
  

Generative Artificial Intelligence Model for Simulating Brain 
Structural Changes in Schizophrenia 

Hiroyuki Yamaguchi1,2, Genichi Sugihara3, Masaaki Simizu3, Yuichi Yamashita1* 1 

1Department of Information Medicine, National Institute of Neuroscience, National Center of 2 
Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan 3 
2Department of Psychiatry, Yokohama City University, School of Medicine, Yokohama, 236-0004, 4 
Japan 5 
3Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental 6 
Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan 7 

*Correspondence:  8 
Yuichi Yamashita 9 
yamay@ncnp.go.jp 10 

Keywords: Generative AI, Deep Learning, CycleGAN, Brain MRI Simulation, Schizophrenia, 11 
Disease Simulation. 12 

 13 

Abstract 14 

Background: Recent advancements in generative artificial intelligence (AI) for image generation have 15 
presented significant opportunities for medical imaging, offering a promising avenue for generating 16 
realistic virtual medical images while ensuring patient privacy. The generation of a large number of 17 
virtual medical images through AI has the potential to augment training datasets for discriminative AI 18 
models, particularly in fields with limited data availability, such as neuroimaging. Current studies on 19 
generative AI in neuroimaging have mainly focused on disease discrimination; however, its potential 20 
for simulating complex phenomena in psychiatric disorders remains unknown. In this study, as 21 
examples of a simulation, we aimed to present a novel generative AI model that transforms magnetic 22 
resonance imaging (MRI) images of healthy individuals into images that resemble those of patients 23 
with schizophrenia (SZ) and explore its application. 24 

Methods: We used anonymized public datasets from the Center for Biomedical Research Excellence 25 
(SZ, 71 patients; healthy subjects [HSs], 71 patients) and the Autism Brain Imaging Data Exchange 26 
(autism spectrum disorder [ASD], 79 subjects; HSs, 105 subjects). We developed a model to transform 27 
MRI images of HSs into MRI images of SZ using cycle generative adversarial networks. The efficacy 28 
of the transformation was evaluated using voxel-based morphometry to assess the differences in brain 29 
region volume and the accuracy of age prediction pre- and post-transformation. In addition, the model 30 
was examined for its applicability in simulating disease comorbidities and disease progression. 31 

Results: The model successfully transformed HS images into SZ images and identified brain volume 32 
changes consistent with existing case-control studies. We also applied this model to ASD MRI images, 33 
where simulations comparing SZ with and without ASD backgrounds highlighted the differences in 34 
brain structures due to comorbidities. Furthermore, simulation of disease progression while preserving 35 
individual characteristics showcased the model’s ability to reflect realistic disease trajectories. 36 
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Discussion: The findings suggest that our generative AI model can capture subtle changes in brain 37 
structures associated with SZ and offers a novel tool for visualizing brain alterations across various 38 
conditions. The potential of this model extends beyond clinical diagnoses to advancements in the 39 
simulation of disease mechanisms, which may ultimately contribute to the refinement of therapeutic 40 
strategies. 41 

  42 
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3 

1 Introduction 43 

Rapid advancements in image generative artificial intelligence (AI) have marked the beginning of 44 
new possibilities in various fields (1). Significant breakthroughs include the emergence of DALL-E 45 
(2) and stable diffusion (3), which have made the potential of AI for generating realistic and complex 46 
images widely known (4). This evolution has profound implications, particularly in the intricate 47 
landscape of medical imaging, where concerns regarding privacy, ethics, and legal constraints have 48 
historically constrained the sharing of patient data. 49 

The utilization of generative AI models has demonstrated realistic and comprehensive potential for 50 
generating two-dimensional medical images, such as chest radiographs and fundus photography (5), 51 
and three-dimensional (3D) medical images, including magnetic resonance imaging (MRI) of the 52 
brain, chest, and knees (6). These studies have highlighted the potential of generative AI for 53 
synthesizing authentic medical images without compromising the confidentiality of sensitive patient 54 
information. 55 

The limitation of available medical images, in contrast to the abundance of natural images, 56 
emphasizes the importance of generative AI, which facilitates the use of large amounts of labeled 57 
data in model training. In neuroimaging, the generative AI approach has been used to generate brain 58 
MRI (7), single-photon emission tomography (SPECT) (8), and positron emission tomography (PET) 59 
(9). Among these, generative AI is commonly used in medical imaging to improve the performance 60 
of models by generating a large number of images and using them as training data, that is, for data 61 
augmentation (10–12). It is difficult to increase the number of samples for MRI of actual psychiatric 62 
and neurological disorders. Hence, a strategy using generative deep learning techniques, such as 63 
generative adversarial networks (GANs), is used to enhance the learning process by expanding the 64 
sample size (11,13–15). Zhou et al. demonstrated that a GAN framework could be developed to 65 
generate brain MRI images to enhance performance and improve accuracy in classifying Alzheimer’s 66 
disease and mild cognitive impairment (16). Zhao et al. introduced a functional network connectivity-67 
based GAN to distinguish patients with schizophrenia (SZ) from healthy subjects (HSs) using 68 
functional MRI data (17). Generative AI has also demonstrated strength in neuroimaging (18) 69 
segmentation. Furthermore, it is imperative to investigate the efficacy of style transfers derived from 70 
generative AI. Style transfer involves applying the characteristics or style of one image to another 71 
while preserving the content of the latter. This technique holds promise for transforming easily 72 
obtainable images, such as computed tomography scans, into images exclusive to a limited number of 73 
facilities, such as MRI scans (19). In addition, the application of the style transfer technique is 74 
expected to effectively reduce bias in image quality caused by differences in imaging equipment and 75 
sites (20), which are unavoidably included in MRI images (21). 76 

Existing neuroimaging research using generative AI has concentrated primarily on contributions to 77 
specific areas, such as disease diagnosis and lesion detection. However, the use of these techniques to 78 
simulate more complex clinical phenomena presents an interesting area for further exploration of the 79 
potential use of generative AI in neuroimaging research (22). Examples from external medicine 80 
include attempts to simulate automated automobile driving (23) and the design of novel proteins (24). 81 

Previous studies provide an example of one such attempt to apply generative AI to psychiatric brain 82 
imaging research, as an example of an approach to the problem of comorbidity and heterogeneity in 83 
psychiatric disorders (25,26). Specifically, these studies have focused on the relationship between SZ 84 
and autism spectrum disorder (ASD). SZ and ASD are defined as distinct disorder groups based on 85 
diagnostic criteria but share some common features, such as difficulties in social interaction and 86 
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communication (27). Furthermore, common features in brain structures and genetic alterations have 87 
been noted (28,29). Owing to the complexity of their etiology, the relationship between these two 88 
disorders and their comorbid phenotypes remains to be elucidated. The ability of generative AI to 89 
simulate these conditions can shed light on the intricate relationship between these disorders and their 90 
overlapping phenotypes. 91 

The first step in this study was to develop a generative AI that simulates brain volume changes 92 
caused by SZ, specifically a generative AI using CycleGAN. This enables the transformation of brain 93 
images from healthy individuals into images similar to those of patients diagnosed with SZ. We 94 
validated this artificial schizophrenic brain simulator by analyzing specific brain regions affected by 95 
transformation and comparing them with existing findings on SZ. Furthermore, we aimed to evaluate 96 
the feasibility of our “SZ brain generator” in simulations of the disease process of SZ and in 97 
simulation experiments of the comorbidity of ASD and SZ. 98 

2 Materials and Methods 99 

2.1 Dataset description 100 

In this study, we used the Center for Biomedical Research Excellence (COBRE; 101 
http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html) dataset, which is anonymized and publicly 102 
available. All the subjects were diagnosed and screened using the Structured Clinical Interview for 103 
the Diagnostic and Statistical Manual of Mental Disorders, 4th edition Axis I Disorders (SCID) 104 
(30)(31). Individuals with a history of head trauma, neurological illness, serious medical or surgical 105 
illness, or substance abuse were excluded. We selected 142 subjects from this database, including 71 106 
patients with SZ and 71 HSs. 107 

We also used the Autism Brain Imaging Data Exchange (ABIDE; 108 
http://fcon_1000.projects.nitrc.org/indi/abide/) dataset, which is a multicenter project that focuses on 109 
ASD. It includes > 1000 ASD and typically developing (TD) subjects. The New York City 110 
University dataset was used in this study. Finally, we included 184 subjects from this dataset: 79 111 
subjects with ASD and 105 TD subjects. 112 

The demographic and clinical characteristics of the COBRE and ABIDE datasets are presented in 113 
Supplementary Table 1. 114 

This study was conducted in accordance with the current Ethical Guidelines for Medical and Health 115 
Research Involving Human Subjects in Japan and was approved by the Committee on Medical Ethics 116 
of the National Center of Neurology and Psychiatry. 117 

2.3 Data preprocessing 118 

MRI data were preprocessed using the Statistical Parametric Mapping software (SPM12, Wellcome 119 
Department of Cognitive Neurology, London, UK, 120 
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) with the Diffeomorphic Anatomical Registration 121 
Exponentiated Lie Algebra registration algorithm (32). The MR images were processed using field 122 
bias correction to correct for nonuniform fields and were then segmented into gray matter (GM), 123 
white matter, and cerebrospinal fluid sections using tissue probability maps based on the International 124 
Consortium of Brain Mapping template. Individual GM images were normalized to the Montreal 125 
Neurological Institute template with a 1.5 × 1.5 × 1.5 mm3 voxel size and modulated for GM 126 
volumes. All normalized GM images were smoothed with a Gaussian kernel of 8 mm full width at 127 
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half maximum. Consequently, the size of the input images for the proposed model was 121 × 145 × 128 
121 voxels. 129 

2.3 Cycle generative adversarial networks 130 

The CycleGAN algorithm, a generative AI method that has been actively used in recent years for 131 
style transformation, was used in this study (33). This algorithm simultaneously learns to generate 132 
Style B from Style A, and Style A from Style B using two style datasets. In addition, whether the 133 
image is real or fake is discriminated. This enables style transformations without the need for 134 
supervised data. The GAN learns to progressively generate high-resolution images through these 135 
competitive processes. Figure 1 shows the schematic workflow of the proposed method. In this study, 136 
we constructed a model to transform images by learning two styles: MRI of HS and MRI of SZ. 137 
Using the learned model, we transformed HS into SZ and investigated how the brain regions changed 138 
pre- and post-transformation. 139 

Figure 1 shows the proposed CycleGAN architecture. A 3D brain image was input into the proposed 140 
model to contain more spatial information, and the background area was cropped as much as possible 141 
(the voxel sizes were 96, 120, and 104). In the learning phase, the training HS MRI was input to 142 
Generator 1 (HS to SZ) to generate an SZ MRI (called virtual SZ). This virtual SZ was input to 143 
Generator 2 (SZ to HS) to generate an HS MRI (called reconstructed HS). Similarly, the training SZ 144 
MRI data were fed to the two generators in reverse order to generate a virtual HS and a reconstructed 145 
SZ. Next, two discriminators were used to judge the reality of the virtual and reconstructed images.  146 

The network of Generators 1 and 2 consisted of U-Net (34), which is an autoencoder with skip 147 
connections. In this study, we proposed a U-Net model consisting of six consecutive 3D 148 
convolutional blocks (three encoding blocks and three decoding blocks) with instance normalization 149 
and rectified linear unit (ReLU) activation. The encoding blocks consisted of two convolutional 150 
layers and one pooling layer. The decoding block consisted of three transposed convolutional layers. 151 
Additionally, six layers of ResBlock were added to the intermediate layer of U-Net, which was used 152 
in the Residual Network to learn the residual function between the inputs and outputs of the layers 153 
(35). This structure is often used in GANs (2,36,37). The discriminator consisted of five blocks, 154 
including a 3D convolution layer with instance normalization and leaky ReLU activation. The 155 
proposed CycleGAN loss function comprises two parts: adversarial and cycle consistency losses. 156 
Adversarial loss is designed to optimize the generator’s ability to produce images that are 157 
indistinguishable from those belonging to the target domain by the discriminator. Generator G1 158 
transforms an image in domain X into domain Y, where DY represents the discriminator for domain Y: 159 

ℒ!"#(𝐺$, 𝐷% , 𝑋, 𝑌) = 𝔼&~((&)[𝑙𝑜𝑔𝐷%(𝑦)] + 𝔼+~((+)[log	(1 − 𝐷%(𝐺1(𝑥)))] 160 

In addition, the same formulation applied to generator G2 transforming an image in domain Y into 161 
domain X, with DX as the corresponding discriminator. 162 

The cycle consistency loss ensures that the image is transformed back to its original domain and then 163 
back. This loss component is given by the following: 164 

ℒ,&,(𝐺$, 𝐺-) = 𝔼+~.(+)[‖𝐺-(𝐺$(𝑥)) − 𝑥‖] + 𝔼&~.(&)[‖𝐺-(𝐺$(𝑦)) − 𝑦‖] 165 

The network structure was explored preliminarily based on previous experiments (38,39). The details 166 
of the architecture of our framework are shown in Supplementary Figure 1. 167 
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We conducted the experiments in Python 3.8 using PyTorch v.1.9.1 library (40). Our network was 168 
implemented on a workstation running a 64 Gigabytes NVIDIA Quadro RTX 8000 GPU. 169 

2.4 Verification of generated virtual schizophrenia brain 170 

In this study, we used a trained CycleGAN model to generate virtual SZ MRI images of HSs. 171 
Subsequently, we analyzed the different regions of volume pre- (original HSs) and post- (virtual SZ 172 
converted from HSs) transformations and verified whether the results were consistent with the brain 173 
changes due to SZ indicated in previous case-control neuroimaging studies. 174 

For verification, we performed voxel-based morphometry (VBM) using SPM12 (41,42). VBM is a 175 
method for comparing brain GM volumes from segmented MRI images using statistical parametric 176 
mapping to identify and infer region-specific differences. Standard and optimized VBM techniques 177 
have been used to detect psychiatric and neurological disorders (43–48). Whole-brain voxel-wise t-178 
tests were performed, and paired t-tests were specifically employed for pre- and post-transformation 179 
comparisons. To account for potential scaling differences between pre- and post-transformation brain 180 
images, global scaling was applied to normalize the overall image intensity of each image. Correction 181 
for multiple comparisons was conducted at a combined voxel level of P < 0.001. 182 

To ensure the reproducibility of the generation, we additionally assessed any variations in the 183 
accuracy of age prediction between pre- and post-transformations. Owing to the ultrahigh 184 
dimensionality of the brain images, principal component analysis was performed for dimensionality 185 
reduction, retaining all 71 dimensions corresponding to our sample size. Subsequently, fivefold 186 
cross-validation and linear regression were used to derive age predictions. To compare the age values 187 
predicted from the brain images pre- and post-transformation, a t-test was applied. The significance 188 
level was set at P < 0.05. 189 

2.5 Brain alteration simulations using a schizophrenia brain generator 190 

Two experiments were conducted to verify whether the developed generator can simulate brain 191 
alterations. The first involved simulating the comorbidities of the disease (Figure 2A). We applied 192 
the SZ brain generator to an independent dataset called ABIDE. This approach enables the virtual 193 
generation of an image depicting individuals with both ASD and SZ. Comparative analyses were 194 
performed between TD individuals and those with ASD as the baseline, TD individuals with SZ (TD 195 
+ SZ), individuals with ASD and SZ (ASD + SZ), and individuals with ASD and ASD + SZ. The 196 
method used VBM to examine the variations in brain regions. 197 

In the second experiment, we simulated disease progression, as shown in Figure 2B. We repeatedly 198 
applied the trained generator to the images and compared the results with those of the original images 199 
to validate the changes. Our analysis aimed to ascertain the effectiveness of this method for 200 
simulating brain alterations associated with disease progression. To confirm that the original 201 
individual characteristics were retained after repeated transformations of brain images, age 202 
predictions were made using each transformed image. An analysis of variance (ANOVA) was used to 203 
confirm the absence of significant differences in these predictions. The significance level was set at P 204 
< 0.05. 205 

3 Results 206 

3.1 Generation of virtual schizophrenia brain 207 
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Following an adequate learning process, our model was able to generate brain MRI images 208 
qualitatively (Supplementary Figure 2). We performed VBM analysis pre- and post-transformation to 209 
confirm that the model generated from MRI of HSs to MRI of patients with SZ captured the 210 
characteristics of schizophrenic brain structures. VBM analysis confirmed the regions of volume 211 
reduction after transformation to an SZ-like state, including the bilateral superior temporal gyrus, 212 
right middle temporal gyrus, right hippocampus, and bilateral medial frontal to anterior cingulate 213 
gyrus (Figure 3). This result is consistent with the findings of previous case-control studies on SZ 214 
(49–54), indicating that this model can reproduce the brain volume changes caused by SZ. 215 

In addition, age prediction was performed using brain images obtained pre- and post-transformation, 216 
and there was no significant difference in the predicted values (P = 0.598). In addition to the t-test, 217 
the effect size was calculated using Cohen’s d, which revealed a small effect (d = 0.089) 218 
(Supplementary Figure 3). 219 

Using a generator model that transforms the MRI of HSs into the MRI characteristics of patients with 220 
SZ, this model was applied to MRI images, and the volume differences of brain regions pre- and 221 
post-transformation were examined. After applying SZ brain generator images, volume reduction was 222 
observed in the bilateral superior temporal gyrus, right middle temporal gyrus, right hippocampus, 223 
and bilateral medial frontal gyrus to the anterior cingulate gyrus. 224 

3.2 Simulation analysis of virtual schizophrenia with autism spectrum disorder brain 225 

We performed a simulation using a trained SZ MRI generator. We generated virtual MRI images of 226 
ASD with SZ (ASD + SZ) by transforming them from MRI images. In Figure 4A, the cold-colored 227 
areas represent regions where the volume was reduced when ASD was comorbid with SZ. We 228 
confirmed volume reduction, mainly in the bilateral temporal lobes and insular cortex.  229 

Next, we performed a simulation to examine whether there were differences in brain structure 230 
between individuals diagnosed with SZ with and without background ASD. Virtual SZ MRI images 231 
were generated from ASD and TD MRI images using an SZ brain generator. Depicted in Figure 4B 232 
are regions where the cold regions show a volume reduction in the virtual SZ generated from the 233 
ASD (ASD + SZ) compared with the virtual SZ generated from the TD (TD + SZ). Volume reduction 234 
was observed bilaterally in the hippocampus. The warm regions showed volume increases in the 235 
ASD + SZ images. An increase in volume was observed in the left middle temporal gyrus. 236 

3.3 Simulation analysis of repetitive transformations 237 

We hypothesized that repeated transformations of brain images could potentially delineate the 238 
evolutionary trajectory of an ailment. Employing the VBM, an investigation was undertaken on both 239 
the original images and the nth iterated rendition (n = 1–5). The results showed that the region of 240 
difference expanded with each repeated transformation. Although it was initially relatively localized, 241 
it progressively became widespread and centered on the temporal lobe during the fifth 242 
transformation. 243 

To confirm that the original individual characteristics were retained after repeated transformations of 244 
the brain images, age predictions were conducted using each transformed image.  245 

Fivefold cross-validation and linear regression were used to predict age from repeatedly transformed 246 
brain images. The differences in prediction accuracy were evaluated using ANOVA. The results 247 
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showed no significant differences in age prediction (P = 0.932, η²p = 0.01) (Supplementary Figure 4). 248 
This suggests that the original individual characteristics are preserved after multiple transformations. 249 

4 Discussion 250 

In this study, we introduced generative AI capable of depicting structural differences in the brain 251 
resulting from psychiatric disorders. Specifically, we developed a generative AI to transform brain 252 
images into SZ images. Our results confirm the potential of the model for facilitating several 253 
simulation experiments related to psychiatric disorders. 254 

Our model was qualitatively successful in transforming the MRI images of HSs into images 255 
resembling those of patients with SZ. Subsequent VBM analysis confirmed the alignment of the 256 
model with previously established SZ studies. Patients with SZ exhibit structural anomalies in the 257 
superior temporal gyrus, thalamus, and hippocampus compared with healthy individuals, a finding 258 
that corroborates our results (53–55). This study offers a compelling solution to the problem of 259 
insufficient neuroimaging data by effectively generating data that capture the characteristics of SZ-260 
related brain changes (56). 261 

Subsequent simulations using a trained SZ brain generator extended the investigation to individuals 262 
with both SZ and ASD. SZ and ASD are distinct disorders with unique clinical profiles and natural 263 
history. However, ASD carries a significantly higher risk, three–six times, of developing SZ than TD 264 
individuals (57,58). Recent studies have indicated a convergence between SZ and ASD. To 265 
investigate this intricate relationship, we conducted a virtual brain simulation and proposed a new 266 
hypothesis. This exploration revealed volume reduction patterns, primarily concentrated in the 267 
bilateral temporal lobes and insular cortex, which are characteristic of comorbidities. This 268 
observation suggests that the model captures distinct structural changes specific to this subgroup, 269 
thereby demonstrating its potential to unravel the complex interplay between different psychiatric 270 
conditions. 271 

Further simulations were performed assuming a retrospective study. In this study, we generated brain 272 
images of patients with SZ with and without ASD and examined whether it was possible to analyze 273 
the differences in their structures. The distinct volume reductions observed in the bilateral 274 
hippocampus in the ASD + SZ group indicate a potential structural divergence associated with the 275 
comorbidity. Conversely, the volume increase in the left middle temporal gyrus in the same group 276 
offers an interesting avenue for understanding unique structural variations in this population. Zheng 277 
et al. reported that the higher the autistic traits, the lesser the improvement in psychiatric symptoms 278 
and life functioning after a year (59). Therefore, it is important to determine the presence or absence 279 
of ASD in the context of SZ to predict the prognosis and determine the course of treatment. The 280 
proposed model can provide decision support for treatment strategies. 281 

The repeated transformation approach, which was designed to explore the evolutionary trajectory of 282 
brain changes, provides novel insights into ailment progression. The expansion of the difference 283 
region with each repeated transformation, culminating in a widespread pattern centered on the 284 
temporal lobe, underscores the model’s ability to capture and magnify the cumulative effects of 285 
structural alterations. A meta-analysis of longitudinal studies on SZ revealed that patients with SZ 286 
exhibited significantly higher volume loss over time (49). This loss included the entire cortical GM, 287 
left superior temporal gyrus, left anterior temporal gyrus, and left Heschl’s gyrus. These findings are 288 
consistent with the simulation results generated using the proposed model. This repeated approach 289 
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can potentially aid in elucidating the progressive nature of the impact of the disorder on the brain 290 
structure. 291 

Investigation of the preservation of the original individual characteristics after repeated 292 
transformations brought an essential dimension to the study. By evaluating age predictions across the 293 
transformed images, this study established the robustness of the model in retaining individual-294 
specific features. The absence of statistically significant differences in age predictions reinforces the 295 
credibility of repeated transformations in preserving the key characteristics of the original images. 296 

Despite these promising findings, it is crucial to acknowledge the limitations of this study. One 297 
limitation is the reliance on a simulated data approach, which may not fully capture the complexity of 298 
real-world brain structural variations. Additionally, even if there is no difference in the accuracy of 299 
age prediction using the generated brain images, it may not cover the entire range of demographic 300 
factors that could influence brain structure. Further validation with larger and more diverse datasets 301 
and comparisons with other methodologies can enhance the generalizability of the results. 302 

In conclusion, this study demonstrated the potential of the developed model to capture and simulate 303 
brain structural alterations associated with SZ and its comorbidity with ASD. These findings provide 304 
a foundation for exploring the mechanisms underlying these conditions and their interconnections. 305 
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 510 

Figure 1: Our cycle generative adversarial network 511 

The model is designed to enable the transformation between domains of healthy subjects (HSs) and 512 
patients with schizophrenia (SZ). Generator 1 (G1) is responsible for transforming HS into SZ, 513 
whereas Generator 2 (G2) performs the conversion from SZ back to HS. Discriminator 1 (D1) 514 
discriminates between real SZ images and virtually generated SZ-like images. Similarly, 515 
Discriminator 2 (D2) discriminates between real HS images and synthetic HS-like images. The loss 516 
function is configured to optimize each component. 517 

  518 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 31, 2024. ; https://doi.org/10.1101/2024.05.29.24308097doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.29.24308097
http://creativecommons.org/licenses/by/4.0/


519 
Figure 2: Simulation experiments by generative brain images 520 

Figure A is an experiment simulating disease comorbidity. The autism spectrum disorder and 521 
typically developing data were used to generate virtual images with a schizophrenia transducer. 522 
Figure B is an experiment simulating disease progression. Images were generated using one to five 523 
repetitions of the schizophrenia brain generator. 524 
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526 
Figure 3: Difference in brain volume pre- and post-transformation 527 

Voxel-based morphometry analysis was performed between pre- and post-transformation magnetic 528 
resonance imaging images from healthy subjects and those with schizophrenia. Cold colors represent 529 
a decrease, and warm colors represent an increase. Temporal Sup_L, left superior temporal gyrus; 530 
SupraMarginal_L, left supramarginal gyrus. 531 
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533 
Figure 4: Disease comorbidity simulation 534 

Figure A shows the volume differences before and after the application of the schizophrenia brain 535 
generator, which enabled the generation of an image of autism spectrum disorder (ASD) combined 536 
with schizophrenia (SZ). Figure B shows the volume differences between the virtual SZ-like images 537 
with and without ASD. 538 
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540 
Figure 5: Repetitive transformations 541 

The volume differences were relatively localized at first, but gradually became more extensive, 542 
especially in the temporal lobe, by the fifth transformation. 543 
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 546 

Supplementary Table 1: Demographic and clinical information. 547 

 548 
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 550 

Supplementary Figure 1: Our proposed CycleGAN architecture.  551 

 552 

The numbers describe the number of channels and the size of the images. The generator consists of 553 
an encoder and a decoder, and the bottleneck contains a ResBlock. The encoder and decoder were 554 
designed as a U-Net with skip connections. The discriminator, a convolutional neural network, is 555 
trained to discriminate between the generated images and the ground truth. 556 
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 558 

 559 

Supplementary Figure 2: Comparison of MRI images of healthy subjects, schizophrenia patients, and 560 
generated virtual schizophrenia MRI images. 561 

 562 

MRI images of a healthy subject (top row), a real schizophrenia patient (middle row), and a virtual 563 
schizophrenia patient (bottom row). Coronal (left), sagittal (middle), and axial (right) views are 564 
shown, respectively. A virtual schizophrenia was generated from a healthy subject. It appears 565 
qualitatively no different from the real image. 566 
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 568 

 569 

Supplementary Figure 3: Comparison of age predictions pre- and post-transformation 570 

 571 

Healthy subject brain MRI was transformed to schizophrenia brain MRI and linear regression was 572 
performed for age predictions pre- and post-transformation, respectively. There were no significant 573 
differences in predictive values pre- and post-transformation. 574 

 575 
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 583 

 584 

Supplementary Figure 4: Comparison of age prediction by repeatedly transformed brain images 585 

 586 

Repeated transformation experiments were performed using the schizophrenia transformer. A linear 587 
regression was performed to predict age by each transformed image, and an ANOVA showed no 588 
significant difference in predicted values. 589 

 590 
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