0.63]		•
Heterogeneity: Tau ² = Test for overall effect:	0.03; Chi² = 14.6 Z = 5.46 (P < 0.00	2, df = 1 ()001)	(P = 0.000	11); I ^z = 93%		0.01 0.1 1 10 100 Interval Control

Appendices References

- 1. Coldman A, Phillips N, Wilson C, Decker K, Chiarelli AM, Brisson J, et al. Pan-Canadian study of mammography screening and mortality from breast cancer. 2014;106(11).
- Engmann NJ, Golmakani MK, Miglioretti DL, Sprague BL, Kerlikowske K. Population-Attributable Risk Proportion of Clinical Risk Factors for Breast Cancer. JAMA Oncol. 2017 Sep 1;3(9):1228–36.
- Chiu SYH, Duffy S, Yen AMF, Tabár L, Smith RA, Chen HH. Effect of Baseline Breast Density on Breast Cancer Incidence, Stage, Mortality, and Screening Parameters: 25-Year Follow-up of a Swedish Mammographic Screening. Cancer Epidemiology, Biomarkers & Prevention. 2010 May 1;19(5):1219–28.
- 4. Klarenbach S, Sims-Jones N, Lewin G, Singh H, Thériault G, Tonelli M, et al. Recommendations on screening for breast cancer in women aged 40–74 years who are not at increased risk for breast cancer. CMAJ. 2018 Dec 10;190(49):E1441–51.
- 5. Nyström L, Bjurstam N, Jonsson H, Zackrisson S, Frisell J. Reduced breast cancer mortality after 20+ years of follow-up in the Swedish randomized controlled mammography trials in Malmö, Stockholm, and Göteborg. J Med Screen. 2017 Mar;24(1):34–42.
- 6. Moss SM, Wale C, Smith R, Evans A, Cuckle H, Duffy SW. Effect of mammographic screening from age 40 years on breast cancer mortality in the UK Age trial at 17 years' follow-up: a randomised controlled trial. The Lancet Oncology. 2015;16(9):1123–32.
- Tabár L, Vitak B, Chen THH, Yen AMF, Cohen A, Tot T, et al. Swedish Two-County Trial: Impact of Mammographic Screening on Breast Cancer Mortality during 3 Decades. Radiology. 2011 Sep;260(3):658–63.
- 8. Nyström L, Andersson I, Bjurstam N, Frisell J, Nordenskjöld B, Rutqvist LE. Long-term effects of mammography screening: updated overview of the Swedish randomised trials. The Lancet. 2002 Mar;359(9310):909–19.
- 9. Miller AB, Wall C, Baines CJ, Sun P, To T, Narod SA. Twenty five year follow-up for breast cancer incidence and mortality of the Canadian National Breast Screening Study: randomised screening trial. BMJ. 2014 Feb 11;348(feb11 9):g366–g366.
- 10. Shapiro S, Venet W, Strax P. Current results of the breast cancer screening randomized trial: the health insurance plan (HIP) of greater New York study. Hans Huber. 1988;3–15.
- 11. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997 Sep;315(7109):629–34.
- 12. Bjurstam N, Björneld L, Warwick J, Sala E, Duffy SW, Nyström L, et al. The Gothenburg Breast Screening Trial: The Gothenburg Breast Screening Trial. Cancer. 2003 May 15;97(10):2387–96.
- 13. Tabar L, Fagerberg G, Chen H, Duffy S, Smart C, Gad A. Efficacy of breast cancer screening by age. Cancer. 1995;75(10):2507–17.

- Habbema J, Oortmarssen G, Putten D van, Lubbe J, Maas P. Age-specific reduction in breast cancer mortality by screening: an analysis of the results of the Health Insurance Plan of Greater New York study. JNCI: Journal of the National Cancer Institute. 1986;77(2):317–20.
- 15. Choi E, Jun JK, Suh M, Jung KW, Park B, Lee K, et al. Effectiveness of the Korean National Cancer Screening Program in reducing breast cancer mortality. NPJ breast cancer. 2021;7(1):83.
- 16. Coldman A, Phillips N, Wilson C, Decker K, Chiarelli AM, Brisson J, et al. Pan-Canadian Study of Mammography Screening and Mortality from Breast Cancer. JNCI: Journal of the National Cancer Institute [Internet]. 2014 Nov [cited 2023 Sep 11];106(11). Available from: https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/dju261
- 17. Duffy SW, Tabar L, Yen AMF, Dean PB, Smith RA, Jonsson H, et al. Beneficial Effect of Consecutive Screening Mammography Examinations on Mortality from Breast Cancer: A Prospective Study. Radiology. 2021;299(3):541–7.
- Morrell S, Taylor R, Roder D, Robson B, Gregory M, Craig K. Mammography service screening and breast cancer mortality in New Zealand: a National Cohort Study 1999– 2011. Br J Cancer. 2017 Mar;116(6):828–39.
- 19. Garcia-Albeniz X, Hernan MA, Logan RW, Price M, Armstrong K, Hsu J. Continuation of Annual Screening Mammography and Breast Cancer Mortality in Women Older Than 70 Years. Annals of internal medicine. 2020;172(6):381–9.
- 20. Paap E, Verbeek ALM, Botterweck AAM, van Doorne-Nagtegaal HJ, Imhof-Tas M, e Koning HJ, et al. Breast cancer screening halves the risk of breast cancer death: a case-referent study. Breast (Edinburgh, Scotland). 2014;23(4):439–44.
- Pocobelli G, Weiss NS. Breast cancer mortality in relation to receipt of screening mammography: a case–control study in Saskatchewan, Canada. Cancer Causes Control. 2015 Feb;26(2):231–7.
- Massat NJ, Dibden A, Parmar D, Cuzick J, Sasieni PD, Duffy SW. Impact of Screening on Breast Cancer Mortality: The UK Program 20 Years On. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2016;25(3):455–62.
- Ripping TM, van der Waal D, Verbeek ALM, Broeders MJM. The relative effect of mammographic screening on breast cancer mortality by socioeconomic status. Medicine. 2016 Aug;95(31):e4335.
- 24. van der Waal D, Ripping TM, Verbeek ALM, Broeders MJM. Breast cancer screening effect across breast density strata: A case-control study: Screening effect across breast density strata. Int J Cancer. 2017 Jan 1;140(1):41–9.
- 25. Maroni R, Massat NJ, Parmar D, Dibden A, Cuzick J, Sasieni PD, et al. A case-control study to evaluate the impact of the breast screening programme on mortality in England. Br J Cancer. 2021 Feb 16;124(4):736–43.

- 26. De Troeyer K, Silversmit G, Rosskamp M, Truyen I, Van Herck K, Goossens MM, et al. The effect of the Flemish breast cancer screening program on breast cancer-specific mortality: A case-referent study. Cancer epidemiology. 2023;82:102320.
- 27. Katalinic A, Eisemann N, Kraywinkel K, Noftz MR, Hübner J. Breast cancer incidence and mortality before and after implementation of the German mammography screening program. Intl Journal of Cancer. 2020 Aug;147(3):709–18.
- 28. Parvinen I, Heinavaara S, Anttila A, Helenius H, Klemi P, Pylkkanen L. Mammography screening in three Finnish residential areas: Comprehensive population-based study of breast cancer incidence and incidence-based mortality 1976-2009. British Journal of Cancer. 2015;112(5):918–24.
- 29. Tabár L, Dean PB, Chen TH, Yen AM, Chen SL, Fann JC, et al. The incidence of fatal breast cancer measures the increased effectiveness of therapy in women participating in mammography screening. Cancer. 2019 Feb 15;125(4):515–23.
- Wilkinson AN, Ellison LF, Billette JM, Seely JM. Impact of Breast Cancer Screening on 10-Year Net Survival in Canadian Women Age 40-49 Years. J Clin Oncol. 2023 Oct 10;41(29):4669–77.
- Tabar L, Fagerberg G, Duffy SW, Day NE. The Swedish two county trial of mammographic screening for breast cancer: recent results and calculation of benefit. J Epidemiol Community Health. 1989 Jun;43(2):107–14.
- 32. Frisell J, Lidbrink E, Hellström L, Rutqvist LE. Followup after 11 years update of mortality results in the Stockholm mammographic screening trial. Breast Cancer Res Treat. 1997 Sep;45(3):263–70.
- Miller AB, To T, Baines CJ, Wall C. The Canadian National Breast Screening Study-1: Breast Cancer Mortality after 11 to 16 Years of Follow-up: A Randomized Screening Trial of Mammography in Women Age 40 to 49 Years. Annals of Internal Medicine. 2002;137(5):305–12.
- Miller AB, To T, Baines CJ, Wall C, For the Canadian National Breast Screening Study-2. Canadian National Breast Screening Study-2: 13-Year Results of a Randomized Trial in Women Aged 50–59 Years. JNCI: Journal of the National Cancer Institute. 2000 Sep 20;92(18):1490–9.
- 35. Bjurstam N, Björneld L, Duffy SW, Smith TC, Cahlin E, Eriksson O, et al. The Gothenburg breast screening trial: First results on mortality, incidence, and mode of detection for women ages 39-49 years at randomization. Cancer. 1997 Dec;80(11):2091–9.
- Tarone RE. The excess of patients with advanced breast cancer in young women screened with mammography in the Canadian National Breast Screening Study. Cancer. 1995;75(4):997–1003.
- Puliti D, Bucchi L, Mancini S, Paci E, Baracco S, Campari C, et al. Advanced breast cancer rates in the epoch of service screening: The 400,000 women cohort study from Italy. European Journal of Cancer. 2017 Apr;75:109–16.

- de Glas NA, e Craen AJM, Bastiaannet E, Op 't Land EG, Kiderlen M, van de Water W, et al. Effect of implementation of the mass breast cancer screening programme in older women in the Netherlands: population based study. BMJ (Clinical research ed). 2014;349:g5410.
- Helvie MA, Chang JT, Hendrick RE, Banerjee M. Reduction in late-stage breast cancer incidence in the mammography era: Implications for overdiagnosis of invasive cancer. Cancer. 2014;120(17):2649–56.
- 40. Wilkinson AN, Billette JM, Ellison LF, Killip MA, Islam N, Seely JM. The Impact of Organised Screening Programs on Breast Cancer Stage at Diagnosis for Canadian Women Aged 40–49 and 50–59. Current Oncology. 2022;29(8):5627–43.
- 41. Zackrisson S, Andersson I, Janzon L, Manjer J, Garne JP. Rate of over-diagnosis of breast cancer 15 years after end of Malmö mammographic screening trial: follow-up study. BMJ. 2006 Mar 25;332(7543):689–92.
- 42. Baines CJ, To T, Miller AB. Revised estimates of overdiagnosis from the Canadian National Breast Screening Study. Preventive Medicine. 2016 Sep;90:66–71.
- Duffy SW, Vulkan D, Cuckle H, Parmar D, Sheikh S, Smith RA, et al. Effect of mammographic screening from age 40 years on breast cancer mortality (UK Age trial): final results of a randomised, controlled trial. The Lancet Oncology. 2020 Sep;21(9):1165– 72.
- 44. Lund E, Nakamura A, Thalabard JC. No overdiagnosis in the Norwegian Breast Cancer Screening Program estimated by combining record linkage and questionnaire information in the Norwegian Women and Cancer study. European Journal of Cancer. 2018 Jan;89:102–12.
- 45. Richman IB, Long JB, Soulos PR, Wang SY, Gross CP. Estimating Breast Cancer Overdiagnosis After Screening Mammography Among Older Women in the United States. Ann Intern Med. 2023 Sep 19;176(9):1172–80.
- 46. Bjurstam NG, Björneld LM, Duffy SW. Updated results of the Gothenburg Trial of Mammographic Screening. Cancer. 2016 Jun 15;122(12):1832–5.
- 47. Gøtzsche PC, Jørgensen KJ. Screening for breast cancer with mammography. Cochrane Database Syst Rev. 2013 Jun 4;2013(6):CD001877.
- 48. Canadian Partnership Against Cancer (CPAC). Breast Cancer Screening in Canada: Monitoring and Evaluation of Quality Indicators - Results Report, January 2011 to December 2012. Toronto, ON: Canadian Partnership Against Cancer; 2016.
- 49. Nova Scotia Breast Screening Program. Imaging Guidelines [Internet]. Nova Scotia Breast Cancer Screening Program. Available from: https://nsbreastscreening.ca/program-information/imaging-guidelines
- 50. Health PEI. PEI Breast Screening Program [Internet]. Government of Prince Edward Island. 2023. Available from: https://www.princeedwardisland.ca/en/information/health-pei/pei-breast-screening-program

- 51. Brenner DR, Gillis J, Demers AA, Ellison LF, Billette JM, Zhang SX, et al. Projected estimates of cancer in Canada in 2024. CMAJ. 2024;196(18):E615–23.
- 52. Oeffinger KC, Fontham ET, Etzioni R, Herzig A, Michaelson JS, Shih YCT, et al. Breast cancer screening for women at average risk: 2015 guideline update from the American Cancer Society. Jama. 2015;314(15):1599–614.
- 53. Duffy S, Vulkan D, Cuckle H, Parmar D, Sheikh S, Smith R, et al. Annual mammographic screening to reduce breast cancer mortality in women from age 40 years: long-term followup of the UK Age RCT. Health Technol Assess. 2020 Oct;24(55):1–24.
- 54. Dunn N, Youl P, Moore J, Harden H, Walpole E, Evans E, et al. Breast-cancer mortality in screened versus unscreened women: Long-term results from a population-based study in Queensland, Australia. Journal of medical screening. 2021;28(2):193–9.
- 55. Weedon-Fekjaer H, Romundstad PR, Vatten LJ. Modern mammography screening and breast cancer mortality: population study. BMJ (Clinical research ed). 2014;348:g3701.
- 56. Blyuss O, Dibden A, Massat NJ, Parmar D, Cuzick J, Duffy SW, et al. A case-control study to evaluate the impact of the breast screening programme on breast cancer incidence in England. Cancer medicine. 2023;12(2):1878–87.
- 57. Beckmann KR, Lynch JW, Hiller JE, Farshid G, Houssami N, Duffy SW, et al. A novel case-control design to estimate the extent of over-diagnosis of breast cancer due to organised population-based mammography screening. International journal of cancer. 2015;136(6):1411–21.
- 58. Katalinic A, Eisemann N, Kraywinkel K, Noftz MR, Hubner J. Breast cancer incidence and mortality before and after implementation of the German mammography screening program. International journal of cancer. 2020;147(3):709–18.