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Abstract 

Importance: Accurately predicting major bleeding events in non-valvular atrial fibrillation (AF) 

patients on direct oral anticoagulants (DOACs) is crucial for personalized treatment and 

improving patient outcomes, especially with emerging alternatives like left atrial appendage 

closure devices. The left atrial appendage closure devices reduce stroke risk comparably but with 

significantly fewer non-procedural bleeding events. 

Objective: To evaluate the performance of machine learning (ML) risk models in predicting 

clinically significant bleeding events requiring hospitalization and hemorrhagic stroke in non-

valvular AF patients on DOACs compared to conventional bleeding risk scores (HAS-BLED, 

ORBIT, and ATRIA) at the index visit to a cardiologist for AF management. 

Design: Prognostic modeling with retrospective cohort study design using electronic health 

record (EHR) data, with clinical follow-up at one-, two-, and five-years. 

Setting: University of Pittsburgh Medical Center (UPMC) system. 

Participants: 24,468 non-valvular AF patients aged ≥18 years treated with DOACs, excluding 

those with prior history of significant bleeding, other indications for DOACs, on warfarin or 

contraindicated to DOACs. 

Exposure(s): DOAC therapy for non-valvular AF. 

Main Outcome(s) and Measure(s): The primary endpoint was clinically significant bleeding 

requiring hospitalization within one year of index visit. The models incorporated demographic, 

clinical, and laboratory variables available in the EHR at the index visit. 
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Results: Among 24,468 patients, 553 (2.3%) had bleeding events within one year, 829 (3.5%) 

within two years, and 1,292 (5.8%) within five years of index visit. We evaluated multivariate 

logistic regression and ML models including random forest, classification trees, k-nearest 

neighbor, naive Bayes, and extreme gradient boosting (XGBoost) which modestly outperformed 

HAS-BLED, ATRIA, and ORBIT scores in predicting clinically significant bleeding at 1-year 

follow-up. The best performing model (random forest) showed area under the curve (AUC-ROC) 

0.76 (0.70-0.81), G-Mean score of 0.67, net reclassification index 0.14 compared to 0.57 (0.50-

0.63), G-Mean score of 0.57 for HASBLED score, p-value for difference <0.001. The ML 

models had improved performance compared to conventional risk across time-points of 2-year 

and 5-years and within the subgroup of hemorrhagic stroke. SHAP analysis identified novel risk 

factors including measures from body mass index, cholesterol profile, and insurance type beyond 

those used in conventional risk scores. 

Conclusions and Relevance: Our findings demonstrate the superior performance of ML models 

compared to conventional bleeding risk scores and identify novel risk factors highlighting the 

potential for personalized bleeding risk assessment in AF patients on DOACs. 

Keywords: Atrial fibrillation; Direct oral anticoagulants; Machine learning; Risk prediction; 

Major bleeding; Hemorrhagic stroke; Electronic health records; Left atrial appendage closure; 

Personalized medicine; Comparative effectiveness  
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Introduction  

Non-valvular atrial fibrillation (AF) is the most prevalent cardiac arrhythmia, posing a 

significant public health challenge with an expected prevalence of 12.1 million in the United 

States by 2030 1,2. Current guidelines recommend using the CHA�DS�-VASc score to assess 

stroke risk and suggest direct oral anticoagulants (DOACs) for high-risk patients 3. Recent 

updates expand stroke prevention strategies to include patients with device-detected subclinical 

AF, thereby expanding DOAC indications 4-6. Despite advances, oral anticoagulation is 

associated with annual major bleeding rates of 2%-4%, with case fatality rates of 8%-15% 3,7-10.  

Transcatheter left atrial appendage closure has emerged as a viable alternative for patients 

with non-valvular AF at high thromboembolic risk who are unsuitable for long-term oral 

anticoagulant use 11. These devices offer comparable efficacy in stroke risk reduction and have a 

marked decrease in non-procedural bleeding events (up to 46%) in carefully selected populations 

with high bleeding risk 12. With the advent of such alternatives to DOACs, identifying patients at 

high risk of bleeding on DOACs becomes crucial for early intervention, especially before 

experiencing a sentinel significant bleeding event. 

This study focuses on AF patients managed by cardiologists, as they often handle more 

complex cases, comorbidities, and higher risk profiles, and play a key role in managing DOAC 

therapy. Conventional risk scores used for assessing bleeding risk on anticoagulation have 

limitations when applied to dynamic and heterogeneous real-world patient populations. Registry 

and clinical trial data often fail to capture the complexity of real-world scenarios, where clinical 

decisions must be made with incomplete information, such as missing data on the duration of AF 

before being seen by cardiologists for further management. Consequently, clinical guidelines 

have shifted away from relying solely on bleeding scores, highlighting the need for more 
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comprehensive and accurate risk assessment tools beyond the HAS-BLED 13, ATRIA 14, and 

ORBIT 15 scores.  

Previous studies have explored the use of machine learning (ML) models in predicting 

bleeding risk in AF patients, demonstrating improved performance over conventional scoring 

systems 16,17. However, these studies have limitations, such as relying on registry-based data that 

may not accurately represent the complexity and heterogeneity of real-world clinical practice, 

focusing on broader contexts like predicting bleeding risk from antithrombotic therapy in general 

patient populations, or concentrating only on AF subpopulations 18,19. Moreover, they lack direct 

comparison between ML models and multiple conventional risk scores, with most studies 

comparing ML models to only individual risk scores, such as HAS-BLED 20. Our study aims to 

address this knowledge gap by developing ML models based on real-world electronic health 

record (EHR) data available to cardiologists at the time of the index visit for AF management 

among patients on DOACs and evaluating their performance against the majority of conventional 

risk scores used in clinical practice, including HAS-BLED, ORBIT, and ATRIA scores. 

We hypothesize that ML risk models, using EHR data, can improve bleeding risk 

prediction of a clinically significant major bleeding event necessitating hospitalization among 

AF patients treated with DOACs compared to conventional bleeding risk scores. 
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Methods  

Study Cohort and Design 

This prognostic modeling with retrospective cohort study design, approved by the 

University of Pittsburgh Institutional Review Board, identified patients aged ≥18 years with non-

valvular AF treated with DOACs within the University of Pittsburgh Medical Center (UPMC) 

system between January 1, 2010, and November 30, 2022. By focusing on patients managed by 

cardiologists within a single healthcare system (UPMC), the study ensures more consistent and 

comprehensive data collection through the electronic health records (EHRs). This approach 

enhances the study's relevance and applicability to clinical decision-making in cardiology 

practice, where cardiologists often make decisions about AF management and bleeding risk 

assessment based on the information available at the time of the patient's visit. Patients with no 

follow-up data at 2-year or 5-year follow-up were excluded from analyses at these timepoints 

and censored after the index event. Patients were excluded if they had 1) another indication for 

DOAC (e.g., venous thromboembolism); 2) history of major bleeding event requiring 

hospitalization; 3) on warfarin; 4) received left atrial appendage closure device; and 5) 

contraindication to DOACs (e.g., mechanical heart valve) despite the presence of off-label use in 

clinical practice (Figure 1).  We estimated the clinically significant bleeding risk based on 

clinical data available at the index visit to a cardiologist for management of AF, with clinical 

follow-up at one, two, and five years. The study size of 24,468 patients was deemed sufficient to 

develop and validate the prediction models based on the expected event rate and the number of 

candidate predictors. The study adhered to the TRIPOD+AI guidelines 21.  

Data Collection and Outcomes 
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Clinical and demographic data were extracted from the EHR for patients with varying 

duration of AF, with laboratory and echocardiography parameters within 6 months from the 

index visit to the cardiologist. Follow-up lasted until November 30, 2022, or the first adverse 

event. Patients who died during the follow-up period without experiencing a bleeding event were 

censored at the time of death. The primary endpoint was an incident clinically significant 

bleeding event requiring a hospitalization (including gastrointestinal bleeding and hemorrhagic 

stroke) within one year since index visit, identified through validated administrative diagnosis 

codes (ICD-9 and ICD-10) from the EHR database. Patients were censored after the first 

bleeding event. The secondary endpoints included an incident bleeding event at two and five 

years of follow-up and incident hemorrhagic stroke at one, two and five years of follow-up 

(Supplemental Table 1) 22,23. These codes, listed as one of the top three diagnoses for an 

inpatient admission, captured significant bleeding events and hemorrhagic strokes, as detailed in 

supplementary table 1. The outcome assessment was not blinded, as the bleeding events were 

identified through validated administrative diagnosis codes from the EHR database. 

Candidate Predictors and Machine Learning  

Data preparation involved discarding variables with over 60% missing values to avoid 

bias, and the remaining missing data were imputed with median values for continuous variables 

and mode values for categorical variables, after determining the data were missing completely at 

random (MCAR) using Little’s MCAR test 24 (Supplementary Table 2). New clinically relevant 

variables were generated from data within 6 months of index visit through feature engineering, 

such as mean arterial pressure from systolic and diastolic blood pressure, prediabetes status from 

hemoglobin A1C and diabetes history, and poorly controlled hypertension from systolic blood 

pressure 25. Additionally, multicollinearity and variance inflation (VIF) were assessed 26-28. The 
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final set of variables was selected based on recursive feature elimination 29, multicollinearity 

assessment, and domain expertise to ensure the inclusion of the most robust and informative 

features in model training. We applied commonly used ML algorithms, including multivariate 

logistic regression with L1 (Lasso) and L2 (Ridge) regularization, random forest, extreme 

gradient boosting (XGBoost), classification trees, k-nearest neighbor (KNN), and naïve Bayes 26-

28. The selected ML models all had their strengths and limitations. While multivariate logistic 

regression with L1 and L2 regularization addressed potential overfitting and feature selection, 

random forest and XGBoost leveraged ensemble learning approaches 30. Classification trees 

delivered a transparent, rule-based classification method, and KNN and naïve Bayes were chosen 

for their proficiency in handling nonlinear data patterns 31. SHAP (SHapley Additive 

exPlanations) analysis was conducted for feature importance and model explainability 32. HAS-

BLED, ORBIT, and ATRIA scores were computed for benchmarking.  

Training and Validation 

In this study, we used a stratified splitting to partition the data into a training set (70%) 

and two test sets (15% dataset with low-comorbidities, and 15% random), ensuring that the 

proportion of female sex, and Black race were similar across the datasets to ensure 

generalizability of developed models. This technique is commonly employed with imbalanced 

datasets, where the minority class has considerably fewer instances than others to similar class 

distributions in the training and test sets 33. We employed two test sets: (1) a low comorbid 

population with a low Charlson comorbidity index (< 2) and no major bleeding history, and (2) a 

randomly selected test set mirroring the training data distribution. Different sampling techniques 

(under-sampling and over-sampling) and ratios (1:1, 1:5, 1:10, 1:20) were employed to address 

class imbalance and evaluate their impact on model performance. These techniques were chosen 
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to ensure adequate representation of the minority class (adverse events) during model training 

and to assess the robustness of the ML models under different class distributions 34. A ten-fold 

stratified cross-validation approach was used to ensure robust validation of the model's 

performance 35.  

Performance Measures and Statistical Analysis 

We assessed model performance using the area under the receiver-operator characteristic 

curve (AUC-ROC) and area under the precision-recall curve (AUPRC). Additionally, we 

computed the net reclassification index (NRI) and integrated discrimination improvement (IDI) 

to evaluate the incremental value of the ML models compared to HASBLED score as baseline. 

We computed Brier score and log loss to quantify calibration 36. Calibration curves were also 

plotted to assess the agreement between predicted and observed probabilities. Risk stratification 

curves were plotted to visualize the distribution of predicted risk scores and their corresponding 

observed event rates. Youden's index determined the optimal threshold for dichotomizing the 

model output and to calculate performance metrics, including sensitivity (recall), specificity, 

accuracy, precision (positive predictive value [PPV]), negative predictive value (NPV), F1 score 

(harmonic mean of the precision and recall scores) 17. Due to the anticipated significant class 

imbalance, we evaluated the overall performance of the algorithm using the G-Mean Score 

(geometric mean of sensitivity and specificity) 37,38. The G-mean score provides a balanced 

measure of performance, with higher values indicating better performance in correctly 

identifying both the majority and minority classes, making it particularly useful in imbalanced 

datasets. 

We presented continuous variables as median and interquartile range, and categorical 

variables as frequencies and percentages. Mann-Whitney U test and Chi-square test were used 
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for comparing continuous and categorical variables, respectively, between patients with and 

without an adverse event. The performance of HAS-BLED, ATRIA, and ORBIT risk scores was 

evaluated using identified thresholds for high bleeding risk (>2 for HAS-BLED, >3 for ORBIT, 

and >4 for ATRIA) 39-41. Additionally, low comorbidity and random test sets evaluated the 

model performance across diverse clinical scenarios, providing insights into model robustness. 

The SHAP analysis was performed for insights into the relative importance of features in the 

models' decision-making processes 42. The magnitude and direction of the SHAP values indicate 

the average contribution of each feature to the model's output, with positive and negative values 

signifying the impact on the prediction, thereby facilitating the interpretation of the models' 

underlying logic. Statistical analyses were performed using the Python programming language 

version 3.12.2, with a two-sided p-value of <0.05 considered statistically significant and 

Bonferroni correction applied to mitigate the risk of Type I error across multiple comparisons 43.  
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Results 

Baseline Characteristics 

The study included 24,468 patients (median age 73.1 years, 45% women, 95.4% White) 

followed for up to five years since index visit. The incidence of bleeding events was 2.3%, 3.5%, 

and 5.8% at one, two, and five years, respectively. The incidence of hemorrhagic stroke was 

0.5%, 0.8%, and 1.4% at the same time points. Patients who experienced a bleeding event at one 

year were older, higher proportion of Medicare or Medicaid insurance, higher comorbidity 

burden (including hypertension, prediabetes, coronary artery disease, heart failure, active cancer, 

anemia, peptic ulcer disease, and depression), aspirin use, and valvular diseases (moderate to 

severe mitral regurgitation, and severe aortic stenosis) at the time of index visit (p<0.01 

individually for all) (Table 1).  

The baseline characteristics of the training and random test dataset were similar, with a 

median age of 73, 45% women, 3,4% Black race, and incident bleeding rate of 2.3% at 1-year of 

follow-up. The low-comorbidity test set had similar age, sex, and Black race but lower 

comorbidity burden and incident bleeding rate of 1.9% at 1-year of follow-up. 

Predictive Performance of Machine Learning Models 

In both the low-comorbidity test and random test cohorts, ML risk models demonstrated 

superior performance in discriminative power, overall performance, risk stratification, and 

calibration compared to conventional risk scores (HAS-BLED, ORBIT, and ATRIA) in 

predicting bleeding events at the 1-year follow-up (Table 2, Supplementary Table 3). In the 

low-comorbidity test cohort, the best performing ML model, XGBoost with AUC 0.69 (95% CI 

0.63–0.74; G-Mean score 0.59; NRI 0.11; IDI 0.04, Brier score 0.04, log loss 0.19), 
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outperformed the best performing conventional score HASBLED (AUC 0.54, 0.48-0.60; G-

Mean score 0.53, Brier score 0.32, log loss 11.47), with p-values <0.001 for the individual 

differences (Figure 2, Table 2, Supplementary Table 3).  

Similarly, in the random cohort, the best performing ML model, random forest (AUC 

0.76, 0.70–0.81; G-Mean score 0.67; NRI 0.14; IDI 0.09, Brier score 0.04, log loss 0.21), 

outperformed the best performing conventional risk score HASBLED (AUC 0.57, 0.50–0.63; G-

Mean score 0.57, Brier score 0.45, log loss 16.34), with p-values <0.001 for the individual 

differences (Figure 3, Table 2, Supplementary Table 3).  

To further assess the performance of the ML models and the HASBLED score, 

calibration and risk stratification curves were analyzed (Supplementary Figures 1-3). The 

calibration curves demonstrated overall poor calibration in both test cohorts due to 

underestimation of risk. The predicted probabilities of HASBLED score significantly 

underestimated the actual risk of bleeding events. In contrast, both XGBoost and random forest 

models showed improved calibration, with XGBoost displaying the best alignment between 

predicted and observed probabilities, though some discrepancies were still noted. While all 

calibration results were suboptimal, the ML models still outperformed the HASBLED score. 

Similar results were noted in the risk stratification curves where the overall risk stratification was 

suboptimal for all models in both cohorts, however, the XGBoost and random forest models 

demonstrated better alignment between predicted and observed event rates across risk strata 

compared to HASBLED score. The HASBLED score exhibited substantial underestimation of 

risk, particularly at the higher end of the risk spectrum, indicating poor risk differentiation and 

underestimation of high-risk patients.  
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Other performance metrics including accuracy, F-1 score, AUC-PRC, confusion 

matrices, IDI, Brier score and log loss for all algorithms are available in Supplementary Table 

3. 

Secondary Outcomes 

 The ML models demonstrated superior performance in discriminative power, overall 

performance, risk stratification, and calibration for bleeding events at 2-year and 5-year follow-

up periods including the subgroup with hemorrhagic stroke. At the 2-year follow-up, random 

forest and XGBoost outperformed conventional risk scores, with an AUC-ROC of 0.70 (95% CI, 

0.64-0.76) for XGBoost compared to an AUC-ROC of 0.57 (95% CI, 0.52-0.62) for the best 

performing conventional HASBLED score. Similar findings were observed at the 5-year follow-

up, with random forest and XGBoost as best performing ML models with an AUC-ROC of 0.72 

(95% CI, 0.69-0.77) for random forest model compared to 0.57 (95% CI, 0.53-0.61) for 

HASBLED (Supplementary Table 4). 

For hemorrhagic stroke prediction, at the 1-year follow-up, random forest achieved an 

AUC-ROC of 0.71 (95% CI, 0.60-0.81) while the best-performing conventional score, ORBIT, 

had an AUC-ROC of 0.58 (95% CI, 0.49-0.71). At the 2-year follow-up, XGBoost outperformed 

the conventional scores with an AUC-ROC of 0.74 (95% CI, 0.57-0.88) compared to the best-

performing conventional score, ATRIA, which had an AUC-ROC of 0.51 (95% CI, 0.47-0.59). 

Similarly, at the 5-year follow-up, random forest achieved an AUC-ROC of 0.65 (95% CI, 0.53-

0.77), while the best-performing conventional score, HASBLED, had an AUC-ROC of 0.56 

(95% CI, 0.46-0.66) (Supplementary Table 5). 

Explainability 
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SHAP analysis was applied to random forest and XGBoost models in both low 

comorbidity and random test groups to identify the top features in the risk prediction models. 

The analysis confirmed previously reported risk factors for bleeding, such as older age, renal 

dysfunction, anemia, hypertension39-41. Additionally, novel risk factors were identified, including 

body mass index, insurance coverage by either Medicare or Medicaid, and dyslipidemia. These 

factors were identified in both – low-comorbidity and random test sets and by random forest and 

XGBoost models (Figure 2 and Figure 3). These factors were consistently present at 1-year, 2-

year, and 5-year follow-up for bleeding event prediction. Classification tree-schema and logistic 

regression coefficients for the prediction of 1-year bleeding risk are provided in Supplementary 

appendix (Supplementary Figure 3, Supplementary Table 6). The executable versions of the 

other machine learning models are not included in this manuscript but are available upon request 

from the corresponding author. 
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Discussion   

In this large, real-world cohort study, we demonstrated that ML models, particularly 

random forest and XGBoost, outperformed conventional risk scores (HAS-BLED, ATRIA, and 

ORBIT) in predicting clinically significant bleeding events among 24,468 non-valvular AF 

patients treated with DOACs. The ML models had better discriminative power, overall 

performance, risk stratification, and calibration compared to the conventional risk scores which 

was consistent across various follow-up periods (one, two, and five years) and in the subgroup 

with hemorrhagic stroke. Furthermore, our study identified novel risk factors, such as body mass 

index, insurance coverage by Medicare or Medicaid, and dyslipidemia, that contributed to 

improved bleeding risk prediction. 

The emergence of alternatives to DOACs, such as left atrial appendage closure devices, 

underscores the importance of accurate bleeding risk prediction tools to guide personalized 

treatment decisions 11,12. Conventional risk scores, derived from registry data with specific 

inclusion criteria, often fail to capture the heterogeneity observed in real-world settings. 

Furthermore, the HAS-BLED score's reliance on labile INR is outdated, given the shift towards 

DOACs 13. Our findings of a modest improvement in ML performance over conventional risk 

scores align with prior studies 16,17, which consistently demonstrated the poor performance of the 

HAS-BLED score, with AUC-ROC ranging from 0.50 to 0.64 16,19,20,44,45. However, these studies 

were limited by their focus on broader contexts or specific AF subpopulations 18,19, restricting 

their applicability to the broader AF population on DOACs in a real-world clinical scenario when 

first evaluated by a cardiologist for AF management. It is worth noting that in the original HAS-

BLED publication, the AUC for the derivation cohort was 0.72, and for the validation cohort, it 

ranged from 0.50 to 0.67 among patients on warfarin. The performance of the HAS-BLED score 
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in our study, which focused on patients on DOACs, was consistent with the lower end of the 

validation cohort range from the original publication 13,46. Our study addressed these limitations 

by providing a robust comparison between ML models and multiple conventional risk scores, 

including HAS-BLED, ATRIA, and ORBIT, using real-world EHR data 20. Moreover, we 

demonstrated the consistent poor performance of conventional risk scores when applied to 

follow-up periods exceeding one year, which is clinically significant when considering patients 

for transcatheter left atrial appendage closure 11,12.  

The superior performance of ML models in capturing complex patterns within real-world 

clinical data underscores the need for robust, adaptable predictive models that can accommodate 

individual patient characteristics and evolving therapeutic landscapes. Our diverse cohort, which 

included patients with varying comorbidities and treatment strategies, emphasizes the potential 

of ML in enhancing personalized risk assessment and clinical decision-making in managing AF 

patients. The limitations of conventional risk scores, as revealed by our analysis, highlight the 

promise of ML models that leverage EHRs to improve predictive accuracy, with ML models 

demonstrating their ability to employ EHR data effectively, as evidenced by the performance of 

our models and the identification of novel risk factors through SHAP analysis. 

Our study's pragmatic design utilizes EHRs to develop and evaluate risk prediction 

models at the patient's first contact with a Cardiologist. This approach reflects real-world clinical 

practice where clinicians might not have information on the duration of AF, and patients have 

already been initiated on DOACs. SHAP analysis identified novel risk factors, such as body 

mass index, insurance coverage by Medicare or Medicaid, dyslipidemia, and left ventricular 

ejection fraction on echocardiography, which are not included in conventional risk scores. The 

variable effect of DOACs in underweight and obese patients has been shown in other studies, 
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prompting guideline recommendations to measure peak and trough levels to ensure that the 

levels fall in the expected range 47. Similarly, factors such as insurance coverage through 

Medicare and Medicaid and dyslipidemia may indirectly reflect the impact of social determinants 

of health on the risk of health complications, including bleeding. The consistency of these factors 

across short and long-term bleeding and hemorrhagic stroke risk in both test cohorts suggests 

they capture high-risk phenotypes through direct or shared underlying mechanisms. 

To ensure the robustness and reliability of our ML models, we employed several 

strategies to address the challenges inherent in real-world data. To address class imbalance, we 

utilized different sampling techniques and ratios and performed evaluation with geometric 

means, enabling a balanced assessment of model performance. We employed 10-fold cross-

validation and assessed model performance in test sets with different levels of comorbidities to 

mitigate overfitting and ensure generalizability. Despite the superior performance of ML models, 

it is important to acknowledge that the calibration results were suboptimal for both ML models 

and conventional risk scores. The calibration curves demonstrated an underestimation of risk, 

particularly for the HAS-BLED score. While the ML models showed improved calibration 

compared to the HAS-BLED score, there were still discrepancies between the predicted and 

observed probabilities. Potential reasons for suboptimal calibration include the inherent 

limitations of real-world data, such as missing or inconsistent data, and the complexity of 

capturing the dynamic nature of bleeding risk over time. The suboptimal calibration highlights 

the need for further refinement of the models and emphasizes the importance of interpreting the 

predictions with caution in clinical practice. Moreover, when implementing the prediction model 

in clinical practice, poor quality or unavailable input data should be carefully assessed. If key 

predictors are missing or unreliable, the model's predictions should be interpreted with caution, 
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and alternative risk assessment methods should be considered. Our study presents a 

comprehensive array of performance metrics to facilitate an informed discussion of the potential 

clinical applications of these ML models. By providing an extensive overview of model 

performance metrics, we aim to support this process and enable a more nuanced understanding 

of the strengths and limitations of each model in the context of real-world clinical practice. 

Building upon the robustness and reliability of our ML models, integrating them into 

clinical practice presents significant challenges, particularly in selecting the appropriate metric to 

optimize during the training phase. The choice of metrics depends on the model's intended 

application and the utility function it serves, which is shaped by shared decision-making 

processes between patients and physicians 48-50. For example, when predicting major bleeding 

events, the relative importance of false positives (leading to unnecessary interventions) and false 

negatives (failing to prevent life-threatening events) may vary based on the patient's risk profile, 

comorbidities, and the availability of alternative therapies. These decisions have far-reaching 

implications, directly influencing treatment choices, resource allocation, and patient well-being. 

To bridge the gap between theoretical analysis and practical application, engaging patients and 

physicians in defining the utility function through structured interviews, focus groups, or surveys 

designed to elicit preferences and values regarding treatment outcomes, side effects, and quality 

of life is essential. In the absence of a well-defined utility metric, we employed standard metrics 

to assess the performance of foundational models with minimal hyperparameter fine-tuning, 

demonstrating that these models outperformed conventional risk estimation approaches. Future 

elicitation of utility could help develop a mixture of expert models, where individual models 

optimized for specific metrics are activated according to the elicited utility, realizing the promise 

of individualized medicine through ML 51. The successful integration of ML into clinical 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 27, 2024. ; https://doi.org/10.1101/2024.05.27.24307985doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.27.24307985


20 

 

decision-making requires a collaborative approach that values the input of all stakeholders and 

adapts to the ever-evolving landscape of patient care. 

Limitations and Future Directions 

Our study has several limitations that should be addressed in future research. It is 

important to acknowledge that while the ML models outperformed the conventional risk scores, 

their performance was still limited, with AUC-ROC values ranging from 0.69 to 0.76. These 

results indicate that there is room for improvement in predicting bleeding risk in AF patients 

treated with DOACs. The limited performance may be attributed to several factors, such as the 

complexity of the underlying biological processes, the presence of unknown or unmeasured 

confounders, and the limitations of the available data. Future studies should focus on refining the 

models by incorporating additional data sources, exploring novel risk factors, and applying 

emerging ML techniques to improve predictive accuracy. First, we assumed consistent DOAC 

therapy throughout the follow-up period, which may not reflect real-world medication adherence 

and treatment adjustments. To further elucidate the influence of fluctuating DOAC exposure on 

bleeding risk, subsequent investigations should aim to integrate time-varying covariates into their 

analyses. Second, while we employed techniques to improve generalizability, relying on a single 

healthcare system's EHR data, which included a predominantly white population and low 

Hispanic ethnicity, may limit the applicability of our findings to other populations. Future studies 

need external validation to ascertain the robustness and utility of our models in diverse clinical 

environments. Third, the study population included a mix of patients with varying duration of 

AF, which may impact their risk profiles. Time series analyses should be conducted in the future 

to address the changing risk in real-world clinical practice. Fourth, the computation of the HAS-

BLED score in our study was limited by the absence of labile INR data, as routine INR 
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monitoring is not recommended for patients on DOACs. This parameter was often missing in 

real-world practice and was therefore removed from the HAS-BLED score calculation, 

consistent with prior studies 52,53. Similarly, active alcohol use was determined using ICD-9 

codes, which may not capture the full spectrum of alcohol consumption. These limitations in 

computing the HAS-BLED score and alcohol use may have affected the accuracy of these 

parameters compared to registry data. Fifth, this study did not explicitly address model fairness 

across different sociodemographic groups. Future research should assess the performance of the 

models across various subgroups to identify potential biases and explore techniques for 

mitigating any disparities to ensure equitable predictions for all patients. Finally, while SHAP 

analysis offers insights into feature importance, improving the explainability of ML models 

remains an ongoing challenge. Clearer strategies for integrating ML predictions into clinical 

workflows and decision-making processes are needed, such as developing user-friendly 

interfaces that present model predictions alongside information obtained from explainability 

methods such as SHAP.  

Future research should also focus on developing a comprehensive utility framework that 

considers clinical context, patient preferences, and the impact of false positives and false 

negatives on patient outcomes. This framework will be essential for thresholding and optimizing 

models for the most relevant metric, ensuring that the ML models are not only accurate but also 

align with the needs and values of patients and healthcare providers. 

In summary, our study demonstrates the superior performance of ML risk models 

compared to conventional risk scores in predicting clinically significant bleeding events in 

nonvalvular AF patients treated with DOACs. However, to realize the full potential of ML in 

clinical practice, future research should focus on addressing limitations such as external 
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validation, model optimization, and improved explainability, while integrating novel data 

sources, applying emerging ML algorithms, and fostering collaboration among data scientists, 

clinicians, and patients. Our study lays the foundation for future work to refine these models, 

define their utility, and translate them into clinical practice to improve patient outcomes and 

support informed decision-making.   
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Table 1. Characteristics of the patients at index date comparing patients who experienced major 

bleeding event at 1-year of follow-up versus without a major bleeding event at 1-year. 

Variable Overall (n=24468) Bleeding event at 
1-year (n=553) 

No bleeding event 
(n=23915) 

p-
value 

Demographics     

Age (Years) 73.10 (IQR 65.50-
80.60) 

75.90 (IQR 69.60-
83.80) 

73.10 (IQR 65.40-
80.50) 

<0.01 

Sex (Female) 11016 (45.02%) 269 (48.64%) 10747 (44.94%) 0.09 

Race    0.63 

White Race 23192 (95.44%) 525 (94.94%) 22667 (95.46%)  

Black Race 804 (3.31%) 26 (4.70%) 778 (3.28%)  

Asian Race 65 (0.27%) 0 (0%) 65 (0.27%)  

Other Races 91 (0.37%) 1 (0.18%) 90 (0.38%)  

Hispanic or Latino Ethnic Group 95 (0.40%) 0 (0%) 95 (0.41%)  

Smoking 2298 (9.59%) 55 (10.13%) 2243 (9.58%) 0.72 

Alcohol use 12507 (55.61%) 266 (51.35%) 12241 (55.71%) 0.05 

Illicit Drug Use 1060 (5.06%) 26 (5.38%) 1034 (5.05%) 0.83 

Insurance     

Medicare Insurance 17840 (72.91%) 471 (85.17%) 17369 (72.63%) <0.01 

Medicaid Insurance 2372 (9.69%) 81 (14.65%) 2291 (9.58%) <0.01 

Body Mass Index (kilograms per 
square meter) 

30.11 (IQR 26.04-
35.24) 

29.46 (IQR 24.64-
34.86) 

30.13 (IQR 26.06-
35.25) 

0.01 

Comorbidities     

Hypertension 17499 (71.52%) 433 (78.30%) 17066 (71.36%) <0.01 

Diabetes 6081 (24.85%) 151 (27.31%) 5930 (24.80%) 0.19 

Prediabetes 2297 (9.39%) 78 (14.10%) 2219 (9.28%) <0.01 

Hyperlipidemia 14549 (59.46%) 343 (62.03%) 14206 (59.40%) 0.23 

Coronary Artery Disease 7069 (28.89%) 209 (37.79%) 6860 (28.68%) <0.01 

Peripheral Vascular Disease 2715 (11.10%) 80 (14.47%) 2635 (11.02%) 0.01 

Heart Failure     

Heart Failure with Reduced 
Ejection Fraction 

741 (3.31%) 25 (4.90%) 716 (3.27%) 0.06 

Heart Failure with Mid-
Range Ejection Fraction 

442 (1.97%) 18 (3.53%) 424 (1.94%) 0.02 

Heart Failure with Preserved 
Ejection Fraction 

969 (4.33%) 66 (12.94%) 903 (4.13%) <0.01 

Valvular Disease     

Prior Severe Mitral Valve 
Regurgitation 

131 (0.54%) 4 (0.72%) 127 (0.53%) <0.01 

Prior Severe Aortic Valve 
Stenosis 

295 (1.21%) 25 (4.52%) 270 (1.13%) <0.01 

History of Ischemic 
Stroke/Transient Ischemic 
Attack 

3004 (12.28%) 96 (17.36%) 2908 (12.16%) <0.01 
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Active Cancer 2792 (11.41%) 85 (15.37%) 2707 (11.32%) <0.01 

Coagulation Deficiency 484 (1.98%) 17 (3.07%) 467 (1.95%) 0.09 

Anemia 3157 (12.90%) 127 (22.97%) 3030 (12.67%) <0.01 

Medication use     

Aspirin 11437 (46.74%) 308 (55.70%) 11129 (46.54%) <0.01 

Beta Blockers 18260 (74.63%) 426 (77.03%) 17834 (74.57%) 0.21 

Calcium Channel Blockers 9922 (40.55%) 267 (48.28%) 9655 (40.37%) <0.01 

Statins 15106 (61.74%) 362 (65.46%) 14744 (61.65%) 0.08 

Insulin 2286 (9.34%) 69 (12.48%) 2217 (9.27%) 0.01 

Laboratory workup     

Total Cholesterol (milligrams 
per deciliter) 

153.00 (IQR 
127.00-183.00) 

145.00 (IQR 
118.00-171.00) 

153.00 (IQR 128.00-
183.00) 

<0.01 

Low-Density Lipoprotein 
Cholesterol (milligrams per 
deciliter) 

81.00 (IQR 61.00-
106.00) 

75.00 (IQR 53.00-
94.00) 

81.00 (IQR 61.00-
106.00) 

<0.01 

High-Density Lipoprotein 
Cholesterol (milligrams per 
deciliter) 

46.00 (IQR 37.00-
56.00) 

44.00 (IQR 35.00-
54.25) 

46.00 (IQR 37.00-
56.00) 

0.02 

Triglycerides (milligrams per 
deciliter) 

106.00 (IQR 78.00-
148.00) 

101.00 (IQR 75.00-
136.00) 

106.00 (IQR 79.00-
149.00) 

0.04 

Estimated Glomerular Filtration 
Rate (milliliters per minute per 
1.73 square meters) 

60.00 (IQR 54.00-
71.00) 

59.00 (IQR 45.00-
64.25) 

60.00 (IQR 54.00-
72.00) 

<0.01 

Thyroid Stimulating Hormone 
(micro international units per 
milliliter) 

1.89 (IQR 1.17-
2.89) 

1.98 (IQR 1.17-
3.02) 

1.89 (IQR 1.17-2.88) 0.34 
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Table 2. Results of ML models compared with conventional risk scores in predicting bleeding 
event at 1-year follow-up. 

Model Sensitivity Specificity Positive 
Predictive 
Value 

Negative 
Predictive 
Value 

Area under the 
curve 

G-Mean score NRI 

Low-comorbidity test set  
Multivariate 
logistic 
regression (L1) 

32% 79% 3% 98% 0.62 (0.55, 0.68) 0.50 (0.39, 0.65) 0.09 

Multivariate 
logistic 
regression (L2) 

58% 70% 4% 99% 0.69 (0.62, 0.76) 0.64 (0.52, 0.78) 0.09 

Classification tree 32% 67% 2% 98% 0.50 (0.44, 0.57) 0.46 (0.36, 0.60) 0.09 
Random forest 37% 82% 4% 98% 0.66 (0.59, 0.72) 0.55 (0.43, 0.70) 0.09 
Extreme gradient 
boosting 
(XGBoost) 

43% 80% 4% 99% 0.69 (0.63, 0.74) 0.59 (0.47, 0.74) 0.11 

K-nearest 
neighbor  

25% 68% 2% 98% 0.47 (0.42, 0.52) 0.41 (0.31, 0.55) 0.09 

Naïve- Bayes 75% 51% 3% 99% 0.66 (0.58, 0.72) 0.62 (0.51, 0.75) 0.01 
HASBLED 40% 69% 2% 98% 0.54 (0.48, 0.60) 0.53 (0.41, 0.66) - 
ATRIA 8% 94% 3% 98% 0.51 (0.48, 0.55) 0.27 (0.18, 0.44) - 
ORBIT 3% 97% 2% 98% 0.50 (0.48, 0.53) 0.17 (0.09, 0.36) - 
Random test set  
Multivariate 
logistic 
regression (L1) 

53% 72% 4% 98% 0.67 (0.60, 0.74) 0.62 (0.49, 0.76) 0.14 

Multivariate 
logistic 
regression (L2) 

78% 58% 4% 99% 0.73 (0.67, 0.79) 0.67 (0.55, 0.81) 0.11 

Classification tree 58% 62% 4% 98% 0.63 (0.56, 0.70) 0.60 (0.49, 0.74) 0.15 
Random forest 64% 70% 5% 99% 0.76 (0.70, 0.81) 0.67 (0.55, 0.82) 0.14 
XGBoost 58% 74% 5% 99% 0.73 (0.67, 0.79) 0.66 (0.53, 0.80) 0.07 
K-nearest 
neighbor  

44% 66% 3% 98% 0.55 (0.49, 0.62) 0.54 (0.43, 0.68) 0.14 

Naïve- Bayes 90% 41% 4% 99% 0.70 (0.63, 0.76) 0.61 (0.50, 0.73) 0.05 
HASBLED 59% 55% 3% 98% 0.57 (0.50, 0.63) 0.57 (0.46, 0.70) - 
ATRIA 14% 91% 3% 98% 0.52 (0.48, 0.57) 0.36 (0.24, 0.51) - 
ORBIT 8% 95% 4% 98% 0.52 (0.49, 0.56) 0.28 (0.18, 0.45) - 

Thresholding performed at Youden’s index for all ML models. 
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Figure legends. 

Figure 1. Study flow diagram. 

Figure 2. Comparative performance of machine learning models with HASBLED, ORBIT, and 

ATRIA scores in the low-comorbidity test set to predict a significant bleeding event at 1-year a) 

AUC-ROC analysis; and b) SHAP analysis for random forest model and extreme gradient 

boosting (XGBoost) model showing representative factors. 

Figure 3. Comparative performance of machine learning models with HASBLED, ORBIT, and 

ATRIA scores in the random test set to predict a significant bleeding event at 1-year a) AUC-

ROC analysis; and b) SHAP analysis for random forest model and extreme gradient boosting 

(XGBoost) model showing representative factors. 
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