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Freesurfer measurements
Cortical reconstruction and volumetric segmentation was performed with the Freesurfer image analysis suite, which is documented and freely available for download online (http://surfer.nmr.mgh.harvard.edu/). The technical details of these procedures are described in prior publications (Dale et al., 1999; Dale and Sereno, 1993; Fischl and Dale, 2000; Fischl et al., 2001; Fischl et al., 2002; Fischl et al., 2004a; Fischl et al., 1999a; Fischl et al., 1999b; Fischl et al., 2004b; Han et al., 2006; Jovicich et al., 2006; Segonne et al., 2004, Reuter et al. 2010, Reuter et al. 2012). Briefly, this processing includes motion correction and averaging (Reuter et al. 2010) of multiple volumetric T1 weighted images (when more than one is available), removal of non-brain tissue using a hybrid watershed/surface deformation procedure (Segonne et al., 2004), automated Talairach transformation, segmentation of the subcortical white matter and deep gray matter volumetric structures (including hippocampus, amygdala, caudate, putamen, ventricles) (Fischl et al., 2002; Fischl et al., 2004a) intensity normalization (Sled et al., 1998), tessellation of the gray matter white matter boundary, automated topology correction (Fischl et al., 2001; Segonne et al., 2007), and surface deformation following intensity gradients to optimally place the gray/white and gray/cerebrospinal fluid borders at the location where the greatest shift in intensity defines the transition to the other tissue class (Dale et al., 1999; Dale and Sereno, 1993; Fischl and Dale, 2000). Once the cortical models are complete, a number of deformable procedures can be performed for further data processing and analysis including surface inflation (Fischl et al., 1999a), registration to a spherical atlas which is based on individual cortical folding patterns to match cortical geometry across subjects (Fischl et al., 1999b), parcellation of the cerebral cortex into units with respect to gyral and sulcal structure (Desikan et al., 2006; Fischl et al., 2004b), and creation of a variety of surface based data including maps of curvature and sulcal depth. This method uses both intensity and continuity information from the entire three dimensional MR volume in segmentation and deformation procedures to produce representations of cortical thickness, calculated as the closest distance from the gray/white boundary to the gray/CSF boundary at each vertex on the tessellated surface (Fischl and Dale, 2000). The maps are created using spatial intensity gradients across tissue classes and are therefore not simply reliant on absolute signal intensity. The maps produced are not restricted to the voxel resolution of the original data thus are capable of detecting submillimeter differences between groups. Procedures for the measurement of cortical thickness have been validated against histological analysis (Rosas et al., 2002) and manual measurements (Kuperberg et al., 2003; Salat et al., 2004). Freesurfer morphometric procedures have been demonstrated to show good test-retest reliability across scanner manufacturers and across field strengths (Han et al., 2006; Reuter et al., 2012).
Aseg Atlas Information
The aseg atlas is built from 40 subjects acquired using the same mp-rage sequence (by people at Wash U ages ago in collaboration with Randy Buckner). The subjects that make up the atlas are distributed in 4 groups of 10 subjects each: (1) young, (2) middle aged, (3) healthy older adults, (4) older adults with AD.
Image acquisition
T1, T2, FLAIR and T2* weighted (GRE) imaging sequences, without contrast, were performed across 3-tesla field strength Siemens, Philips, and GE scanners using standardized protocols as previously described (Jack et al., 2010; Weiner et al., 2017).  

Quantification of medial temporal lobe volume
Volumetric T1 weighted MRI images were processed using the FreeSurfer Image Analysis Suite. Freesurfer was used for cortical reconstruction and volumetric segmentation using the 2010 Desikan-Killany atlas (Desikan et al., 2006).  Before being modified by the FreeSurfer program, T1 weighted images, in NiFTI format were pre-processed by the Mayo Clinic.  MTL volume was determined using a high-resolution coronal T2 MRI sequence.  Cortical reconstruction and volume reconstruction were performed with Freesurfer.

Quantification of white matter hyperintensities
White matter hyperintensity (WMH) volumes were determined by using a segmentation of the high-resolution 3D T1 and FLAIR sequences. Using an automated atlas, non-brain structures were removed from the 3DT1 images, the corresponding FLAIR image transformed to the image and the 3D T1 image aligned as previously described (Decarli et al., 1996; Fletcher et al., 2012). Estimation of WMH was performed using a modified probability structure, with probability likelihoods of WMH in each voxel generated and a binary WMH mask back transformed to calculate tissue volume (DeCarli et al., 1999).  

Quantification of cerebral microbleeds
Cerebral microbleeds (CMBs) were defined as focal hypodensities visible in T2* GRE images.  Location was determined based on corresponding T1-weighted images. CMBs were confirmed as “definite” or “probable” based upon context across multiple images, then classified based on location as superficial (lobar cortical and cerebellar regions) and deep (subcortical, periventricular white matter and brainstem regions) as previously described (Charidimou et al., 2022).  

Quantification of infarcts
Infarcts were determined by a physician specifically trained in interpretation of MRI.  Infarct size, location and other imaging characteristics were recorded and confirmed by cross-checking against CSF density on T1 sequences and distinct separation from vessels in certain areas of the brain as previously described (DeCarli et al., 2005).  Only lesions equal to or greater than 3mm in size were considered cerebral infarcts for this analysis.

Positron emission tomography
18F-Florbetaben and 18F-Florbetapir Aβ-PET imaging was conducted under the respective ADNI protocols. Scan parameters for 18F-Florbetaben consisted of: 300 MBq (8.1 mCi); four 5-minute frames acquired 90 minutes post-injection. Scan parameters for 18F-Florbetapir consisted of: 370 MBq (10.0 mCi); four 5-minute frames acquired 50 minutes post-injection) (Royse et al., 2021). PET scans were co-registered to the MRI closest in time, and mean tracer uptake within an MRI-defined cortical summary region (frontal, anterior/posterior cingulate, lateral parietal, lateral temporal) and reference region (whole cerebellum).  Tracer intensity in the cortical summary region was divided by the reference region and expressed as a Standard Uptake Value Ratio (SUVR).  Aβ-PET positivity was defined as SUVR> 1.11 and SUVR > 1.08 for florbetapir and florebetapen, respectively (Landau et al., 2014, 2013).  For quantitative comparisons, SUVR was transformed to a standardized centiloid scale as previously described (Royse et al., 2021). 

	Supplementary Table 1: Extended demographics and clinical characteristics

	Characteristic
	Overall, N = 1,3521
	Aβ-, N = 6791
	Aβ+, N = 6731

	Age, years
	72 (7)
	71 (7)
	73 (7)

	    Unknown
	3
	0
	3

	Sex, male
	674 (50%)
	342 (50%)
	332 (49%)

	Education, years
	16.39 (2.50)
	16.62 (2.38)
	16.15 (2.60)

	APOE4, alleles
	
	
	

	    0
	751 (56%)
	516 (77%)
	235 (35%)

	    1
	467 (35%)
	139 (21%)
	328 (49%)

	    2
	116 (8.7%)
	11 (1.7%)
	105 (16%)

	    Unknown
	18
	13
	5

	MoCA, score
	23.4 (4.4)
	24.9 (3.3)
	22.0 (4.8)

	    Unknown
	25
	10
	15

	MTLv, normalized (log)
	-4.25 (0.12)
	-4.22 (0.10)
	-4.29 (0.13)

	    Unknown
	176
	88
	88

	WMHv, normalized (log)
	-6.34 (1.39)
	-6.68 (1.36)
	-6.00 (1.34)

	    Unknown
	12
	7
	5

	CMBs, present
	
	
	

	    Any location (1+)
	363 (27%)
	148 (22%)
	215 (32%)

	    Superficial (1+)
	301 (22%)
	111 (17%)
	190 (28%)

	    Deep (1+)
	95 (7.1%)
	40 (6.0%)
	55 (8.2%)

	    Unknown
	11
	7
	4

	Infarct, present (1+)
	94 (8.1%)
	42 (7.3%)
	52 (8.8%)

	    Unknown
	192
	107
	85

	Clinical diagnosis
	
	
	

	    Cognitively normal
	611 (45%)
	413 (61%)
	198 (29%)

	    Mild cognitive impairment
	531 (39%)
	237 (35%)
	294 (44%)

	    Dementia
	210 (16%)
	29 (4.3%)
	181 (27%)

	Aβ-PET burden, centiloids
	37 (42)
	3 (10)
	72 (34)

	1 n (%); Mean (SD); Median (IQR)


















	Supplementary Table 2: Nested model components

	Model 1 (Base)
	Model 2 (Base + MTLv1)
	Model 3 (Base + MTLv1 + CVD2)

	Age
	Age
	Age

	Sex
	Sex
	Sex

	APOE4
	APOE4
	APOE4

	MoCA
	MoCA
	MoCA

	-
	MTLv
	MTLv

	-
	-
	WMHv

	-
	-
	Superficial CMBs

	-
	-
	Deep CMBs

	-
	-
	Ischemic infarction

	1MTLv refers to the mean volume of the medial temporal lobes, normalized to whole brain volume and expressed as a log-transformed value.
2Cerebrovascular disease (CVD) variables includes white matter hyperintensity volume (WMHv), cerebral microbleeds (CMBs) and ischemic infarction.  WMHv was normalized to whole brain volume and expressed as a log-transformed value.  Based on atlas location, CMBs were divided into superficial (occurring in cortical and cerebellar areas) and deep (occurring in subcortical, periventricular and brainstem areas).  


























	Supplementary Table 3: Adjusted odds ratios for nested models

	 
	Model 1 (Base)
	Model 2 (Base + MTL)
	Model 3 (Base + MTL + CVD)

	Characteristic
	OR1
	95% CI2
	p-value
	OR1
	95% CI2
	p-value
	OR1
	95% CI2
	p-value

	Overall Cohort

	Age, years
	1.08
	1.07, 1.08
	<0.001
	1.07
	1.06, 1.08
	<0.001
	1.05
	1.04, 1.06
	<0.001

	Sex, male
	0.67
	0.62, 0.73
	<0.001
	0.66
	0.60, 0.71
	<0.001
	0.66
	0.60, 0.71
	<0.001

	APOE4, alleles
	5.70
	5.29, 6.15
	<0.001
	5.63
	5.22, 6.08
	<0.001
	5.66
	5.24, 6.11
	<0.001

	MoCA, score
	0.86
	0.85, 0.87
	<0.001
	0.89
	0.88, 0.90
	<0.001
	0.89
	0.88, 0.90
	<0.001

	MTLv, normalized (log)
	-
	-
	-
	0.10
	0.07, 0.15
	<0.001
	0.12
	0.08, 0.17
	<0.001

	WMHv, normalized (log)
	-
	-
	-
	-
	-
	-
	1.25
	1.20, 1.29
	<0.001

	CMBs, superficial (1+)
	-
	-
	-
	-
	-
	-
	1.45
	1.31, 1.61
	<0.001

	CMBs, deep (1+)
	-
	-
	-
	-
	-
	-
	0.88
	0.74, 1.04
	0.120

	Infarction (1+)
	-
	-
	-
	-
	-
	-
	1.01
	0.89, 1.15
	0.900

	CU Cohort

	Age, years
	1.11
	1.10, 1.12
	<0.001
	1.11
	1.10, 1.12
	<0.001
	1.09
	1.08, 1.10
	<0.001

	Sex, male
	0.58
	0.51, 0.65
	<0.001
	0.57
	0.51, 0.65
	<0.001
	0.57
	0.50, 0.65
	<0.001

	APOE4, alleles
	3.91
	3.49, 4.39
	<0.001
	3.91
	3.49, 4.39
	<0.001
	3.98
	3.55, 4.48
	<0.001

	MoCA, score
	0.98
	0.96, 1.00
	0.076
	0.98
	0.96, 1.00
	0.086
	0.98
	0.95, 1.00
	0.074

	MTLv, normalized (log)
	-
	-
	-
	0.80
	0.44, 1.47
	0.500
	1.07
	0.58, 1.99
	0.800

	WMHv, normalized (log)
	-
	-
	-
	-
	-
	-
	1.25
	1.19, 1.31
	<0.001

	CMBs, superficial (1+)
	-
	-
	-
	-
	-
	-
	1.38
	1.18, 1.62
	<0.001

	CMBs, deep (1+)
	-
	-
	-
	-
	-
	-
	0.51
	0.39, 0.66
	<0.001

	Infarction (1+)
	-
	-
	-
	-
	-
	-
	1.31
	1.09, 1.58
	0.005

	MCI Cohort

	Age, years
	1.07
	1.06, 1.08
	<0.001
	1.06
	1.05, 1.07
	<0.001
	1.05
	1.04, 1.06
	<0.001

	Sex, male
	0.79
	0.69, 0.90
	<0.001
	0.77
	0.68, 0.88
	<0.001
	0.79
	0.70, 0.91
	<0.001

	APOE4, alleles
	6.58
	5.86, 7.41
	<0.001
	6.55
	5.83, 7.38
	<0.001
	6.62
	5.88, 7.48
	<0.001

	MoCA, score
	0.93
	0.91, 0.95
	<0.001
	0.94
	0.92, 0.96
	<0.001
	0.95
	0.93, 0.97
	<0.001

	MTLv, normalized (log)
	-
	-
	-
	0.09
	0.05, 0.16
	<0.001
	0.09
	0.05, 0.16
	<0.001

	WMHv, normalized (log)
	-
	-
	-
	-
	-
	-
	1.15
	1.09, 1.21
	<0.001

	CMBs, superficial (1+)
	-
	-
	-
	-
	-
	-
	1.37
	1.17, 1.61
	<0.001

	CMBs, deep (1+)
	-
	-
	-
	-
	-
	-
	1.32
	1.02, 1.72
	0.037

	Infarction (1+)
	-
	-
	-
	-
	-
	-
	0.89
	0.73, 1.08
	0.200

	Dementia Cohort

	Age, years
	1.02
	1.00, 1.03
	0.066
	1.01
	0.99, 1.03
	0.200
	0.99
	0.97, 1.01
	0.200

	Sex, male
	0.26
	0.18, 0.36
	<0.001
	0.23
	0.16, 0.33
	<0.001
	0.20
	0.14, 0.29
	<0.001

	APOE4, alleles
	9.97
	7.45, 13.6
	<0.001
	10.30
	7.65, 14.1
	<0.001
	10.50
	7.73, 14.7
	<0.001

	MoCA, score
	0.89
	0.86, 0.92
	<0.001
	0.92
	0.89, 0.96
	<0.001
	0.93
	0.89, 0.96
	<0.001

	MTLv, normalized (log)
	-
	-
	-
	0.01
	0.00, 0.03
	<0.001
	0.01
	0.00, 0.03
	<0.001

	WMHv, normalized (log)
	-
	-
	-
	-
	-
	-
	1.54
	1.33, 1.79
	<0.001

	CMBs, superficial (1+)
	-
	-
	-
	-
	-
	-
	2.17
	1.46, 3.29
	<0.001

	CMBs, deep (1+)
	-
	-
	-
	-
	-
	-
	2.99
	1.36, 7.33
	0.011

	Infarction (1+)
	-
	-
	-
	-
	-
	-
	1.28
	0.74, 2.28
	0.400

	1 OR = Odds Ratio, 2CI = Confidence Interval
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	Model1
	Nagelkerke R2
	AIC2
	Δ AIC3
	Λ4
	d3 (df)5
	p-value6

	Overall Cohort

	Step 1 (Base)
	.38
	1,425.22
	-
	-
	-
	-

	Step 2 (Base + MTLv)
	.39
	1,413.64
	-11.43
	13.43
	11.33 (1)
	.001

	Step 3 (Base + MTLv + CVD)
	.41
	1,397.46
	-15.78
	23.78
	5.30 (4)
	< .001

	CU Cohort

	Step 1 (Base)
	.21
	677.64
	-
	-
	-
	-

	Step 2 (Base + MTLv)
	.22
	679.52
	1.95
	0.05
	0.05 (1)
	.828

	Step 3 (Base + MTLv + CVD)
	.24
	673.82
	-5.53
	13.53
	3.22 (4)
	.012

	MCI Cohort

	Step 1 (Base)
	.35
	582.71
	-
	-
	-
	-

	Step 2 (Base + MTLv)
	.36
	574.40
	-4.11
	6.11
	5.53 (1)
	.019

	Step 3 (Base + MTLv + CVD)
	.37
	576.41
	+2.28
	5.71
	1.32 (4)
	.261

	Dementia Cohort

	Step 1 (Base)
	.36
	132.24
	-
	-
	-
	-

	Step 2 (Base + MTLv)
	.40
	128.87
	-2.86
	4.86
	3.00 (1)
	.094

	Step 3 (Base + MTLv + CVD)
	.45
	129.14
	0.60
	7.40
	1.68 (4)
	.153

	1Nested regression model for each cohort was developed with forced forward selection of predefined predictor variables; 2Akaike Information Criterion (AIC) for nested model (absolute); 3Change in AIC value from previous step; 4Likelihood Ratio Test (LRT) statistic (λ) for constrained model compared to previous step; 5d3 statistic indicating goodness-of-fit for imputed data, with degrees of freedom (df) for number of added predictors; 6Statistical significance of improvement in nested model goodness-of-fit (d3) compared to previous step, adjusted for between-imputation variance.
















	Supplementary Table 5: Diagnostic performance of nested models at Youden’s cut-off

	Model
	Probability Cutoff
	Accuracy
	Sensitivity
	Specificity

	Overall Cohort

	Step 1 (Base)
	0.48
	73.95%
	72.87%
	75.02%

	Step 2 (Base + MTLv)
	0.47
	74.36%
	74.23%
	74.49%

	Step 3 (Base + MTLv + CVD)
	0.51
	75.34%
	72.01%
	78.65%

	CU Cohort

	Step 1 (Base)
	0.27
	67.1%
	77.78%
	61.99%

	Step 2 (Base + MTLv)
	0.28
	67.09%
	76.72%
	62.47%

	Step 3 (Base + MTLv + CVD)
	0.32
	71.9%
	71.87%
	71.91%

	MCI Cohort

	Step 1 (Base)
	0.61
	73.52%
	66.12%
	82.7%

	Step 2 (Base + MTLv)
	0.66
	73.22%
	62.89%
	86.03%

	Step 3 (Base + MTLv + CVD)
	0.60
	74.76%
	68.03%
	83.12%

	Dementia Cohort

	Step 1 (Base)
	0.88
	76.52%
	73.87%
	93.1%

	Step 2 (Base + MTLv)
	0.90
	73.76%
	70.88%
	91.72%

	Step 3 (Base + MTLv + CVD)
	0.90
	76.95%
	74.81%
	90.34%

	ROC analysis of logistic regression fitted values were used to calculate Youden’s optimal cut-off, deriving the predicted probability of Aβ-PET positivity. Corresponding diagnostic accuracy, sensitivity and specificity is listed.
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Supplementary Figure 1: Diagnostic performance of nested and combined models by cohort.  ROC curves (left) show prediction of Aβ-PET status across cognitive stages.  Addition of CVD-related MRI measures (blue line) improved diagnostic performance in CU participants, while addition of atrophy measures (MTLv) improved performance in MCI participants.  Histograms (right) show distribution of combined model predictions, colored by Aβ-PET status (negative – blue, positive – red), and overlayed with lines denoting specific cut-offs identified by our analysis.  Solid lines (y) represent the Youden index and dashed lines represent cut-offs with 90% sensitivity (se) and specificity (sp).  CU: Cognitively unimpaired (N = 611), MCI: Mild cognitive impairment (N = 531) or DEM: Dementia (N = 210).
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