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Abstract
Artificial intelligence (AI) holds promise for improving breast cancer screening, but many challenges
remain in implementing AI tools in clinical screening services. AI readers compare favourably against
individual human radiologists in detecting breast cancer in population screening programs. However,
single AI or human readers cannot perform at the level of multi-reader systems such as those used in
Australia, Sweden, the UK, and other countries. The implementation of AI readers in mammographic
screening programs therefore demands integration of AI readers in multi-reader systems featuring
collaboration between humans and AI. Successful integration of AI readers demands a better
understanding of possible models of human-AI collaboration and exploration of the range of possible
outcomes engendered by the effects on human readers of interacting with AI readers. Here, we used a
large, high-quality retrospective mammography dataset from Victoria, Australia to conduct detailed
simulations of five plausible AI-integrated screening pathways. We compared the performance of these
AI-integrated pathways against the baseline standard-of-care “two reader plus third arbitration”
system used in Australia. We examined the influence of positive, neutral, and negative human-AI
interaction effects of varying strength to explore possibilities for upside, automation bias, and
downside risk of human-AI collaboration. Replacing the second reader or allowing the AI reader to
make high confidence decisions can improve upon the standard of care screening outcomes by
1.9–2.5% in sensitivity and up to 0.6% in specificity (with 4.6–10.9% reduction in the number of
assessments and 48–80.7% reduction in the number of reads). Automation bias degrades performance
in multi-reader settings but improves it for single-readers. Using an AI reader to triage between single
and multi-reader pathways can improve performance given positive human-AI interaction. This study
provides insight into feasible approaches for implementing human-AI collaboration in population
mammographic screening, incorporating human-AI interaction effects. Our study provides evidence to
support the urgent assessment of AI-integrated screening pathways with prospective studies to
validate real-world performance and open routes to clinical adoption.
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Introduction
Breast cancer is the world’s most common cancer and a leading cause of cancer death in women
[1]. Each year, approximately one million Australian women are screened under the BreastScreen
Australia program [2], and there are challenges in accuracy, service experience, and time and cost
efficiency. In 2020, approximately 59 per 10,000 participants were diagnosed with breast cancer and 16
per 10,000 participants were diagnosed with Ductal Carcinoma In Situ (DCIS) [2]. Despite a process
of independent double reading of all mammograms by radiologists, and a third arbitration read when
there is discordance (henceforth called “two reader with arbitration system”), in 2020 approximately
368 per 10,000 participants were recalled for assessment and later determined not to have breast
cancer (false positive). Also, approximately 18.6 per 10,000 participants aged 50-74 years (2015-2017)
subsequently discovered they had an “interval” breast cancer before their next scheduled screen after
receiving an “all clear” result (false negative) [2].

Using artificial intelligence (AI) to help read mammograms has the potential to transform breast
cancer screening by addressing the three key challenges of accuracy, client experience, and efficiency [2].
The evidence base for AI readers in breast cancer screening has been growing rapidly in recent years,
with studies demonstrating the potential of AI to detect breast cancer on mammographic images with
a similar accuracy to radiologists [3–11] and addressing key limitations of earlier concern [12]. Many of
these studies evaluate the integration of AI into screening pathways via simulation, and they vary in
the way human readers interact with the AI, where the AI is positioned in the screening pathway, and
the specific screening pathway being simulated. This includes the complete replacement of current
diagnosis pathways by an AI system [8, 13], using the AI as a decision referral system to diagnose low
risk non-cancer cases without human intervention, while referring mid- and high-risk cases to human
readers [14–16], or using a recall threshold to divide the cases into human review (mid-risk) and direct
recall of (high-risk) suspicious cases [17]. Another option is to use AI in multiple positions in the
pathway: first to rule out a percentage of the non-cancer cases without human intervention, then to
rule in cases to supplemental imaging after being cleared by a double reading and consensus pathway
[18]. Finally, in a double reading and consensus pathway, one of the human readers can be replaced by
the AI to study the performance of the system before and after replacement [16, 19].

Previous studies have primarily focused on evaluating the feasibility and effectiveness of incorpo-
rating AI into existing screening pathways [5, 16, 17, 19–21]. These studies have shown promising
results, often in terms of improved diagnostic accuracy and reduced workload, but they have been
limited in the number of scenarios they evaluate [5, 17, 20] and typically avoid (statistically) simulating
the arbitration read [19, 21] or any direct human-AI interaction [16]. Testing cohorts are not always
representative or don’t have interval cancer follow-up and operating points are not always set on a
separate dataset [12]. They are also primarily using commercial algorithms [16, 17, 19–21], which vary
between studies and are assessed on different datasets, thereby precluding direct comparisons of the
AI readers’ effectiveness as well as the viability of various AI integrated scenarios. There is a need
for more in-depth analysis of where and how AI is best positioned within the screening pathway to
maximise its benefits. This includes examining whether AI should be used as a primary screening
tool, to assist radiologists in decision-making, or in a triage capacity to prioritize cases. An ongoing
randomised controlled trial in Sweden [20], which has reported a positive interim safety milestone,
has limited retrospective analysis of the reading pathway under test, in part due to its reliance on
human-AI interaction. As human readers are likely to remain central to the decision making process,
with concerns over the impacts of automation on radiologist performance over the short and long term
[22], it is crucial to evaluate the potential impacts of human-AI interaction.

Here, we conducted detailed simulation studies incorporating human-AI interaction effects along
with reader-level analysis of AI integrated screening scenarios using our retrospective testing cohort
comprising data from over 90,000 screening clients in Victoria, Australia and over 600,000 mammogram
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images. Our simulations address limitations of previous work to gain insight into the performance
of AI readers in collaboration with human readers and gain clinically-relevant guidance for the
implementation of AI readers in screening programs. We used the BRAIx AI Reader (v3.0.7), a
mammography classification model developed by the BRAIx research program based on an ensemble of
open-source, image-based deep learning neural networks, trained on millions of screening mammograms
and benchmarked on public datasets.

We analyse and compare five AI integrated screening pathways with the current standard of care,
progressing from AI standalone, where AI has full autonomy in reading mammograms, to collaborative
models like AI single-reader and AI reader-replacement, blending AI support with human expertise,
and advanced integration methods like the AI band-pass and AI triage, which selectively engage AI in
high-confidence tasks or pre-screening to direct workflow, aiming to increase screening accuracy and
reduce the workload of human readers. The comparison of AI scenarios highlights how the effectiveness
of AI integration varies across different screening pathways and roles. Uniquely, our simulation studies
investigate possibilities for positive, neutral, and negative influence of AI integration on human reader
performance for each of the five AI scenarios, deeply exploring the space of benefits and risks with AI
integration.

We use our large, representative screening population alongside rich reader data to carefully
simulate reader behaviour (especially that of the third reader in arbitration situations) and human-AI
interaction to provide actionable information relevant to current directions for AI implementation
[20], improve on previous efforts [14–16, 18, 19, 21], and offer insights into the optimal use of AI in
enhancing screening outcomes.

Results

Study design
We evaluated the AI reader on a representative, population screening dataset collected from women
who attended the BreastScreen Victoria program from 2016-2019 in Victoria, Australia. The screening
program targets women aged 50-74 and typically collects four 2D mammograms for each client (left
and right mediolateral oblique, MLO, and craniocaudal, CC) every two years. Each mammogram is
read independently by two breast imaging radiologists and a third if there is disagreement (two reader
with arbitration) who has access to the outputs of the first two readers. Readers flag clients for recall
for further assessment if they detect indications of breast cancer or return a no recall decision (“all
clear”) if not (Fig. 1). The comparison between human readers and the AI reader was performed at
the screening episode level with the positive class defined as screen-detected cancers (biopsy-confirmed
cancer at assessment within 6 months) and interval cancers (clients who develop breast cancer between
six months after a screen and the date of their next screen), and the negative class defined as any
client who does not develop cancer within the screening interval (12 or 24 months). We summarised
reader and system performance on the test set with area under the receiver operating characteristic
(ROC) curve (AUC), and sensitivity and specificity of cancer detection decisions at specific operating
points.

With detailed simulation studies, we compare the standard of care (two human readers with
arbitration; Fig. 1A) to five AI-integrated screening pathways. We examine the AI reader as a
standalone reader (AI standalone; Fig. 1B), as a reader aid for a single reader (AI single-reader;
Fig. 1C), as a replacement for the second reader in a two reader with arbitration pathway (AI reader-
replacement; Fig. 1D), as a filter for high confidence recall and no-recall decisions (AI band-pass;
Fig. 1E), and as making a triage decision between a single reader and a two reader with arbitration
pathway (AI triage, Fig. 1F). In the simulations our baseline reference point for system performance is
the observed standard of care results from the original reads, with arbitration reads simulated from
historical reader performance when needed. For each AI-integrated scenario we vary the AI reader
operating points to identify settings for optimal performance. We then select candidate operating
points for each scenario and vary the human reader performance by modelling an interaction effect
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of the AI reader on human readers. We simulate these interaction effects by changing human reader
decisions to agree with the AI reader (varying the proportion between 0% and 50%) when the AI reader
is correct (positive interaction), incorrect (negative interaction), and uniformly (neutral interaction,
typically referred to as “automation bias”). More details on the datasets, screening scenarios, and the
simulation design can be found in the Methods.

AI as a standalone reader
We first evaluate the AI reader in the standalone scenario, assessing its performance when it replaces
all human readers in the standard of care. The AI standalone scenario achieved an AUC of 0.932
(95% CI 0.923, 0.940) when evaluated on the retrospective test set (Fig. 2A). The AI standalone
operating point achieved higher performance than the mean of individual radiologists (weighted by
number of reads), in both sensitivity (75.0% vs. 66.3%; 𝑃 < 4.11 × 10−8) and specificity (96.0% vs.
95.6%; 𝑃 < 1.11 × 10−9). However, operating as a sole reader the AI reader had lower sensitivity (75.0%
vs. 79.8%; 𝑃 < 1.98 × 10−5) at non-inferior specificity (96.0% vs. 96.0%: 𝑃 = 0.56) than the current
standard of care (two readers with arbitration; Supplementary Table 3).

To better understand how the AI reader ranked amongst the reading cohort, we compared the AI
reader against all individual readers in the first or second reader position with at least 1,000 reads and
found that with well-chosen operating points the AI reader could achieve higher sensitivity and/or
specificity than 74 out of 81 human readers (see Fig. 2B and C). When compared with the third
readers on the third read cohort, the AI reader performance was found to be lower than that of the
mean third reader (Supplementary Fig. 2). This result supports the use of the AI reader only in the
first or second position, as we will explore in the other scenarios.

A key observation on AI reader performance was that the AI standalone scenario ROC curve was
above that of the current standard of care for first round episodes (that is, the first time a client
attended the screening service) and above the weighted mean reader for second and subsequent rounds
(Supplementary Fig. 3). Further comparisons were performed across other breakdowns including age,
manufacturer, and radiologist morphology labels (Supplementary Fig. 4; Supplementary Fig. 5). We
also investigated the AI reader scores by outcome class label and found the top 10% of scores contained
92.7% of screen-detected cancers and 42.2% of interval cancers (81.8% of all cancers; Supplementary
Table 1). Additionally, we benchmarked our AI reader on external datasets (some publicly available)
achieving state-of-the-art performance (Supplementary Table 2).

Overall, the AI reader was a strong individual reader, outperforming individual readers on average.
The first round screening results highlight the strength of the AI readers when limited additional
information is available (specifically, prior screens or other reader opinions), while the third reader
and second and subsequent round analysis shows how the human readers are able to make use of the
additional information to improve performance. The AI standalone scenario did not outperform the
standard of care but could offer improvement in single-reader settings.

AI-integrated scenarios without human-AI interaction effects
Integrating the AI reader within a multi-reader pathway offers a more practical and clinically viable
option than AI as a standalone reader, with multiple prospective trials underway globally [20, 23, 24].
We conduct detailed simulation studies of the AI reader-replacement, AI band-pass, and AI triage
scenarios compared against the current standard of care in breast cancer screening in Australia, two
independent readers with arbitration (Fig. 1; Methods). In this section, we vary only the AI reader
operating points and simulate arbitration reads as required based on historical performance (Methods).
For the AI band-pass and AI triage scenarios we assume the human readers are blinded to AI reader
outputs and in the AI reader-replacement scenario the first reader is also assumed to be blinded.

The AI reader-replacement scenario produced higher system sensitivity (82.3%; 95% CI 81.5–83.1,
𝑃 < 0.0025) and higher specificity (96.3%; 95% CI 96.2–96.3, 𝑃 < 4.3 × 10−6) than the current standard
of care system (Fig. 3A; Supplementary Table 4). Across 149,105 screening episodes in our retrospective
testing set, the AI reader-replacement scenario had 354 fewer unnecessary recalls (-6%, false positives)
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Episodes

Reader 1

Reader 2

Reader 3

Recall

No Recall

A Standard of care

Episodes AI Reader

Recall

No Recall

B AI standalone

Episodes AI Reader Reader 1

Recall

No Recall

C AI single-reader

Episodes

Reader 1

AI Reader

Reader 3

Recall

No Recall

D AI reader-replacement

Episodes AI Reader

Reader 1

Reader 2

Reader 3

Recall

No Recall

E AI band-pass

Episodes AI Reader

Reader 1

Reader 2

Reader 1

Reader 3

Recall

No Recall

F AI triage

Figure 1. Screening episode flows for the current reader system and AI integration scenarios. (A) Standard of
care scenario: Readers 1 and 2 see the same episode and opt to recall or not-recall, if they disagree Reader 3
arbitrates. (B) AI standalone scenario: all decisions are taken by the AI Reader without human intervention.
(C) AI single-reader scenario: Reader 1 takes the final decision using AI Reader input. (D) AI
reader-replacement: same as (A) but with AI Reader replacing Reader 2. (E) AI band-pass scenario: AI Reader
screens out episodes before Readers 1 and 2. Episodes with high scores trigger the recall decision directly, and
episodes with low scores trigger the no-recall decision directly. The other episodes continue to the usual reader
system. (F) AI triage scenario: AI reader triages the episodes before Readers 1 and 2. Episodes with high
scores continue to the usual system, and episodes with low scores go through the path with only 1 reader.
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Figure 2. Performance of the AI reader on retrospective cohort. (A) The AI reader ROC curve compared with
the weighted mean individual reader and reader consensus for 149,105 screening episodes. The AI reader
achieved an AUC of 0.932 (95% CI 0.923, 0.940) above the weighted mean individual reader performance
(95.6% specificity, 66.7% sensitivity) but below the reader consensus performance (96.1% specificity, 79.8%
sensitivity; standard of care). The weighted mean individual reader (black circle) is the mean sensitivity and
specificity of all the individual readers (grey circles; 125 readers) weighted by their respective total number of
reads. (B) and (C) AI reader compared against 81 individual readers (min. 1,000 reads). An optimal point
from each AI reader ROC curve is shown for each comparison. We show separately human readers for which
both sensitivity and specificity of the AI reader point was greater than or equal to the reader (B; 74 readers,
91.3% of readers; 253,328 reads, 88.3% of reads) and readers for which the AI reader is less than or equal to the
human reader in either sensitivity or specificity (C; 7 readers, 8.6%; 33,525 reads, 11.7%).

and detected 33 more cancers (+3.1%, true positives) with a reduction of 147,959 human reads (-48%),
but required 11.6% more third (arbitration) reads (Table 1; Supplementary Fig. 6). The modelled
reading and assessment cost reduction was 15%.

The AI band-pass screening scenario also achieved both higher system sensitivity (81.7%, 𝑃 < 0.0058)
and specificity (96.6%, 𝑃 < 2.2 × 10−25) than the current standard of care system (Fig. 3A). The AI
band-pass screening scenario had 779 fewer unnecessary recalls (-13.3%) and detected 25 more cancers
(+2.4%) with a reduction of 248,638 human reads (-80.7%), while also providing a 67.9% reduction in
third reads (Table 1; Supplementary Fig. 7). The modelled reading and assessment cost reduction was
28.3%.

The AI triage screening scenario, without modelled AI-human interaction, produced lower sensitivity
(77.2%) and specificity (95.7%) than the current reader system (Fig. 3A). Using an operating point to
shift 90% of reads to a single-reader pathway, the AI triage screening scenario had 425 more unnecessary
recalls (+7.3%) and detected 35 fewer cancers (-3.3%) with a reduction of 141,799 human reads (-46%),
including a 77.0% reduction in third reads (Table 1; Supplementary Fig. 7). The modelled reading
and assessment cost reduction was 7.5%. This result is expected as AI triage allocates a proportion of
reads to a single-reader pathway, which will always result in reduced performance in the absence of
human-AI interaction.

Both the AI reader-replacement and AI band-pass scenarios offer opportunities for improved
performance relative to the current standard of care across different operating points, with AI reader-
replacement achieving the highest reduction in missed cancers (-12.4%) and the AI band-pass having
the highest reduction in unnecessary recalls (-13.3%). The AI triage scenario offers good performance
with a large workload reduction while maintaining a human decision maker for all episodes (which
AI band-pass lacks). These retrospective simulations do not take into account the change in cancer
prevalence [25] that both AI band-pass and AI triage would have on the episodes diverted to different
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Figure 3. Comparison of AI integrated scenarios. (A) Human reader consensus performance compared with AI
standalone, AI reader-replacement, AI band-pass, and AI triage on the retrospective cohort (149,105 screening
episodes). Representative points are shown for AI standalone (96.0% specificity, 75.0% sensitivity), AI single
reader (95.6% specificity, 67.3% sensitivity), AI reader-replacement (96.3% specificity, 82.3% sensitivity), AI
band-pass (96.6%, 81.7%) and AI triage (95.7% specificity, 78.0% sensitivity). Other potential operating points
are shown as a continuous line. Both AI reader-replacement and AI band-pass improved performance over the
human reader consensus (96.1% specificity, 79.8% sensitivity). (B) AI integrated scenarios when reader
performance is varied with an interaction effect when the human reader disagrees with the AI reader. From 0%
to 50% of discordant decisions are reversed when the AI reader was correct (triangle, positive effect), uniformly
(circle, neutral effect) and incorrect (diamond, negative effect). For AI triage to match human reader consensus
performance a 15% positive interaction effect of the AI reader on human readers is required.

pathways nor do they consider the potential positive and negative impacts of human readers having
access to AI reader outputs. Human-AI interaction effects are explored in the next section.

AI-integrated scenarios with human-AI interaction
We present three types of human-AI interaction by considering neutral, positive, and negative
interactions in the AI integrated scenarios. In the AI reader-replacement scenario the interaction
affects the arbitration reader only. Conversely, in the AI band-pass and AI triage scenarios, the
interaction affects all readers. In the AI single-reader scenario, human-AI interaction affects the single
reader operating with decision support.

In all cases, we are modelling an effect of human readers revising their decision when in disagreement
with the AI reader. We vary the degree of how often the human reader revises their decision upon
disagreement, ranging from 0 to 1, where 0 refers to the human reader never revising their decision
and 1 refers to the human reader always revising their decision to agree with the AI (and 0.5 would
refer to the human reader revising the decision 50% of the time). In the special case where the human
reader changes their decisions to agree with AI fully, the collaboration between human reader and
AI reader would collapse to the AI standalone scenario. For all scenarios, we use the AI standalone
operating point when considering disagreement.

The neutral human-AI interaction case, in which a reader will be inclined to agree with the AI
model irrespective of the correctness of its outcome, models a general form of “automation bias”.
Automation bias is the tendency of humans to overly agree or rely on an automated system (the AI
reader in our case) [26]. The positive human-AI interaction case refers to the human reader changing
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Variable Current reader system AI reader-replacement AI band-pass AI triage

Sensitivity (%) 79.8 82.3 (81.5, 83.1) 81.7 77.2
Specificity (%) 96.0 96.3 (96.2, 96.3) 96.6 95.7

No. of episodes 149105 149105 149105 149105
True positive 1061 1094 (+3.1%) 1086 (+2.4%) 1026 (-3.3%)
True negative 141915 142269 (+0.2%) 142694 (+0.5%) 141490 (-0.3%)
False positive 5861 5507 (-6%) 5082 (-13.3%) 6286 (+7.3%)
False negative 268 235 (-12.4%) 243 (-9.3%) 303 (+13.1%)

Workload
Assessments 6922 6602 (-4.6%) 6168 (-10.9%) 7312 (+5.6%)
Human reads 308091 160132 (-48%) 59453 (-80.7%) 166292 (-46%)
*Third reads 9881 11027 (+11.6%) 3173 (-67.9%) 2276 (-77%)

*The third reads are part of the human reads. The separate entry is presented to show the workload impact on the third reader.

Table 1. Comparison of the current reader system and the AI-integrated scenarios by the screening outcomes
and workload. For the AI reader replacement scenario, mean values based on 1000 simulations are presented
(rounded to the nearest integer, and the 95% confidence intervals (CI) are presented for the sensitivity and
specificity). The AI band-pass and AI triage scenarios do not require simulating the third reader, and the
results are entirely based on the real data (i.e., no CI). Percentages in the brackets with the plus / minus sign
indicate the percentage change compared with the current reader system.

their decision to agree with the AI reader only when the AI reader is correct, simulating human readers
accurately discriminating between useful and spurious AI reader outputs. The negative case refers to
the human reader changing their decision only when the AI reader is incorrect.

AI reader-replacement
In the AI reader-replacement scenario, assuming positive human-AI interaction, AI improves the
system’s specificity but has minimal impact on sensitivity (the green triangles in Fig. 3B). This is
because the AI reader operates with higher specificity (96.0%) and lower sensitivity (75.0%) compared
to the third reader (56.3%, 97.5%). At this operating point, AI only correctly identifies a few cases of
cancer missed by human readers, and human readers do not benefit much from it. Conversely, in the
negative scenario, as Reader 3 is highly sensitive and AI is highly specific, agreeing with AI leads to a
substantial loss of sensitivity but not specificity. With negative interaction, Reader 3 is more prone to
overlooking cancer cases rather than misidentifying normal cases when learning from the AI reader.

In the neutral case, agreeing with the AI would gradually reduce the multi-reader system to a one-
reader system, where the decision is solely driven by the AI reader. As a result, the performance would
tend towards the AI standalone scenario at (75.0%, 96.0%). Nevertheless, in the AI reader-replacement
scenario roughly 30% or more of discordant decisions would need to be reversed in the neutral and
negative interaction cases for system sensitivity to drop below that of the current standard of care
(reader consensus). In other words, the AI reader-replacement scenario, without interaction effects, is
so effective that human readers could accept up to 30% of the AI’s mistakes before its performance
falls below the standard of care, making it substantially robust to the downside risks of human-AI
interaction.

AI band-pass
For the band-pass scenario with positive human-AI interaction effect, AI improves on specificity and
sensitivity, more so than in the AI reader-replacement scenario because all three readers may benefit
from AI outputs. In the negative case, the opposite is true if human reader performance suffers due to
the mistakes made by AI. The sensitivity decreases significantly, with most of the contribution coming
from Reader 3. The specificity also decreases slightly but remains at approximately 96%. In general,
the AI reader tends to return more false negatives than false positives due to its high specificity.
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In the neutral case, agreeing with AI would gradually lead to the collapse of the mid-band two-
reader-and-consensus system into the AI standalone scenario. As the interaction effect increases, the
sensitivity and specificity of the band-pass scenario will approach that of the AI standalone scenario.
But unlike the AI reader-replacement scenario, the transition may not be complete, as the high-band
and low-band paths continue to function, even if they only contain a limited number of episodes.

AI triage
The AI triage scenario shows the widest range in performance of the multi-reader scenarios, depending
on the nature of the human-AI interaction. When there is a positive interaction, AI triage would
achieve the baseline consensus (standard of care) performance when humans benefit from the AI’s
ability to correct 15% of the decisions in cases of disagreement. The potential benefits are substantial:
if all human readers adopt 50% of the AI’s corrections, the sensitivity could increase by 5.3 percentage
points compared to the baseline where there is no interaction between humans and AI. This would
result in a performance that exceeds the baseline standard of care in terms of sensitivity by 3.4
percentage points, while also operating at 97.7% specificity. In the negative interaction case, however,
the potential downside is significant. The sensitivity can quickly drop by 5.6 percentage points to
about 73.1% (6.7 percentage points lower than baseline standard of care) and the specificity can drop
to 93.5% when human readers follow the mistakes made by the AI reader. In the neutral case, agreeing
with the AI reader does not change the performance significantly, and so performance remains a little
below standard of care in both sensitivity and sensitivity.

The performance of the AI triage scenario presents large variations when subject to positive or
negative interactions, because human readers are responsible for all the recall decisions, while the
AI merely supports them. When the AI offers beneficial assistance, the entire scenario improves as
all readers gain from it. Conversely, if the assistance is negative, the scenario worsens in a similar
way. In the neutral case, the scenario does not improve because we know from the AI standalone
case that the AI reader is tuned to match the reader at about the same specificity but with much
improved sensitivity. However, the one-reader pathway contains all the low-scoring and mostly normal
episodes, so improved sensitivity does not have an effect. And since the three-reader pathway has high
sensitivity, the AI assistance does not detect more cancers. In this case, triage is not as susceptible to
automation bias, as agreeing with AI would not harm the system’s performance.

The AI triage scenario provides a distinct contrast to the AI reader-replacement scenario. The
positive and negative interactions have less impact in the AI reader-replacement scenario than in the
triage scenario, because the interaction applies to fewer human readers. Also, the AI reader serves two
roles in the reader-replacement scenario: as a screening tool, where it improves the system beyond the
consensus performance, and as a diagnosis assistive tool. Since it has already delivered most benefits
as a screening tool, the additional improvements from its role as an assistive tool are relatively minor.
The triage scenario, on the other hand, receives the impact of human-AI interaction for all human
readers and the structure of the pathway means that the AI has strong effects both as a screening tool
and as an assistive tool.

AI single-reader
In the AI single-reader scenario, with positive interaction correcting up to 50% of the original decisions,
the system can achieve a sensitivity of 74.6%, on par with the AI standalone, but with an additional
1.6% improvement in specificity (Fig. 3B). For the negative interaction case, with up to 50% of the
discordant decisions turning into errors, the sensitivity and specificity decrease to approximately 62.6%
and 93.9% respectively. There are more gains than losses in this scenario, because disagreements occur
more frequently when AI is correct than when it is wrong. In the neutral case, as the human reader
increasingly agrees with the AI reader, the performance tends towards the AI standalone scenario.
The automation bias turns out to be favourable here, because the AI reader outperforms the average
reader by a sizable margin, and in a one-reader pathway this directly translates to an improved system
performance. Across all scenarios, a single-reader AI system is unable to match the performance of a
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multi-reader system when it comes to screening outcomes. However, using AI significantly narrows the
gap between the single-reader system and the two-reader-and-consensus system, making a compelling
case for consideration in settings limited to single-reader screening pathways.

Discussion
In this study we used detailed simulations to evaluate how an AI reader for breast cancer detection
could perform in different single- and multi-reader settings in population mammographic screening. We
explored positive, neutral, and negative human-AI interaction effects and identified the major upside
and downside possibilities for four AI-integration scenarios depending on the nature and strength of
the interaction effects. The AI reader used was a strong individual reader trained on the ADMANI
training datasets [27], with its performance assessed on a carefully selected and unseen ADMANI
testing dataset. This AI reader achieved significantly higher sensitivity (+8.3%) and specificity than
the weighted mean individual human reader, and better performance than 91% of individual human
readers in our retrospective testing dataset. ă

The AI standalone reader’s high performance and minimal running cost (it is fully automated so
eliminates costs associated with human readers) make a compelling case for its use in settings that
follow single-reader screening practices. Many countries currently implement single-reader screening,
whether for reasons of historical choices to prioritise cost and operational efficieny, as in the United
States, or because the resources have not been available to establish a multi-reader screening pathway
integrated into healthcare systems, as in many other countries. In such settings, AI readers could
play an important role in improving screening system performance while minimising costs. However,
despite the AI reader’s impressive performance as a single reader, as a standalone system the AI reader
cannot match the performance of the current standard of care (two readers with arbitration) used in
Australia and many other countries including Sweden and the UK.

This performance gap necessitates some human-AI collaboration to improve screening outcomes
[28] and, furthermore, practical, social, and legal considerations encourage retaining the human central
to the decision making process [22]. We observe that the AI reader can outperform human readers
in the first/second position, but not in the third reader role. This observation suggests that there
is a preferred position for the AI reader to maximise its advantages relative to human readers: it
should serve in a more “junior” role where its excellent specificity optimises the performance of the
whole screening pathway. Relatedly, the AI reader works extremely well for first-round screening,
outperforming the standard of care in this study dataset.

We studied four collaborative AI-integrated scenarios for the screening pathway: AI single-reader,
AI reader-replacement, AI band-pass, and AI triage. Without any human-AI interaction effects,
both AI reader-replacement and AI band-pass demonstrated significantly superior sensitivity and
specificity compared to the standard-of-care two reader with arbitration system. Interestingly, these two
approaches achieve this superior performance with different characteristics. The AI reader-replacement
system gains most from reducing missed cancers (false negatives), while the AI band-pass system gains
most from limiting unnecessary recalls to assessment (false positives). Both the AI single-reader and
AI triage systems demonstrate lower performance than the standard of care and other multi-reader
AI-integrated systems. However, if we assume that positive human-AI interaction yields a 15%
improvement in human reader decision making, then AI triage can match the current standard of
care. Furthermore, the AI triage system has the highest possible upside if there are strong positive
human-AI interaction effects. Interim results from the ongoing MASAI trial provide evidence that
positive human-AI interaction is plausible [20]. For the AI single-reader, the superior performance of
the AI reader over human readers provides a safety net, leading to improved performance even with
neutral reliance on the AI reader. The relative gains from the use of AI are greater in the single-reader
pathway than in the multi-reader pathways thanks to the strong performance of the AI reader as
a single reader relative to single human readers. The gap between the single-reader pathway and
multi-reader pathways is almost halved when AI is used in both.

The four AI-integrated scenarios present differing considerations when it comes to implementation
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and clinical application. AI reader-replacement is conceptually straight-forward and is the least
disruptive to the reader system as it retains a human decision maker for all episodes. As the overall
reader structure is unchanged, every episode must have at least one human reader, the cancer prevalence
for the first reader remains the same, and only the third reader can view AI outputs. The limited
exposure of readers to the AI reader outputs mitigates the risks of negative human-AI interaction,
but also limits the upside of positive human-AI interaction. The AI band-pass scenario offers perhaps
the greatest potential for tuning the pathway, allowing for improved performance while minimising
radiologist workload. However, having an AI reader make the final reading decision, without human
involvement, faces challenges before clinical adoption. Concerns relating to bias, quality assurance,
and medico-legal responsibility would need to be addressed [22]. With strong performance, the AI
reader-replacement and AI triage systems seem most promising for clinical implementation as their
“human-in-the-loop, human-in-charge” architectures minimise barriers to their adoption.

Our study features limitations based on constraints on what is feasible in complex simulations
using a retrospective cohort, and other factors and considerations beyond the scope of this study.
Here, we did not account for potential effects of a change in cancer prevalence that readers in both AI
triage and AI band-pass will experience. We also consider positive, neutral, and negative human-AI
interaction effects in isolation, and only for a single AI reader operating point. Human readers are
also likely to modulate their decisions based on scores or other supporting information, which we did
not consider. Alongside prospective studies and further development of the datasets, translation into
screening programs will require, or be aided by, other programs of work not covered in this study,
including: (1) Development of approaches to algorithm quality assurance to assess bias and drift
on an ongoing basis; (2) Deeper examination of AI explainability for client and clinician, and their
acceptance of AI reader false negatives and positives; (3) Further development of algorithms to focus
on interval cancers (false negatives); (4) Utilising AI to predict short-, medium- and long-term breast
cancer risk and to support personalized screening pathways. AI reader performance may be improved
by integrating a longitudinal view of episodes for a given client over multiple screening rounds, taking
advantage of information from prior screens as human readers do.

Taken together, we have shown, on a large retrospective dataset under different scenarios and
conditions, how an AI reader can be integrated into breast cancer screening programs to improve
cancer detection, minimise unnecessary recall to assessment, and lower human reader workload and
cost. Our work extends previous research by simulating arbitration reads and human-AI interaction, as
well as conducting thorough analysis and comparison across various AI integrated screening pathways
using a common large retrospective dataset and AI system. Our results provide insights on optimising
breast cancer screening outcomes through AI positioning and pathway design. Overall, our simulation
results provide evidence that supports the prospective evaluation of the AI integration pathways
studied here and offers plausible approaches to clinical implementation of AI readers in breast cancer
screening in the near future.
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Methods

Inclusion and ethics
The conceptualisation, design, and implementation of this study was conducted with close collaboration
between clinical staff working in the organised population breast screening service in Victoria, Australia
and local academic researchers. Ethics approval for this study was provided by the St Vincent’s
Hospital, Melbourne human research ethics committee (approval no. LNR/18/SVHM/162). All women
sign a consent form at screening registration that provides for the use of the de-identified data for
research purposes. A unique identifier is used for the purposes of the ADMANI datasets, with all
image and non-image data de-identified.

Screening program
The BreastScreen Victoria screening program is a population screening program open to women aged
40+ with those between the ages 50–74 actively recruited. A typical BreastScreen Victoria client
has a mammogram taken with a minimum of four standard mammographic views (left and right
mediolateral oblique, MLO, and craniocaudal, CC) every two years. Annual screening is offered to a
small proportion of high-risk clients (<2%).

Every client undergoing screening through BreastScreen Victoria experiences a standardised
screening pathway and data generation process (Supplementary Fig. 8). Each mammogram is read
independently by two breast imaging radiologists who indicate suspicion of cancer, all clear, or technical
rescreen. If there is disagreement a third reader, with visibility of the original two readers’ decisions,
determines the final reading outcome. Clients with a suspicion of cancer are recalled for assessment. At
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assessment, further clinical workup and imaging is performed. Any client who has a biopsy-confirmed
cancer at assessment (within six months of screening) is classified as a screen-detected cancer (true
positive). Any clients who are recalled but confirmed with no cancer after follow-up assessments
are classified as either benign or no significant abnormality (false positive). Clients who were not
recalled at reading and do not develop breast cancer within the next screening interval are classified
as normal (true negative). Clients who develop breast cancer between six months after a screen and
the date of their next screen (12 or 24 months) are classified as interval cancers (false negative). The
datasets we use are structured around individual screening episodes of clients attending BreastScreen
Victoria. A screening episode is defined as a single screening round that includes mammography,
reading, assessment, and the subsequent screening interval.
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Screening episodes collected
from BreastScreen Vic-
toria from 2013 to 2019

(n=1,086,359)

Episodes excluded for: earlier
screening attempt, failed outcome
determination, failed outcome
reduction, missing reader records
or inconsistent recall status.
(n=5,513)

Episodes excluded for: image du-
plicated across client or study,
unable to decode image, no lat-
erality information, inconsistent
screening date, episode contains
less than 4 images or episode does
not contain standard views.
(n=3,137)

Episodes excluded for: missing
image or non-image data.
(n=30,058)

Episodes excluded for: develop-
ment and test data from incom-
plete screening years (2013-2015).
(n=8,622)

Screening episodes
used in study
(n=1,039,728)

Training
(n=840,827,

clients=506,068)

Development
(n=49,796,

clients=30,946)

Test
(n=149,105,

clients=92,839)

Figure 4. Screening episode exclusion criteria. Flow diagram of study exclusion criteria for screening episodes
from the standardised screening pathway at BreastScreen Victoria. Missing data could be clinical data without
mammograms or mammograms without clinical data, clinical data could also be incomplete missing assessment,
reader or screening records. ’Earlier screening attempt’ refers to a client returning for imaging as part of the
same screening round, only the last attempt was used. ’Failed outcome determination’ and ’failed outcome
reduction’ refer to being unable to confirm final screening outcome for the episode. ’Missing reader records’
refers to missing reader data. ’inconsistent recall status’ refers to conflicting data sources on whether episodes
was recalled. ’Incomplete screening years’ refers to years in which we did not have the full year of data to
sample from (2013-2015), these years were excluded from testing and development datasets as they are not
representative.

Study Datasets
The datasets used in this study were derived from the ADMANI datasets [27]. The ADMANI datasets
comprise of 2D screening mammograms with associated clinical data collected from 46 permanent
screening clinics and two mobile services across the state of Victoria, Australia. The entire datasets
span 2013-2019, 2013-2015 were cancer enriched samples and not used for testing, 2016-2019 were
complete screening years containing all episodes. Screening episodes that were missing any of the
standard mammographic views (left and right MLO and CC), had incomplete image or clinical data,
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were were excluded (Fig. 4). If a screening episode had multiple screening attempts only the final
attempt was used. Clients with breast implants or other medical devices were included. After exclusions
a random 20% sample of all screening clients who attended between 2016-2019 were used in the study,
the remaining 80% of clients were used in model training and development. The study dataset was
further split into testing (75% of clients in study) and a development dataset (25% of clients in study)
on which operating points were set. The testing dataset comprised 149,105 screening episodes from
92,839 clients and the development dataset 49,796 screening episodes from 30,946 clients (Table 2).

The study dataset has strong ground truths for all cancer (screen detected and interval) and
non-cancer (normal, benign, or no significant abnormality (NSA) with no interval cancer). Cancer
was confirmed by histopathology for screen-detected cancers or obtained from cancer registries for
interval cancers. The histopathological proof was predominantly from an assessment biopsy confirmed
with subsequent surgery. The ground truth for clients without cancer was a non-cancer outcome after
reading and no interval cancer (normal) or non-cancer outcome after assessment and no interval cancer
(benign or NSA). Information on country of birth, whether or not the client identifies as Aboriginal
and/or Torres Strait Islander, and age was collected at the time of screening. Responses for country of
birth and Aboriginal and/or Torres Strait Islander identification were aggregated into categories of
First Nations Australians and regions.

Separately to the retrospective analysis a prospective dataset was collected from December 2021
to May 2022. Data was collected in real-time (daily) from a single reading and assessment unit
(St Vincent’s Breastscreen, Melbourne, Australia) using two mammography machine manufacturers
from December 2021 to May 2022. The prospective dataset contains the same ground truth and
demographic information with the exception of interval cancer data as it was not yet available at the
time of publication. The prospective dataset consisted of a total of 25,848 episodes and 108,654 images
from 25,848 clients with a total of 195 screen-detected cancers (Supplementary Table 5).

AI Reader System
For this study we used the BRAIx AI Reader (v3.0.7), a mammography classification model developed
by the BRAIx research program. The model is based on an ensemble of modern deep learning neural
networks and trained on millions of screening mammograms. We studied and created an ensemble from
ResNet [29], DenseNet [30], ECA-Net [31], EfficientNet [32], Inception [33], Xception [34], ConvNext
[35], and four model architectures developed specifically for our problem, including two multi-view
models that use two mammographic views of the same breast concurrently [36], and two single-image
interpretable models that provide improved prediction localisation and interpretability [37]. Each
model from the ensemble was implemented in PyTorch [38] and trained on data splits from the training
set. The models were trained for 10-20 epochs using the Adam optimiser [39] with an initial learning
rate of 10−5, with weight decay of 10−6, and with the AMSGrad variant enabled [40]. The training set
was selected to have about 10:1 ratio for non-cancers (benign, no significant abnormality and normal)
and screen-detected cancers, respectively. To enforce a specific ratio, not necessarily all the available
non-cancer images in the dataset are used during training of the models. Images were pre-processed to
remove text and background annotations outside the breast region, then cropped and padded to keep
the same height-to-width ratio of 2:1. Data augmentation consisted of random affine transformations
[41].

The AI reader is image-based and produces a score associated with the probability of malignancy
for each image. Image scores are combined to produce a score for each breast and the maximum breast
score is the episode score. Decision thresholds convert each episode (or breast) scores to a recall or
no-recall decision. There are no minimum number of images required. Elliptical region-of-interest
annotations are produced from the pixels that contribute most to the classification score and multiple
regions are ranked by importance (Supplementary Fig. 9). The reader has been evaluated on publicly
available international datasets and achieved state-of-the-art performance (Supplementary Table 2).
The distribution of episode scores from the study dataset, useful for inter study comparisons, are also
available (Supplementary Table 1).

Frazer et al. 2024 | Comparison of AI-integrated pathways for population mammographic screening medR𝜒iv | 18 of 22

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 31, 2024. ; https://doi.org/10.1101/2022.11.23.22282646doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.23.22282646
http://creativecommons.org/licenses/by-nc-nd/4.0/


Simulation design, operating points and evaluation metrics
To provide insights into the AI reader and its potential in clinical application, we performed retrospective
simulation studies, where we evaluated the AI reader performance as a standalone reader and in three
AI-integrated screening scenarios.

AI-integrated screening scenarios
Five scenarios were considered to evaluate the AI reader integrated in the screening pathway, AI
standalone, AI single-reader, AI reader-replacement, AI band-pass, and AI triage. In the one-reader
pathway, the reader makes a decision on all episodes, and the decision is final. This includes the AI
standalone and the AI single-reader scenarios. In the two-reader-and-consensus pathway the first two
readers individually make a decision on whether or not to recall the client for further assessment. If
the two readers agree, that is the final reading outcome. If they disagree, a third reader, who has
access to the first two readers’ decisions and image annotations, arbitrates the decision. This pathway
includes AI reader-replacement, AI band-pass and AI triage scenarios.

In the AI standalone scenario, the AI reader replaces the (only) human reader in the one-reader
pathway and provides the same binary recall or no-recall outcome as the human readers on all episodes.
In the AI single-reader scenario, the AI reader acts as an assistive tool to human readers. It provides
the binary recall or no-recall outcome to the human reader, but it does not make any decision on its
own. The human reader with access to the AI output would first make a decision and then consider
whether to revise its decision should there be disagreement with the AI output.

In the AI reader-replacement scenario, the AI reader replaces one of the first two readers in the
screening pathway and provides the same binary recall or no-recall outcome as the human readers.
The first and second readers are replaced at random (with equal probability) for each episode. As
the AI reader could trigger a third read that did not exist in the original dataset, the third reader
was simulated for all episodes even if an original third read was present. This approach is to prevent
unduly tying the result to the dataset and to obtain better variability estimates. Sensitivity analysis
where the third reader uses the real data when possible and where the replaced second reader is used
as the third reader was also performed (Supplementary Table 6). The third reader in our retrospective
cohort operated with a sensitivity of 97.5% and a specificity of 56.3% and we simulated the third
reader with respect to this performance. Concretely, whenever an episode reaches the simulated third
reader, the reader will make a recall decision by first inspecting the actual episode outcome and then
using it as prediction 97.5% of the time if the outcome is cancer (and 2.5% of the time using the
opposite case as prediction), or 56.3% if the outcome is normal. This is achieved by sampling from
the uniform(0,1) distribution with the corresponding probability, and it ensures that the simulated
performance matches the real-world performance. Confidence intervals were generated through 1000
repetitions of each simulation.

As a remark, we emphasise that the simulation of the third reader should be performed with
reference to the real-world Reader 3, rather than by reusing data of the earlier replaced readers (e.g.
Reader 1 or Reader 2) [19, 21]. Reusing data is convenient, as the replaced readers have seen all
the episodes and it avoids the simulation of the third reader. However, this overlooks the fact that
while Reader 1 and 2 make independent judgements, they are conditionally dependent. In simple
terms, a difficult cancer case is difficult for any reader. In such cases, the two readers would frequently
miss together even when they make independent judgement, and the overall sensitivity would drop
if either of them is used as an arbiter. In general, Reader 3 (the arbiter) makes decisions differently
than Readers 1 and 2 because Reader 3 has access to their decisions and analyses. If Readers 1 and
2 were used in place of Reader 3 for simulation, then the result would be distorted, as we see in
Supplementary Table 6.

In the AI band-pass scenario, the AI reader was used analogously to a band-pass filter. The AI
reader provided one of three outcomes: recall, pass, and no-recall. All episodes with recall outcome
were automatically recalled. All episodes with the no-recall outcome were not recalled. All episodes
with the pass outcome were sent to the usual human screening pathway. The AI reader made the final
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decision on the recall and no-recall episodes with no human reader involvement, and for all episodes
that passed to the human screening pathway the original reader decisions were used.

In the AI triage scenario, the AI reader triages the episodes before the human readers. Episodes
with high scores continue to the standard pathway, and episodes with low scores go through the
pathway with only 1 reader. For episodes sent to the standard pathway, the original reader decisions
were used, and for episodes sent to the single-reader path, the reader decision is sampled randomly
(with equal probability) from the first and second readers. The AI reader made no final decision on
any of the episodes.

AI operating points
Three sets of operating points were used as part of the study: the AI reader-replacement reader, the
AI band-pass reader and the AI triage reader. There are three sets for five scenarios because the AI
standalone reader and the AI single reader uses the same operating point as the AI reader-replacement
reader. All operating points were set on the development set (Supplementary Fig. 1).

The AI reader-replacement operating point used a set of manufacturer-specific thresholds to convert
the prediction scores into a binary outcome: recall or no-recall. The operating point was chosen to
improve on the weighted mean individual reader’s sensitivity and specificity. The weighted mean
individual reader was the weighted (by number of reads) mean of the sensitivity and specificity of the
individual (first and second) radiologists when they were operating as a first or second reader. For all
operating points that improved on the weighted mean individual readers sensitivity and specificity the
point with the maximum Youden’s index [42] was chosen.

The AI band-pass reader used two sets of manufacturer-specific thresholds to convert the prediction
scores into three outcomes: recall, pass and no-recall. The AI band-pass simulation was evaluated
at different AI reader thresholds via a grid search. At each evaluation, two thresholds for each
manufacturer were set to a target high specificity and high sensitivity point. All episodes with a
score above the high sensitivity point were given the recall outcome, all episodes below the high
specificity point the no-recall outcome, and all episodes in between points were given the pass outcome.
The final AI band-pass reader thresholds were chosen from the simulation result with the maximum
Youden’s index of the points with non-inferior sensitivity and specificity than that of the two reader
with arbitration system.

The AI triage reader used the 90% quantile of the prediction scores as the threshold to convert the
prediction scores into the triage outcome: the standard pathway or the one-reader pathway. Episodes
with prediction scores less than the threshold are assigned to the one-reader pathway; otherwise, they
are assigned to the standard pathway.

When there is interaction between the AI reader and the human reader, i.e., human may revise their
decision based on the AI output, the AI reader in all cases uses the reader-replacement operating point
(which is also the standalone operating point). To clarify, taking AI triage scenario as an example,
the AI triage reader uses the triage operating point to decide whether a episode should go to the
standard pathway or the one-reader pathway. Once that is decided and the episode reaches any reader,
the reader would have access to an AI assist reading tool that operates at the reader-replacement
operating point. So overall, there would be two operating points functioning at the same time.

Human-AI interaction
We simulate three interaction effects, the positive, the neutral and the negative effect. All three
interactions involve an AI reader and a human reader. The AI reader first makes a decision about
recall (using the assistive operating point), and then the human reader makes their decision with
access to the AI output. The human may adjust their decisions if they differ from the AI’s, and this
happens (100 × 𝑝)% of the time, where 𝑝 is a parameter that varies between 0 and 1 across multiple
simulations. For example, when 𝑝 = 0.1, human readers will adjust the decision 10% of the time when
their decisions differ from the AI, and when 𝑝 = 1, human readers will change all their decision to
align with the AI. This models the automation effect, which we refer to as the neutral interaction.
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For positive interactions, the human readers would only adjust the decision if the AI is correct.
This models the situation where AI enhances human readings by reducing occasional misses and
assisting in complex cases. And for negative interactions, the human readers would change the decision
only if the AI is incorrect. This models the situation where human is confused by the AI reader’s
output and mistakenly changes their correct decision into an incorrect one.

Evaluation metrics
The AUC, based on the receiver operating characteristic or ROC curve, is used to summarise the AI
reader’s standalone performance.

Sensitivity and specificity are used to compare the AI reader with the radiologists and the AI-
integrated screening scenarios with the current screening pathway. Sensitivity, or the true positive rate
(TPR), is computed by dividing the number of correctly identified cancers (the “true positives”) by
the total number of the observed cancers (“all positives”, i.e., including both screen-detected cancers
and interval cancers). It measures the success rate of the classifier in detecting the cancer. This is a
key performance metric because early detection of cancer leads to more effective treatment [43], due
to a timely intervention, requirement for a less aggressive treatment, and improved survival rates.
Specificity, or the true negative rate (TNR), is computed by dividing the number of correctly identified
non-cancer episodes (“true negatives”) by the total number of the observed non-cancer episodes (“all
negatives”). It measures the success rate of the classifier in correctly not recalling a client when cancer
is absent in the client. This is a key performance metric because unnecessarily recalling clients to
assessment center is costly and induces significant stress on clients and their families [44].

To compare the sensitivity and specificity of the AI-integrated screening scenarios with the current
screening pathway, McNemar’s test (with continuity correction to improve the approximation of
binomial distribution by the chi-squared distribution) is used to test for differences [45], and the
binomial exact test (one-sided) is used to test for superiority. Both tests adhere to the correct design
for McNemar’s test, in which a 2-by-2 contingency table is constructed based on the paired samples
from the two comparison scenarios. The samples are paired by the episode ID, and the tests are
conducted once for each of the sensitivity and specificity [46, 47] at a significance level of 5%.

Frazer et al. 2024 | Comparison of AI-integrated pathways for population mammographic screening medR𝜒iv | 21 of 22

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 31, 2024. ; https://doi.org/10.1101/2022.11.23.22282646doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.23.22282646
http://creativecommons.org/licenses/by-nc-nd/4.0/


No. of episodes Test Development All

Age group
40 to 49 11,873 3,874 15,747
50 to 59 58,835 19,596 78,431
60 to 69 54,491 18,284 72,775
70 to 74 19,482 6,574 26,056
75+ 4,424 1,468 5,892

Screening round
1 19,374 6,474 25,848
2+ 129,731 43,322 173,053

Manufacturer
A 54,507 18,398 72,905
B 34,765 11,491 46,256
C 24,278 8,118 32,396
D 16,702 5,560 22,262
E 16,435 5,425 21,860
Other 2,418 804 3,222

Country of birth
Australia 97,880 32,841 130,721
United Kingdom 9,666 3,133 12,799
Vietnam 3,579 1,182 4,761
Italy 3,340 1,145 4,485
Other 34,640 11,495 46,135

Risk category
None 34,325 11,499 45,824
Average 102,098 34,077 136,175
Moderate 7,588 2,532 10,120
High 5,094 1,688 6,782

Personal history of breast cancer
Yes 683 250 933
No 148,422 49,546 197,968

Recalled for assessment 6,871 2,253 9,124

Screening outcome
Screen-detected cancer 1,042 316 1,358
Interval cancer 287 100 387
Normal 141,968 47,449 189,417
Benign 3,018 983 4,001
No significant abnormality 2,790 948 3,738

Total 149,105 49,796 198,901

Table 2. Summary and characteristics of data used in the study.
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