- Guidance for triangulating data and estimates of HIV prevalence among pregnant women and
- 2 coverage of PMTCT using the Spectrum AIDS Impact Module
- 3 Running head: Harmonizing AIM estimates of PWLHIV
- 4 Magdalene K. Walters^{1§}, Eline L. Korenromp², Anna Yakusik², Ian Wanyeki², André Kaboré³,
- 5 Arthur Poimouribou⁴, Célestine Ki⁴, Coumbo Dao⁵, Paul Bambara⁴, Salam Derme⁴,
- Théophile Ouedraogo⁴, Kai Hon Tang¹, Marie-Claude Boily¹, Mary Mahy², Jeffrey W. Imai-
- 7 Eaton^{1,7}
- 8 MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial
- 9 College London, London, United Kingdom
- ² Data for Impact Department, Joint United Nations Programme on HIV/AIDS, Geneva,
- 11 Switzerland
- ³ Data for Impact Division, Joint United Nations Programme on HIV/AIDS, Ouagadougou,
- 13 Burkina Faso
- ⁴ Permanent Secretary of the National Council for the Fight against AIDS and Communicable
- 15 Infections, Burkina Faso
- ⁵ Direction de la Santé de la Famille (DSF), Ouagadougou, Burkina Faso
- ⁷ Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H.
- 18 Chan School of Public Health, Boston, MA, USA
- 19 Correspondence to: Magdalene Walters, Imperial College London, St. Mary's Hospital Campus,
- 20 Norfolk Place, London W2 1P, UK (email: mwalters@ic.ac.uk)
- 21 Conflicts of Interest and Source of Funding: The authors declare no conflicts of interest. This
- 22 research was supported by the National Institute of Allergy and Infectious Diseases of the National
- 23 Institutes of Health under award number 1R01AI152721-01A1, UNAIDS, and the MRC Centre for
- 24 Global Infectious Disease Analysis (reference MR/R015600/1), jointly funded by the UK Medical
- 25 Research Council (MRC) and the UK Foreign, Commonwealth & Development Office (FCDO), under
- the MRC/FCDO Concordat agreement and is also part of the EDCTP2 programme supported by the
- 27 European Union.
- A preliminary analysis of this work was virtually presented in October 2022 to the UNAIDS Reference
- 29 Group on HIV Estimates, Modelling, and Projections. For open access, the author has applied a
- 30 Creative Commons Attribution (CC BY) license to any Author Accepted Manuscript version arising.
- 31 **Main text word count:** 3571 (excluding headings)

Abstract

32

- Background: Most countries use the Spectrum AIDS Impact Module (Spectrum-AIM),
- 34 antenatal care routine HIV testing, and antiretroviral treatment data to estimate HIV
- 35 prevalence among pregnant women. Non-representative programme data may lead to
- inaccurate estimates HIV prevalence and treatment coverage for pregnant women.
- 37 **Setting:** 154 locations in 126 countries.
- Methods: Using 2023 UNAIDS HIV estimates, we calculated three ratios: (1) HIV
- prevalence among pregnant women to all women 15-49y (prevalence), (2) ART coverage
- 40 before pregnancy to women 15-49y ART coverage (ART pre-pregnancy), and (3) ART
- coverage at delivery to women 15-49y ART coverage (PMTCT coverage). We developed an
- algorithm to identify and adjust inconsistent results within regional ranges in Spectrum-AIM,
- 43 illustrated using Burkina Faso's estimates.
- Results: In 2022, the mean regional ratio of prevalence among pregnant women to all
- women ranged from 0.68 to 0.95. ART coverage pre-pregnancy ranged by region from 0.40
- to 1.22 times ART coverage among all women. Mean regional PMTCT coverage ratios
- ranged from 0.85 to 1.51. The prevalence ratio in Burkina Faso was 1.59, above the typical
- range 0.62-1.04 in western and central Africa. Antenatal clinics reported more PMTCT
- recipients than estimated HIV-positive pregnant women from 2015 to 2019. We adjusted
- 50 inputted PMTCT programme data to enable consistency of HIV prevalence among pregnant
- women from programmatic routine HIV testing at antenatal clinics with values typical for
- 52 Western and central Africa.
- 53 Conclusion: These ratios offer Spectrum-AIM users a tool to gauge the consistency of their
- HIV prevalence and treatment coverage estimates among pregnant women with other
- 55 countries in the region.
- Keywords: HIV; AIDS impact module; pregnant women; ART; PMTCT
- 57 Abstract word count: 248

58

Introduction

59

Estimates of HIV prevalence among pregnant women determine need for and coverage of 60 61 antiretrovirals for prevention of maternal to child transmission (PMTCT), a key input to estimating paediatric HIV infections and monitoring progress towards eliminating mother-to-62 child HIV transmission. 1-4 Most countries estimate the number of pregnant women living with 63 HIV (PWLHIV) and PMTCT coverage using the AIDS Impact Module in Spectrum 64 (Spectrum-AIM). Comparing related model outcomes and typical patterns across locations 65 can reveal inconsistencies in input data or model assumptions that may result in inaccurate 66 estimates. 67 Country-specific estimates of HIV prevalence among pregnant women are the result of a 68 multi-step modelling process in Spectrum-AIM. The number of PWLHIV is calculated by 69 multiplying the age-specific number of women living with HIV (WLHIV) in reproductive ages 70 (15 to 49 years [15-49y]), age-specific fertility rates (by 5-year age group), and the relative 71 fertility of WLHIV relative to women without HIV (fertility rate ratio [FRR]). Age-specific HIV 72 prevalence is derived by fitting a mathematical model to local HIV surveillance data, 5-7 73 including HIV prevalence from household surveys, prevalence among pregnant women 74 75 attending antenatal clinics (ANC), prevalence surveys among key populations, new HIV diagnoses, or AIDS-related deaths. Age-specific fertility rates are obtained from the United 76 Nations World Population Prospects.⁸ Relative fertility of WLHIV compared to women 77 without HIV by age, treatment-status, and local effects are estimated from national 78 household surveys in African countries that measure HIV status and collect birth histories.^{8,9} 79 Inconsistencies in population prevalence, fertility rates, or relative fertility among WLHIV may 80 yield inaccurate estimates of HIV prevalence and treatment coverage among pregnant 81 women within Spectrum-AIM. 82 Quality of information about HIV among pregnant women varies by region and epidemic 83 type. In most African countries with high HIV prevalence, ANC attendance and routine HIV 84 testing at ANC (ANC-RT) is nearly universal. Universal HIV testing at ANC provides direct 85 measures of HIV prevalence among pregnant women. Spectrum-AIM calculates a 'local 86 adjustment factor' (LAF) to calibrate the modelled prevalence among pregnant women to 87 HIV prevalence measured from national ANC-RT. The default LAF value of 1.0 indicates that 88 the fertility of WLHIV is consistent with the default HIV FRR estimated from household 89 90 survey data. In the 2023 UNAIDS estimates, most sub-Saharan African (SSA) locations (n=36/43) calibrated the LAF to ANC-RT data. 10,11 91 92 In countries with low HIV prevalence and transmission primarily among key populations and their partners, mostly outside SSA, ANC HIV testing coverage varies and is often prioritised 93

94 among higher risk women or higher burden locations. Consequently, HIV prevalence from 95 ANC-RT in these locations does not represent prevalence among all pregnant women and cannot be used to calibrate the LAF. 12-18 Data are limited about WLHIV's fertility relative to 96 women without HIV in these settings, and fertility may be more heterogeneous given the 97 greater concentration of HIV among populations such as sex workers, partners of men who 98 have sex with men, and people who inject drugs. Because the default FRRs were derived 99 from household surveys in SSA countries, they may mis-specify fertility of WLHIV in other 100 regions. Lacking representative measures of HIV prevalence among pregnant women, some 101 Spectrum-AIM users manually adjust the LAF so that modelled estimates of PWLHIV are 102 greater than numbers of PWLHIV receiving ARVs from programme data. In non-SSA 103 regions, more than half of all countries with results published by UNAIDS in 2023 (n=52/83) 104 manually changed the LAF. 10,11 105 106 Large adjustments to the default fertility patterns or uncharacteristically large differences 107 between related model outputs could indicate inaccurate model estimates, inaccurate input data, or inappropriate interpretations of data sources. To identify possible challenges, we 108 used UNAIDS estimates from Spectrum-AIM published in 2023 to establish patterns for HIV 109 110 prevalence and treatment coverage among pregnant women for each region. We also 111 proposed an algorithm to guide Spectrum-AIM users to critically review the consistency of programmatic estimates with regional patterns and scrutinize surveillance data. 112 programmatic input, and model assumptions. 10,11 As a case study, we applied the approach 113 114 and described its impact on estimates of HIV prevalence among pregnant women using 115 Spectrum-AIM estimates for Burkina Faso.

Methods

116

117

118

119

120 121

122

123

124

125

126

We used Spectrum-AIM files submitted by HIV estimation teams to UNAIDS for publication in 2023 to calculate three ratios: (1) HIV prevalence among pregnant women to HIV prevalence among all women 15-49y ('prevalence ratio'), (2) ART coverage among PWLHIV before the current pregnancy to ART coverage among WLHIV 15-49y ('ART coverage prepregnancy ratio'), and (3) the ratio of ART coverage in PWLHIV at delivery to ART coverage in WLHIV 15-49y ('PMTCT coverage ratio'). We reported these ratios for the year 2022, as they did not vary substantially over the past decade. We summarised ranges for each ratio by UNAIDS region. Values outside of these ranges may indicate inconsistent data for the number of pregnant women on ART, number of PWLHIV, or low predictive power of the local HIV surveillance data to estimate HIV prevalence in the general population.

127 Data sources We extracted outputs from 154 publicly available national or subnational publicly available 128 Spectrum-AIM HIV estimates files submitted by 126 countries and published by UNAIDS in 129 2023. 11 Three SSA countries had subnational files (Kenya, Zimbabwe, Ethiopia); the 130 remaining 123 files represented national HIV epidemics created by country teams and 131 submitted to UNAIDS for review and publication. Spectrum-AIM methods are described 132 elsewhere. 19-21 Briefly, in countries with high HIV prevalence (n= 64, mostly in SSA, 133 including Burkina Faso), adult HIV prevalence and incidence trends were estimated from 134 data on HIV prevalence among (1) nationally-representative samples of adults from 135 136 household-based surveys and (2) pregnant women attending ANC, sampled in periodic sentinel surveillance up to the mid-2010s and more recently from ANC-RT data.⁵ In 137 countries with lower HIV prevalence, epidemic trends were fit to national HIV and/or AIDS 138 case reports and AIDS-related deaths reported through vital registration with the CSAVR or 139 ECDC models (n= 46) or from HIV prevalence survey and surveillance data among risk 140 groups using the EPP concentrated (n= 27) or AEM models (n= 12). 6,7 All incidence models 141 accounted for the effects of ART on survival and transmission. Locations and the estimation 142 method for each are reported in Supplementary Table S1. 143 Spectrum-AIM calculates HIV prevalence among pregnant women from age-specific HIV 144 prevalence of all women 15-49y, age-specific fertility rates,8 and HIV fertility rate ratios.9 145 Data on HIV FRRs outside SSA are limited and therefore default HIV FRR patterns for SSA 146 are applied to all regions, despite very different risk populations and contraceptive use. We 147 extracted Spectrum-AIM's estimates for HIV prevalence among women 15-49y, HIV 148 prevalence among pregnant women, ART coverage among WLHIV 15-49y, and initiation 149 timing for PWLHIV on ART for 2022. We compared HIV prevalence among pregnant women 150 151 and women 15-49y to nationally representative surveys where available (Supplementary Table S2 and Supplementary Figure S1). 152 HIV prevalence, ART, and PMTCT ratios 153 We calculated the 'prevalence ratio' for all Spectrum-AIM files by dividing the HIV prevalence 154 among pregnant women by the HIV prevalence among women 15-49y (equation 1): 155 $Prevalence\ ratio = \frac{HIV\ prevalence\ among\ pregnant\ women}{HIV\ prevalence\ among\ women\ aged\ 15-49\ years\ old}$

156 Equation 1

157

158

159

The 'ART coverage pre-pregnancy ratio' was calculated as the proportion of PWLHIV on ART before the current pregnancy from programmatic input and Spectrum-AIM's estimate of PWLHIV, divided by ART coverage among WLHIV 15-49y (equation 2):

$$ART\ coverage\ pre-pregnancy\ ratio = \frac{ART\ coverage\ before\ pregnancy\ among\ all\ PWLHIV}{ART\ coverage\ for\ all\ WLHIV\ aged\ 15-49\ years}$$

160 Equation 2

The 'PMTCT coverage ratio' was the ratio of total ART coverage (i.e., proportion of PWLHIV who received ART during the pregnancy, started before or during the current pregnancy) and ART coverage for WLHIV 15-49y (equation 3):²⁴

$$PMTCT\ coverage\ ratio\ = \frac{\text{ART\ coverage\ at\ delivery\ amongst\ all\ PWLHIV}}{ART\ coverage\ for\ all\ WLHIV\ aged\ 15-49\ years}$$

164 Equation 3

Identifying typical ranges and outliers by region

165

166 167

168

169

170 171

172

173

174 175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

ratios.

We calculated the mean of each ratio by UNAIDS-defined regions, broadly representing variations in epidemic type: eastern and southern Africa (ESA), western and central Africa (WCA), Latin America and Caribbean (LAC), Asia and Pacific (AP), eastern Europe and central Asia (EECA), western and central Europe and North America (WCENA), middle East and northern Africa (MENA). For ESA and WCA, we considered location-specific ratios between 0.75 times lower to 1.25 times higher than the regional mean as 'typical' and those outside this range to be outliers. For other regions, we present these ranges but emphasize the influence of local HIV surveillance data on estimating HIV prevalence among pregnant women. Alternate methods to define typical ranges were considered (Supplementary Text S1). For countries where transmission primarily occurs outside of key populations, we expected prevalence ratios to be less than one (i.e., lower HIV prevalence among pregnant women than all women 15-49y), ^{25,26} and the ART pre-pregnancy ratios (on ART before pregnancy) to be less than one, because PWLHIV are on average younger and so acquired HIV more recently.^{27,28} We expected PMTCT coverage ratios to be above one in countries with high ANC-RT coverage and ART for PMTCT uptake, as pregnant women who were untreated before pregnancy should be diagnosed and initiated on ART through ANC-RT.²⁹ Outside of SSA, where HIV transmission is mostly among key populations and their partners, and fertility and contracepting patterns are different from SSA, there was little a priori information about expected typical relationships for the prevalence, ART pre-pregnancy, or PMTCT

We further hypothesized that countries with outlier prevalence, ART coverage, or PMTCT coverage ratios had atypical LAFs that were fitted or modified to reconcile discrepant data on HIV prevalence among pregnant women (whether fit to ANC-RT data or estimated by

190

191

192

193

204

205

206

Spectrum-AIM) and number of PWLHIV on ART from programmes. Alternatively, if the distribution of LAFs across countries within a region systematically differed from one, this may indicate that the regional HIV-related FRR parameters in Spectrum-AIM are misspecified.

To test these hypotheses, we calculated an average LAF by region, weighted according to how close location-specific prevalence, ART pre-pregnancy, and PMTCT ratio ($Ratio_L$) were to the regional mean ratio ($Ratio_R$). The inverse favours values that are closest to the regional mean ratio. Weighted regional LAFs were calculated separately for all ratios.

$$w_L = \frac{1}{|Ratio_L - Ratio_R|}$$

198 Equation 4

$$LAF_R = \frac{\sum_C w_L * LAF_L}{\sum_C w_L}$$

199 Equation 5

Lastly, we identified inconsistent ART coverage among WLHIV 15-49y and PWLHIV.

201 Inconsistent coverage estimates consisted of: (1) more women receiving ART than

estimated WLHIV and (2) large year-to-year differences in the number of women receiving

ART. The first indicated inaccurate programme data or modelled output depending on the

location, the second indicated possible data recording issues and programmatic changes

that should be verified by those familiar with local context.

- Guidance for reviewing data and model outputs with Burkina Faso case study
- 207 From the outlier analysis, we developed a six-step algorithm to assess data and model
- 208 assumptions regarding HIV prevalence and ART coverage among pregnant women (Figure
- 209 1). We applied the algorithm using a preliminary Spectrum-AIM file produced by Burkina
- Faso (WCA region) for the 2023 round of UNAIDS published estimates. This file represents
- the most up-to-date surveillance and treatment data from the national HIV programme and
- estimates.
- 213 This study was reviewed and approved by the Research Governance and Integrity team of
- 214 Imperial College London (ICREC #6300528).

248

215 Results Prevalence, ART pre-pregnancy, and PMTCT ratios 216 In 2022, the mean prevalence ratio was less than one in all regions, ranging from 0.68 in the 217 MENA region to 0.95 in the LAC region (Table 1), indicating that pregnant women typically 218 had lower HIV prevalence than women 15-49y. The ESA and WCA regions had mean 219 220 prevalence ratios of 0.72 and 0.83, respectively (Table 1). WCA had a higher proportion of outliers than ESA (Figure 2; ESA: 6/46; WCA: 5/25). The regional mean ART coverage pre-221 pregnancy ratio was lowest in WCA at 0.40, and less than one for all regions, except 222 WCENA and EECA where it was 1.22 and 1.06, respectively (Table 1). Twenty-two countries 223 had ART coverage pre-pregnancy ratios above one (Figure 3). The mean ART coverage 224 pre-pregnancy ratio across all locations was 0.83 and the mean PMTCT coverage ratio was 225 1.21, and in all regions the mean PMTCT coverage ratio exceeded the ART coverage pre-226 pregnancy ratio. For all regions except WCA (0.85), the PMTCT coverage ratio exceeded 227 228 one. Atypical ratios within regions 229 All regions had countries with prevalence ratios outside of the regional typical range (Table 230 231 1). Globally, 19 of 154 locations (11 national locations, 8 subnational locations across 232 Ethiopia, Kenya, and Zimbabwe) reported more PWLHIV receiving ART than the estimated 233 number of PWLHIV in 2022. Of these 19 locations, two countries reported more pregnant women on ART before the current pregnancy than total estimated PWLHIV. Every region 234 had countries with ART pre-pregnancy ratios outside of 0.75 – 1.25 times the mean ART 235 236 pre-pregnancy ratio regional range (Figure 2). 237 Burkina Faso case study We applied the data review steps described in Figure 1 to the Burkina Faso Spectrum-AIM 238 file. Burkina Faso calibrated HIV prevalence among pregnant women to HIV prevalence from 239 ANC-RT data. Prevalence from routine ANC testing in 2022 was 1.19%; Spectrum estimated 240 HIV prevalence among all women 15-49y as 0.7% (0.6 – 0.9%). This differed from the typical 241 relationship where prevalence among pregnant women was less than HIV prevalence 242 among all women. 10 Step one of the process (Figure 1) revealed that the prevalence ratio in 243 244 Burkina Faso (1.56) exceeded the typical range for WCA (0.62-1.04, Figure 2). Step two identified Burkina Faso's LAF parameter of 2.15 was greater than the typical LAF in the 245 region (1.12, Table 1). The third step situated Burkina Faso among countries with a national 246 household survey that informed FRR parameter estimates in Spectrum-AIM, indicating that 247

the default FRR parameters should represent the relative fertility of WLHIV in Burkina Faso.

249 Because both the prevalence ratio and LAF were higher than typical for WCA, we 250 determined that the ANC-RT reported HIV prevalence was higher than expected for a country in WCA. 251 The Burkina Faso ratios for ART coverage pre-pregnancy (0.47) and PMTCT coverage 252 253 (1.00) were both within typical ranges for WCA (0.30 - 0.50 for ART pre-pregnancy and 0.64 - 1.06 for PMTCT ratios in WCA, Table 1). We did not find inconsistencies in ART coverage 254 among WLHIV 15-49y in step four. The steps to detect inconsistencies in PMTCT 255 programme data inputs (five and six) indicated the number of WLHIV on PMTCT exceeded 256 257 the modelled number of PWLHIV in each year between 2015 and 2020 (Figure 4). The discrepancy between pregnant women reported on ART at delivery and estimated number 258 PWLHIV was largest in 2019, when the reported number of PWLHIV on ART at delivery 259 treatment was 1.67 times Spectrum-AIM's estimate of PWLHIV. Between 2014 and 2015, 260 261 the reported number of WLHIV receiving PMTCT tripled from 4,285 to 12,937. The steps outlined in Figure 1 suggested two potential adjustments to reconcile Burkina 262 Faso's estimates of HIV prevalence among pregnant women: (1) HIV prevalence among 263 pregnant women compared to all women 15-49y was higher than typical for countries in 264 265 WCA and (2) the number of PWLHIV receiving treatment was inconsistent with the 266 estimated PWLHIV. Both discrepancies could be explained by the inaccurately large number of reported PWLHIV on ART before current pregnancy, which could occur if some PWLHIV 267 on ART were double counted. Per the guidance in steps one and two, we decreased Burkina 268 Faso's LAF from 2.15 (fit to ANC-RT data) to 1.12 (WCA regional estimate), as an initial step 269 270 to align Burkina Faso's prevalence ratio with regional estimates. During steps three and four, we did not change the FRR or ART coverage among women 15-49y, since Burkina Faso's 271 272 FRR was fit to national household survey data, and we did not identify inconsistencies in ART coverage among women 15-49y. Because the PMTCT ratio was within the range of 273 274 typical values for WCA (Table 1), we applied the reported distribution of ART initiation timings annually to ART coverage among women 15-49y to produce new to the overall level 275 of PMTCT coverage (Figure 4, and Supplementary Text S2). Reducing the LAF and 276 updating the number of women receiving antiretrovirals for PMTCT resulted in a new 277 278 prevalence ratio of 1.07, consistent with other countries in the region. Discussion 279 280 Our study assessed estimates of HIV prevalence and treatment coverage among pregnant women compared to all adult women by global regions. We developed a data review 281 process for Spectrum-AIM users to assess the relationship between ANC and ART related 282 283 programme data inputs and assumptions about fertility among WLHIV. This algorithm relies

316

317

318

284 on three ratios (prevalence, ART coverage pre-pregnancy, and PMTCT coverage). 285 prompting users to interrogate discrepancies between programme and surveillance data and Spectrum-AIM assumptions and to align estimates of HIV prevalence among pregnant 286 women and ART coverage at delivery with other locations in the region. 287 288 HIV prevalence among pregnant women in 2022 was lower than among all women 15-49y in all regions, typically by 20-30%. Prevalence ratios showed less variation across countries in 289 regions with larger HIV epidemics compared to regions with transmission more concentrated 290 among key populations and their partners. The greater variation in the latter is likely due to 291 292 diverse epidemiological factors and variations in surveillance data reliability and estimation approaches. There are three notable differences in the respective groups' Spectrum-AIM 293 models and input data: (1) most countries in SSA use the same type of data (HIV testing 294 from ANC and representative household surveys) to fit overall adult HIV prevalence, 295 296 whereas concentrated epidemic countries use surveillance among key populations (primarily non-ANC) data, (2) for countries that do use ANC data outside of SSA, HIV testing at ANC is 297 often targeted at women at higher risk to HIV. 30,31 and (3) default FRRs were derived from 298 household survey data from SSA and may be more applicable there. 299 300 In most regions, ART coverage before pregnancy was lower than ART coverage among all 301 adult WLHIV, but by varying degrees (regional means ranging 0.40 – 0.87, excluding EECA 302 and WCENA). ART coverage before pregnancy was higher in EECA (1.06) and WCENA 303 (1.22). All countries in EECA and WCENA with ART pre-pregnancy ratios greater than one were estimated with the CSAVR model, which uses national HIV diagnoses and/or AIDS 304 case reports and AIDS-related deaths reported through vital registration to estimate age-305 specific HIV prevalence (Supplementary Table S1). Assessing typical results for the 306 prevalence, ART coverage pre-pregnancy, and PMTCT ratios for countries without data that 307 directly measures HIV prevalence among pregnant women requires more nuance than for 308 309 countries with ANC-RT data. Interpreting outlier ratios involves scrutinizing both local HIV surveillance data for total 310 population prevalence estimation and its implications for estimating HIV prevalence among 311 312 pregnant women. 1. Countries should assess the reliability of data used to estimate age-specific HIV 313 prevalence among adults, considering documented biases in HIV surveillance data.³²⁻ 314 35 Where death registration data are used, countries should consider how frequent 315

- 35 Where death registration data are used, countries should consider how frequent misclassification of cause of death is. 35

 2. If data on PMTCT provision is reliable, countries could consider manual adjustments.
- 2. If data on PMTCT provision is reliable, countries could consider manual adjustments to the LAF to align the number of PWLHIV with the reported number of PWLHIV on

319

320

321

322 323

324

325

326 327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351 352

353

ART from programmes. More work should be done to estimate the relative fertility of WLHIV in that epidemic setting rather than using the FRR estimated from SSA household surveys. While the proposed ratios describe relationships between surveillance data, programmatic input, and model assumptions, they are intrinsically linked through the model and cannot be evaluated independently. Aligning one ratio with the mean regional value may cause another ratio to diverge from the regional value; balancing these ratios requires an iterative process of assessing the accuracy of different input data sources and making justified adjustments. While there is no gold standard source to compare these ratios to, using ratios calculated from external sources (such as PHIA and/or DHS surveys) in conjunction with regional ranges to identify outliers is a starting point to scrutinizing implausible model inputs. The Burkina Faso case study illustrates this. Burkina Faso's prevalence ratio was higher than many locations in the WCA region accompanied by a high LAF fit to national ANC-RT data. The atypically high prevalence ratio suggested that Burkina Faso's ANC-RT data overstated HIV prevalence among pregnant women relative to all women 15-49y. Previous studies found ANC testing clinics in Burkina Faso disproportionately serve urban areas with higher HIV prevalence among pregnant women than national HIV prevalence among pregnant women.³⁶ The difference in clientele is corroborated by lower access to multiple ANC visits before delivery in rural areas of Burkina Faso. 36,37 Ultimately, the Burkina Faso estimation team determined the programme data were not robust for use in HIV estimation indicated by low concordance between prevalence values from routine programme data and sentinel surveillance data. We suggest Spectrum-AIM users complete this review during the annual UNAIDS-supported HIV estimation process. Regions with epidemics primarily among key populations will have more heterogeneous fertility among WLHIV and access to care than countries with transmission among the heterosexual population.³⁹⁻⁴² In this case, adjustments based on regional trends may be less appropriate and Spectrum-AIM users should prioritize insights about the local epidemic context and ANC coverage data to inform the more accurate estimates of HIV prevalence and ART coverage among pregnant women. Additionally, countries should triangulate results with additional valid data sources, including testing of HIV exposed infants with mother infant pairing.^{43–45} Future work should examine patterns across epidemic types and the relationship between pregnant women and key population HIV prevalence to improve internal consistency in Spectrum-AIM's estimates of HIV prevalence among pregnant women. Investing in validation with external data not input to

the Spectrum-AIM model will produce more accurate estimates of HIV prevalence among

pregnant women and number of vertical HIV transmissions. Such data triangulation is well illustrated by Sibanda *et al.*, who integrated data from four sources (including Spectrum-AIM results) to identify gaps in the PMTCT care cascade in Zimbabwe, improving programme results. 46

Our work provides recommendations and a standardized approach to examining and, where needed, improving estimates of HIV prevalence among pregnant women within the Spectrum-AIM modelling process. We provide a path forward for targeted data collection and quality review for further refining these parameterizations. Future work could expand this analysis to include metrics measured through other data systems, such as early infant diagnosis and vital registration. Improvements in estimates of the number of pregnant women with HIV will aid measuring and addressing PMTCT needs, thereby decreasing instances of vertical transmission, towards the elimination of maternal to child transmission.

Tables and Figures

366

367

368

369

370

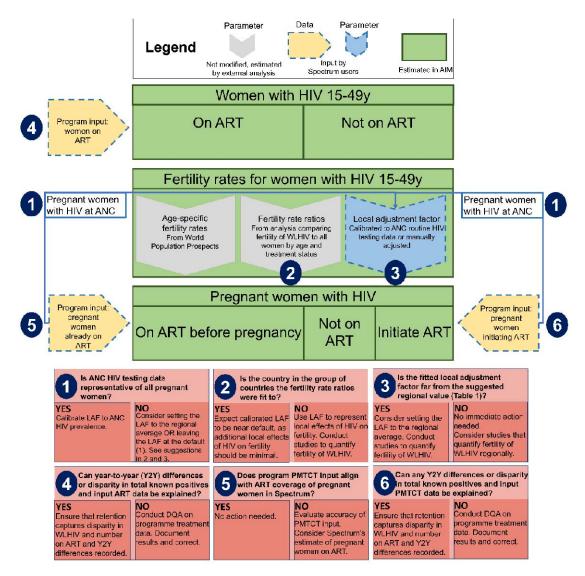
371

372

373

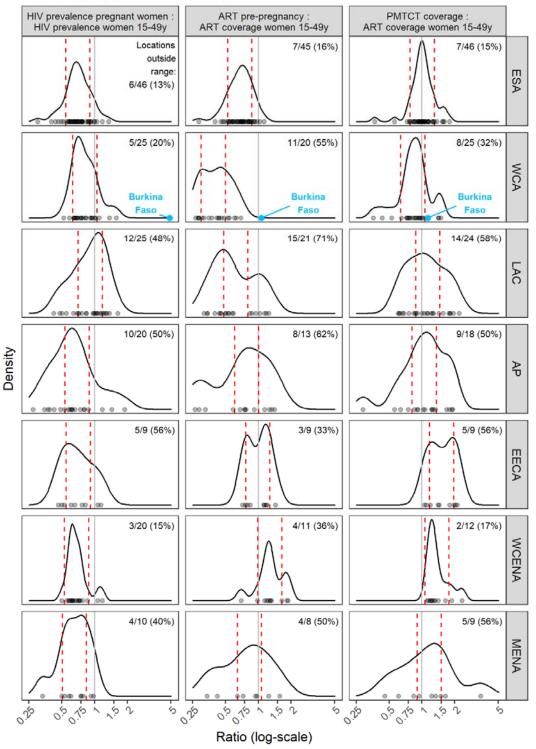
Table 1. Typical ranges of prevalence ratios (defined as HIV prevalence among pregnant women to HIV prevalence among women 15-49y), ART pre-pregnancy (defined as ART coverage among PWLHIV at first ANC to ART coverage among WLIHV 15-49y), and PMTCT (defined as ART coverage started before or during the pregnancy among PWLHIV to ART coverage among WLHIV 15-49y) ratios

Ratio	UNAIDS Region	Mean (Standard Deviation)	Typical range (0.75 - 1.25x mean)	Typical local adjustment factor ¹
Prevalence	Eastern and southern Africa	0.72 (0.20)	(0.54 - 0.90)	1.02
	Western and central Africa	0.83 (0.24)	(0.62 - 1.04)	1.12
	Latin America and Caribbean	0.95 (0.29)	(0.71 - 1.18)	1.62 ²
	Asia and Pacific	0.73 (0.41)	(0.55 - 0.92)	1.07 ²
	Eastern Europe and central Asia	0.73 (0.24)	(0.55 - 0.91)	1.28 ²
	Western and central Europe and North America	0.70 (0.17)	(0.53 - 0.88)	1.07 ²
	Middle East and northern Africa	0.68 (0.21)	(0.51 - 0.84)	1.08 ²
ART pre- pregnancy coverage	Eastern and southern Africa	0.69 (0.17)	(0.52 - 0.87)	0.99
	Western and central Africa	0.40 (0.16)	(0.30 - 0.50)	1.27
	Latin America and Caribbean	0.67 (0.32)	(0.50 - 0.84)	1.69 ²
	Asia and Pacific	0.81 (0.36)	(0.61 - 1.01)	1.21 ²
	Eastern Europe and central Asia	1.06 (0.25)	(0.79 - 1.32)	1.29 ²
	Western and central Europe and North America	1.22 (0.42)	(0.91 - 1.52)	1.08 ²
	Middle East and northern Africa	0.84 (0.45)	(0.63 - 1.05)	1.37 ²
PMTCT coverage	Eastern and southern Africa	1.04 (0.26)	(0.78 - 1.30)	1.02
	Western and central Africa	0.85 (0.32)	(0.64 - 1.06)	1.19
	Latin America and Caribbean	1.19 (0.48)	(0.89 - 1.48)	2.14 ²
	Asia and Pacific	1.08 (0.55)	(0.81 - 1.35)	1.05 ²
	Eastern Europe and central Asia	1.51 (0.40)	(1.13 - 1.89)	1.61 ²
	Western and central Europe and North America	1.47 (0.49)	(1.10 - 1.84)	1.16 ²
	Middle East and northern Africa	1.34 (0.95)	(1.00 - 1.67)	1.20 ²


¹Method for calculating detailed in section S1 and Table S4 of SDC

²Not calibrated to routine HIV testing done at ANC data

374


375

376

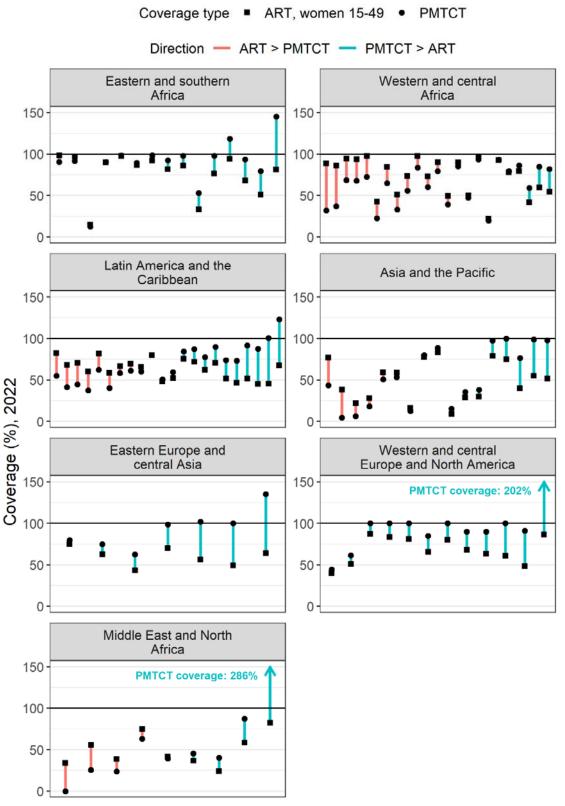


Figure 1. Recommendations to align Spectrum-AIM estimates of HIV prevalence and treatment coverage of pregnant women with regional means.

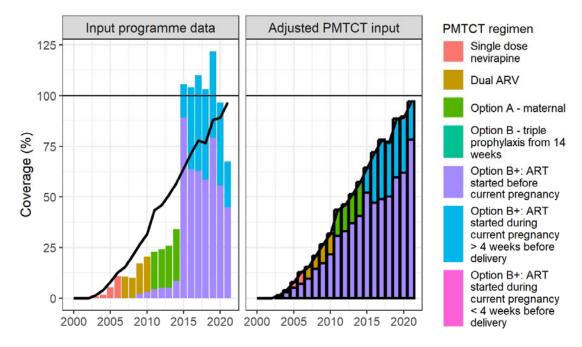

Dotted red lines represent +/- 25% of the regional mean

Figure 2. Prevalence, ART pre-pregnancy, and PMTCT ratio by region. Points on the x-axis represent distribution of ratios for all locations. Red dashed lines represent typical ranges of each ratio by region calculated as 0.75 – 1.25 times the mean value. Curved lines show density of ratios by region, with more common ratios represented as peaks. Multimodal distributions represent within region heterogeneity of ratios, meaning the 'typical' ranges should be interpreted with caution.

Figure 3. Difference between ART coverage among WLHIV 15-49y and ART coverage at delivery in 2022 for all countries analysed (grouped by region). Length of line indicates size of difference for a given country, colour of line indicates whether ART coverage or PMTCT coverage was higher, and shape of dot indicates the type of coverage.

Black line is ART coverage women 15-49y

Figure 4. Adjustment of PMTCT programme data for Burkina Faso, shown as the implied percentage coverage relative to Spectrum-AIM-estimated PWLHIV. Bars show estimated PMTCT coverage by regimen; and the line shows ART coverage among all WLHIV 15-49y for comparison. Left: using original PMTCT programme data; right: adjustment to address outcomes of the alignment assessment (Figure 1), as described in section S2 of SDC, bold outlining indicates a modelled value.

References

397

- 1 Mahy M, Stover J, Kiragu K, *et al.* What will it take to achieve virtual elimination of motherto-child transmission of HIV? An assessment of current progress and future needs. *Sex Transm Infect* 2010; **86**: ii48–55.
- Taylor M, Newman L, Ishikawa N, et al. Elimination of mother-to-child transmission of HIV
 and Syphilis (EMTCT): Process, progress, and program integration. PLOS Med 2017; 14:
 e1002329.
- Thisyakorn U. Elimination of mother-to-child transmission of HIV: lessons learned from success in Thailand. *Paediatr Int Child Health* 2017; **37**: 99–108.
- 4 World Health Organization. Global guidance on criteria and processes for validationelimination of mother-to-child transmission of HIV, syphilis and hepatitis B virus. World Health Organization, 2021 https://www.who.int/publications-detailredirect/9789240039360 (accessed Dec 4, 2023).
- Eaton JW, Brown T, Puckett R, et al. The Estimation and Projection Package Age-Sex
 Model and the r-hybrid model: new tools for estimating HIV incidence trends in sub-Saharan Africa. AIDS Lond Engl 2019; 33: S235.
- Mahiane SG, Eaton JW, Glaubius R, Case KK, Sabin KM, Marsh K. Updates to
 Spectrum's case surveillance and vital registration tool for HIV estimates and projections.
 J Int AIDS Soc 2021; 24: e25777.
- Ghys PD, Brown T, Grassly NC, et al. The UNAIDS Estimation and Projection Package: a
 software package to estimate and project national HIV epidemics. Sex Transm Infect
 2004; 80: i5–9.
- United Nations. World Population Prospects 2022: Summary of Results. United Nations, 2022 DOI:10.18356/9789210014380.
- 9 Lewis JJC, Ronsmans C, Ezeh A, Gregson S. The population impact of HIV on fertility in
 sub-Saharan Africa. AIDS Lond Engl 2004; 18 Suppl 2: S35-43.
- 10 AID Sinfo | UNAIDS. https://aidsinfo.unaids.org/ (accessed March 1, 2023).
- 11 UNAIDS 2023 Report. UNAIDS Glob. Rep. 2023. https://thepath.unaids.org/ (accessed
 Nov 30, 2023).
- 12El Bcheraoui C, Zúñiga-Brenes P, Ríos-Zertuche D, *et al.* Health system strategies to increase HIV screening among pregnant women in Mesoamerica. *Popul Health Metr* 2018; **16**: 5.
- 13 Kendall T. Consequences of Missed Opportunities for HIV Testing during Pregnancy and Delayed Diagnosis for Mexican Women, Children and Male Partners. *PLOS ONE* 2014; **9**: e109912.
- 14Hensen B, Baggaley R, Wong VJ, et al. Universal voluntary HIV testing in antenatal care
 settings: a review of the contribution of provider-initiated testing & counselling. Trop Med
 Int Health 2012; 17: 59–70.

- 15Hone S, Li L, Lee S-J, Comulada WS, Detels R. Progress and Challenges of
- Implementing Decentralized HIV Testing For Prevention of Mother-to-Child Transmission
- of HIV Myanmar. Int J Matern Child Health AIDS 2019; 8: 44–53.
- 438 16Chu D-T, Vo H-L, Tran D-K, *et al.* Socioeconomic Inequalities in the HIV Testing during Antenatal Care in Vietnamese Women. *Int J Environ Res Public Health* 2019; **16**: 3240.
- 17 Pendse R, Gupta S, Yu D, Sarkar S. HIV/AIDS in the South-East Asia region: progress and challenges. *J Virus Erad* 2016; **2**: 1–6.
- 18 Fakoya I, Arco DÁ, Copas AJ, *et al.* Factors Associated With Access to HIV Testing and
 Primary Care Among Migrants Living in Europe: Cross-Sectional Survey. *JMIR Public Health Surveill* 2017; 3: e7741.
- 19 Stover J, Glaubius R, Kassanjee R, Dugdale CM. Updates to the Spectrum/AIM model for
 the UNAIDS 2020 HIV estimates. *J Int AIDS Soc* 2021; 24: e25778.
- 20 Stover J, Glaubius R, Mofenson L, *et al.* Updates to the Spectrum/AIM model for estimating key HIV indicators at national and subnational levels. *AIDS* 2019; **33**: S227.
- 21 Stover J, Glaubius R. Methods and Assumptions for Estimating Key HIV Indicators in the UNAIDS Annual Estimates Process. *JAIDS J Acquir Immune Defic Syndr* 2024; **95**: e5.
- 22The DHS Program HIV Prevalence Surveys. https://www.dhsprogram.com/topics/HIV-Corner/hiv-prev/survey.cfm (accessed June 5, 2023).
- 23 Sachathep K, Radin E, Hladik W, *et al.* Population-based HIV Impact Assessments (PHIA) Survey Methods, Response, and Quality in Zimbabwe, Malawi, and Zambia. *J Acquir Immune Defic Syndr* 1999 2021; **87**: S6–16.
- 24McNairy ML, Teasdale CA, El-Sadr WM, Mave V, Abrams EJ. Mother and Child Both
 Matter: Re-conceptualizing the PMTCT Care Continuum. *Curr Opin HIV AIDS* 2015; 10:
 403–10.
- 25Mmbaga EJ, Leyna GH, Mnyika KS, Klepp K-I. Comparison of HIV-1 prevalence and risk factors between pregnant, non-pregnant, all women and the general population in Tanzania: implications for second-generation surveillance. *Int J STD AIDS* 2009; **20**: 483–8.
- 26Zaba B, Boerma T, White R. Monitoring the AIDS epidemic using HIV prevalence data
 among young women attending antenatal clinics: prospects and problems. *AIDS* 2000;
 14: 1633.
- 27 Ng'ambi WF, Collins JH, Colbourn T, *et al.* Socio-demographic factors associated with
 early antenatal care visits among pregnant women in Malawi: 2004–2016. *PLoS ONE* 2022; 17: e0263650.
- 28 Rurangirwa AA, Mogren I, Nyirazinyoye L, Ntaganira J, Krantz G. Determinants of poor
 utilization of antenatal care services among recently delivered women in Rwanda; a
 population based study. *BMC Pregnancy Childbirth* 2017; 17: 142.
- 29 Awopegba OE, Kalu A, Ahinkorah BO, Seidu A-A, Ajayi Al. Prenatal care coverage and correlates of HIV testing in sub-Saharan Africa: Insight from demographic and health surveys of 16 countries. *PLoS ONE* 2020; **15**: e0242001.

- 30 Ippoliti NB, Nanda G, Wilcher R. Meeting the Reproductive Health Needs of Female Key Populations Affected by HIV in Low- and Middle-Income Countries: A Review of the
- Evidence. Stud Fam Plann 2017; **48**: 121–51.
- 31 Hermez J, Petrak J, Karkouri M, Riedner G. A review of HIV testing and counseling policies and practices in the Eastern Mediterranean Region. *AIDS* 2010; **24**: S25.
- 32 Mishra V. HIV testing in national population-based surveys: experience from the Demographic and Health Surveys. *Bull World Health Organ* 2006; **84**: 537–45.
- 33 Jahun I, Ehoche A, Bamidele M, et al. Evaluation of accuracy and performance of self reported HIV and antiretroviral therapy status in the Nigeria AIDS Indicator and Impact
 Survey (2018). PLoS ONE 2022; 17: e0273748.
- 485 34 Chasimpha SJD, Mclean EM, Dube A, McCormack V, dos-Santos-Silva I, Glynn JR.
 486 Assessing the validity of and factors that influence accurate self-reporting of HIV status
 487 after testing: a population-based study. *AIDS Lond Engl* 2020; **34**: 931–41.
- 35 Kyu HH, Jahagirdar D, Cunningham M, *et al.* Accounting for misclassified and unknown cause of death data in vital registration systems for estimating trends in HIV mortality. *J Int AIDS Soc* 2021; **24 Suppl 5**: e25791.
- 36 Mwase T, Brenner S, Mazalale J, *et al.* Inequities and their determinants in coverage of maternal health services in Burkina Faso. *Int J Equity Health* 2018; **17**: 58.
- 493 37 Tanou M, Kamiya Y. Assessing the impact of geographical access to health facilities on 494 maternal healthcare utilization: evidence from the Burkina Faso demographic and health 495 survey 2010. *BMC Public Health* 2019; **19**: 838.
- 38 Helleringer S. Understanding the Adolescent Gap in HIV Testing Among Clients of
 Antenatal Care Services in West and Central African Countries. *AIDS Behav* 2017; 21:
 2760–73.
- 39 Cernigliaro D, Barrington C, Perez M, Donastorg Y, Kerrigan D. Factors related to fertility desire among female sex workers living with HIV in the Dominican Republic. *BMC Womens Health* 2018; **18**: 117.
- 40 Nattabi B, Li J, Thompson SC, Orach CG, Earnest J. A Systematic Review of Factors
 Influencing Fertility Desires and Intentions Among People Living with HIV/AIDS:
 Implications for Policy and Service Delivery. AIDS Behav 2009; 13: 949–68.
- 41 Jin H, Restar A, Beyrer C. Overview of the epidemiological conditions of HIV among key populations in Africa. *J Int AIDS Soc* 2021; **24**: e25716.
- 42 Mumtaz GR, Chemaitelly H, AlMukdad S, *et al.* Status of the HIV epidemic in key populations in the Middle East and north Africa: knowns and unknowns. *Lancet HIV* 2022; **9**: e506–16.
- 43 Michele Saounde Temgoua E, Nguefeu Nkenfou C, Cecile Zoung-Kanyi Bissek A, *et al.* HIV-1 Early Infant Diagnosis is an Effective Indicator of the Prevention of Mother-to-Child
 Transmission Program Performance: Experience from Cameroon. *Curr HIV Res* 2015; 13:

513 **286–91**.

526

514 44 Domingues RMSM, Saraceni V, Leal M do C. Mother to child transmission of HIV in Brazil: Data from the 'Birth in Brazil study', a national hospital-based study. PLOS ONE 515 2018; 13: e0192985. 516 45 Sirirungsi W, Khamduang W, Collins IJ, et al. Early infant HIV diagnosis and entry to HIV 517 care cascade in Thailand: an observational study. Lancet HIV 2016; 3: e259-65. 518 46 Sibanda EL, Webb K, Fahey CA, et al. Use of data from various sources to evaluate and 519 improve the prevention of mother-to-child transmission of HIV programme in Zimbabwe: a 520 data integration exercise. J Int AIDS Soc 2020; 23: e25524. 521 47 Reniers G, Eaton J. Refusal bias in HIV prevalence estimates from nationally 522 representative seroprevalence surveys. AIDS Lond Engl 2009; 23: 621–9. 523 48 Saito S, Howard AA, Chege D, et al. Monitoring quality at scale: implementing quality 524 assurance in a diverse, multicountry HIV program. AIDS Lond Engl 2015; 29: S129-36. 525