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Abstract 24 

Background: Population-level viral load distribution, measured by cycle threshold (Ct), has 25 

been demonstrated to enable real-time estimation of �� for SARS-CoV-2 ancestral strain. 26 

Generalisability of the framework under different circulating variants and pre-existing immunity 27 

remains unclear. 28 

Aim: This study aimed to examine the impact of evolving variants and population immunity on 29 

the generalizability of Ct-based transmission estimation framework.  30 

Methods: We obtained the first Ct record of local COVID-19 cases from July 2020 to January 31 

2023 in Hong Kong. We modeled the association between daily viral load distribution and the 32 

conventional estimates of �� based on case count. We trained the model using data from wave 3 33 

(i.e., ancestral strain with minimal population immunity) and predicted �� 
for wave 5, 6 and 7 34 

(i.e., omicron subvariants with > 70% vaccine coverage). Cross-validation was performed by 35 

training on the other 4 waves. Stratification analysis by disease severity was conducted to 36 

evaluate the impact of the changing severity profiles.   37 

Results: Trained with the ancestral dominated wave 3, our model provided accurate estimation 38 

of ��, with the area under the ROC curve of 0.98 (95% confidence interval: 0.96, 1.00), 0.62 (95% 39 

CI: 0.53, 0.70) and 0.80 (95% CI: 0.73, 0.88) for three omicron dominated waves 5 to 7, 40 

respectively. Models trained on the other four waves also had high accuracy. Stratification 41 

analysis suggested potential impact of case severity on model estimation, which coincided with 42 

the fluctuation of sampling delay.  43 

Discussion: Our findings suggested that incorporating population viral shedding can provide 44 

accurate real-time estimation of transmission with evolving variants and population immunity. 45 

Application of the model needs to account for sampling delay. 46 
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Introduction  47 

Tracking community transmission in real-time is critical but suffers delays due to the 48 

unavoidable right-censoring (i.e., incubation period and delay in case identification) in the 49 

conventional methods.1,2 Previous work established a novel temporal association between 50 

epidemic dynamics and population viral load distribution, measured by cycle threshold (Ct) 51 

values from reverse transcription quantitative polymerase chain reaction (RT-qPCR).3 We have 52 

since applied a simplified method to incorporate the temporal population Ct distribution into 53 

real-time transmission estimation, measured by the effective reproductive number ��.4 While 54 

these studies have significantly advanced our understanding of the association between 55 

population viral shedding and transmission, they were performed during early waves of the 56 

COVID-19 pandemic, and did not account for the viral evolution and immunity derived from 57 

natural infections and/or vaccinations.5 The generalizability of the identified association to 58 

epidemics remained under-investigated, especially in the context of the emerging SARS-CoV-2 59 

variants (e.g., Omicron) and increasing pre-existing immunity, which were found to be 60 

associated with shorter duration in viral shedding clearance at individual level.6 Additionally, 61 

large epidemics with exponential increase in cases could soon exceed testing and surveillance 62 

capacity and may further prolong the delays between infection and being diagnosed due to the 63 

constrained resources, making it more challenging to derive timely and reliable �� 
estimates 64 

using conventional incidence-based approaches.1,7 65 

 66 

Here, we examined the impact of the evolving SARS-CoV-2 variants and population immunity 67 

on the application of population viral load distribution to estimate transmission, using data of 68 

laboratory-confirmed COVID-19 cases from July 2020 to January 2023 in Hong Kong. During 69 
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this period, the dominant strains transitioned from ancestral strain to Omicron subvariants, and 70 

the population shifted from predominantly native to possessing high pre-existing hybrid 71 

immunity due to natural infection and vaccinations.8 Thus we can examine whether overall 72 

association between population-level viral loads and transmission dynamics remained consistent 73 

and validate the Ct-based �� estimation method.  74 

 75 

Methods  76 

Data source 77 

Viral loads of COVID-19 cases were measured as cycle threshold 9 values (derived from SARS-78 

CoV-2 RT-qPCR assays targeting E gene) from upper respiratory tract samples, given that they 79 

are inversely correlated (i.e. lower Ct values imply higher viral loads).10,11 We collected the 80 

clinical, epidemiological and demographic data of each local cases from the Hospital Authority 81 

(HA) and the Department of Health of the Government of Hong Kong during the observation 82 

period, including their first recorded Ct values, date of sampling, clinical outcomes and date of 83 

symptom onset. We also classified cases as mild-to-moderate, serious, critical and fatal 84 

according to their clinical outcomes.8,12 In this study, we constrained analyses to two severity 85 

groups, namely mild-to-moderate and severe groups (combining serious, critical and fatal cases 86 

into a single group).  87 

 88 

Statistical Analysis 89 

Rt estimation based on case counts (incidence-based Rt)  90 

�� estimation on COVID-19 should be based on infection time because of its pre-symptomatic 91 

transmission1,7. Thus, we applied robust incidence deconvolution estimator 13 with delay from 92 
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infection to reporting, to reconstruct the epidemic curve by infection time. Then we estimate the 93 

incidence-based �� based on daily local cases numbers using Cori’s method.7 In this framework, 94 

the incidence-based �� was the ratio of the number of new cases to the total infectiousness of 95 

infective individuals, which was the convolution of the incubation period and the infectiousness 96 

relative to onset.14 We conducted inference by a Markov chain Monte Carlo algorithm to 97 

estimate ��.
15,16 More details about incidence-based �� estimation was described elsewhere.1,4  98 

 99 

Incorporating Ct distribution into Rt estimates (Ct-based Rt) 100 

Hong Kong experienced multiple epidemic waves between 1 January 2020 and 29 January 2023, 101 

and it was dominated by local transmissions from wave 3.8 We analyzed the first record for 102 

confirmed local COVID-19 cases (i.e., no travel outside Hong Kong during incubation) with 103 

available Ct values. The whole observed period was split into three uninterrupted sub-periods, 104 

i.e., 1 July to 31 August 2020 (wave 3), 1 November 2020 to 31 March 2021 (wave 4) and 1 105 

January 2022 to 29 January 2023 (wave 5 and 6), to fit generalized additive model (GAM) to 106 

characterize the population distribution of viral load separately (Appendix).  107 

 108 

To assess the relationship between population-level distribution of viral loads and incidence-109 

based ��, we first calculated the Spearman’s rank correlation coefficient (ρ) between daily Ct 110 

distribution (i.e., mean and skewness) and the natural log-transformed incidence-based �� (Table 111 

1). We fitted a linear regression model of the daily mean and skewness of Ct on log-transformed 112 

incidence-based ��  (established from our previous study4), using training data from the third 113 

wave (i.e., ancestral strain wave). We applied the fitted model to predict �� using population-114 

level Ct distribution in the fourth to sixth waves (i.e., ancestral strain and Omicron variants 115 
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waves), respectively. We included a 31-day period in the training set (e.g., 19 July to 18 October 116 

2020 for wave 3), consisting of 10 days before and 20 days after the day when local cases peaked 117 

in that wave, as suggested by previous study.4 We determined the case peak by computing the 5-118 

day rolling average of confirmed local cases, to minimize the impact of sudden reporting 119 

changes. 120 

 121 

We evaluated the model prediction using the area under the receiver operating characteristic 122 

curve (AUC) as the primary metric,17,18 fitted to the binary outcome of whether Ct-based 123 

(predicted) and incidence-based (observed) �� above 1. This threshold was chosen because an �� 124 

above 1 indicates a growing epidemic trend, while values below 1 indicate a decreasing trend, 125 

which plays a crucial role in providing early warnings for public health. 19 We also computed the 126 

directional consistency as the proportion of days during the prediction period when the predicted 127 

and observed  �� were either simultaneously below or exceeding 1.4  128 

 129 

Cross-validation between epidemic waves 130 

To reflect the government's relaxation of entry restrictions and the introduction of new strains, 131 

such as XBD, BF.7 and BQ.1.1, wave 6 was further split into waves 6 (23 May to 30 September 132 

2022) and 7 (1 October 2022 to 29 January 2023).8,20 Then, we trained the model on data from 133 

wave 4 to 7, separately, to evaluate the generalizability of our method. As described above, we 134 

included a 31-day training period of wave 4 (24 November to 24 December 2020), wave 5 (21 135 

February to 23 March 2022), wave 6 (23 August to 22 September 2022) and wave 7 (19 136 

December 2022 to 18 January 2023), respectively. With each training set, the other waves as well 137 

as wave 3 were used as test sets. We evaluated the model predictions using AUC and directional 138 
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consistency. We excluded from wave 5 the forecasts made between 1 January and 6 February 139 

2022 due to the huge fluctuation of incidence-based ��. 140 

 141 

Stratified analysis of two symptom severity groups  142 

To further validate the Ct-based framework, we assess the impact of the changing severity 143 

profiles in confirmed COVID-19 cases. This involved characterizing the temporal changes of 144 

first Ct distribution and delay of onset to sampling stratified by the retrospectively classified 145 

clinical severity. In particular, the retrospective subsettings of severity were determined based on 146 

their clinical outcomes that have already occurred, which may have been unknown during the 147 

collection of the initial Ct values. Thus, we also characterized the distribution of the delays 148 

between the initial records and clinical outcomes. Subsequently, we fitted the established model 149 

from Ct data from either mild-to-moderate or severe group only in wave 3, 4, 5, 6, and 7, 150 

respectively, and then used model and date from corresponding severity group to estimate the 151 

scenarios in wave 5, 6 and 7.  152 

 153 

All statistical analyses were conducted in R version 4.3.1 software (R Foundation for Statistical 154 

Computing, Vienna, Austria).  155 

 156 

Results 157 

COVID-19 waves in Hong Kong 158 

COVID-19 cases were detected from people with respiratory symptoms or high risk of exposures 159 

(e.g., close contacts and occupational exposure) and confirmed with RT-qPCR between January 160 

2020 and 6 February 2022,4 covering wave 3, 4 and early wave 5. Contact tracing were 161 
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suspended after 7 February 2022 (waves 5 and 6), and self-reported positive rapid antigen test 162 

(RAT) were also recorded as cases after 26 February 2022.21 A decline in the incidence-based �� 
163 

was observed throughout April and May 2022 before cases number increased again in June 164 

partially due to the emergence of the Omicron BA.4/BA.5 which grew steadily and eventually 165 

replaced BA.2 as the dominant variants, with BA.5 having an absolute advantage since later 166 

August 2022.22 By later January 2023, sublinages BA.2 and BA.5 became the dominating 167 

lineages in Hong Kong.23 Two COVID-19 vaccines (CoronaVac [Sinovac] and BNT162b2 168 

[BioNTech/Fosun Pharma/Pfizer]) were provided for free in Hong Kong government since 169 

February 2021 (during and after wave 4).24  As of January 2, 2022 (wave 5), approximately 66% 170 

of the population had received at least one vaccine dose.25 171 

 172 

We included local cases from July 2020 to January 2023, covering wave 3 (1 July to 31 August 173 

2020) and wave 4 (1 November 2020 to 31 March 2021) caused by the ancestral strain, while 174 

wave 5 (1 January to 22 May 2022), wave 6 and 7 (23 May 2022 to 29 January 2023) were 175 

caused by Omicron BA.2 and BA.4/BA.5, respectively (Figure).8,12  176 

 177 

In total 2,790,814 local RT-qPCR confirmed COVID-19 cases and self-reported RAT positives 178 

were recorded through wave 3 and 7, with about 43%, 19% and 38% of the cases recorded in 179 

wave 5, 6 and 7, respectively (Table S2). Ct values were available for 114,714 cases included, 180 

with 95% (n=3,043), 96% (n=5,225), 4% (n=51,372), 4% (n=21,835), and 3% (n=33,239) in 181 

waves 3 to 7, respectively. 182 

 183 

Correlations between population-level Ct distribution and incidence-based �� 184 
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We examined the correlation between the temporal population-level distribution of Ct values 185 

(measured by daily mean and skewness) and the local transmission dynamics (measured by the 186 

incidence-based ��). We observed consistent temporal associations between population Ct 187 

distribution and incidence-based �� 
in the Omicron variants-dominated waves 5 and 7, as seen 188 

for the ancestral strain-dominated waves 3 and 4 (Figure). Higher incidence-based �� were 189 

observed with lower average Ct values (Spearman’s correlation coefficient, ρ = -0.69, P < 0.001 190 

for wave 5 and ρ = -0.58, P < 0.001 for wave 7) and as Ct skewed towards lower values (ρ = 0.62, 191 

P < 0.001 for wave 5 and ρ = 0.55, P < 0.001 for wave 7) (Table 1), although such relationships 192 

were not significant for wave 6 (Table 1). 193 

 194 

Estimating Ct-based �� for waves with changing dominant variant and population immunity 195 

We evaluated the performance of our approaches in later waves to examine the impact of 196 

changing dominating SARS-CoV-2 variants (wave 4-7) and population immunity (wave 5-7) on 197 

the Ct-based real-time COVID-19 transmission. We trained the model using the 31-day data 198 

around peak of the ancestral strain-dominated wave 3 (as suggested previously 4) and applied the 199 

trained model to predict �� using daily Ct distributions in waves 4 to 7  (i.e., testing periods), 200 

separately. We found that the Ct-based method provided accurate real-time estimations of �� 201 

during testing periods (Table 2), with area under the receiver operating characteristic (ROC) 202 

curve (AUC) of 0.68 (95% confidence interval (CI), 0.60, 0.75) (test set, wave 4), 0.98 (95% CI, 203 

0.96, 1) (test set, wave 5), 0.62 (95% CI, 0.53, 0.70) (test set, wave 6) and 0.80 (95% CI, 0.73, 204 

0.88) (test set, wave 7), respectively (Table 2).   205 

 206 
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We validated our methods by training the model using data from waves 4 to 7. The model 207 

demonstrated high accuracy in predicted ��, when using wave 3 and 5 as test sets (Table 2). For 208 

example, AUC of predicted Ct-based �� for Omicron variants-dominated wave 5 was 0.98 (95% 209 

CI, 0.96, 1) (trained with wave 4), 0.99 (95% CI, 0.97, 1) (trained with wave 6) and 0.98 (95% 210 

CI, 0.96, 1) (trained with wave 7). Similarly, retrospective �� estimates for ancestral strain-211 

dominated wave 3 indicated robust accuracies with AUC of 0.92 (95% CI, 0.84, 1) (trained with 212 

wave 4), 0.80 (95% CI, 0.70, 0.90) (trained with wave 5), 0.91 (95% CI, 0.83, 1) (trained with 213 

wave 6) and 0.92 (95% CI, 0.85, 1) (trained with wave 7). However, despite accurate prediction 214 

of wave 5, utilizing it as a training set led to suboptimal performance, as evidenced by the AUC 215 

of predicted Ct-based �� for wave 6 (0.53, 95% CI, 0.49, 0.57) and wave 7 (0.49, 95% CI, 0.46, 216 

0.53). Of note, Ct-based estimates on wave 6 were generally weaker than other waves, with AUC 217 

equal to 0.62 (95% CI, 0.53,0.70) (trained with wave 3), 0.62 (95% CI, 0.53, 0.70) (trained with 218 

wave 4), 0.53 (95% CI, 0.49, 0.57) (trained with wave 5), 0.66 (95% CI, 0.57, 0.75) (trained with 219 

wave 7). 220 

 221 

The impact of severity on the association between population-level Ct distribution and 222 

incidence-based �� 223 

There were more severe (serious, critical, and fatal cases) cases recorded during Omicron waves 224 

compared with ancestral strain waves. 40% cases were retrospectively classified as severe in 225 

wave 5 and 7, compared with less than 25% in wave 3 and 4 (Table S3). As suggested, we 226 

retrospectively assess Ct-based �� estimates based on subsets of Ct values from cases with two 227 

distinct degrees of severity, including mild-to-moderate group and severe group, to further 228 

validate the generalizability of our model. A slight delay was found in the temporal distribution 229 
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of Ct values between mild-to-moderate and severe cases during wave 5 and 6 (Figure S2), which 230 

coincided with the different delays of onset to sampling between mild-to-moderate and severe 231 

group during February 2022 (wave 5), April 2022 (wave 5), and August 2022 (wave 6). 232 

 233 

Results for the model trained in wave 3 suggested that using Ct values from mild-to-moderate or 234 

severe only group yielded decreased AUCs (e.g., 0.52, 95% CI, 0.48, 0.56 for wave 5, using 235 

severe cases only) compared to using data from all cases (e.g., 0.98, 95%CI, 0.96, 1 for wave 5, 236 

using all cases), and the model trained in wave 4 show similar trend (Table S4). In contrast, for 237 

the training period with increasing proportion of severe cases (Table S3), using Ct from one 238 

severity group could yield higher AUCs compared to using Ct from all cases. For instance, the 239 

AUC of Ct-based �� for wave 6 was 0.63 (95% CI, 0.55, 0.71) (trained with mild-to-moderate 240 

cases from wave 5), compared to 0.53 (95% CI, 0.49, 0.57) (trained with all cases from wave 5) 241 

(Table S4).  242 

 243 

Discussion 244 

In this study, we demonstrated that the association between population viral load distribution and 245 

epidemics, derived from ancestral strain with minimal population immunity, remained highly 246 

informative during the subsequent SARS-CoV-2 epidemic waves, including those dominated by 247 

the Omicron subvariants in populations with significant pre-existing immunity. Our findings also 248 

suggested several circumstances in which the model predictions may be conservative, such as 249 

amid fluctuations in sample representativeness or during plateaued local epidemics, thereby 250 

providing insights into the broader applicability of the model.  251 

 252 
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Reduced viral shedding durations were observed for vaccinated individuals and those infected 253 

with the Omicron variant; however, disparities in viral loads were minimal during the early 254 

stages of infection.6 Therefore, our approach employing the initial Ct post-confirmation may be 255 

minimally affected by variants and vaccinations, consistent with previous studies measuring the 256 

transmission using various measurements of transmission (e.g., growth rate).5,26-28  257 

 258 

For surveillance based primarily on symptoms and contact tracing,4 Ct samples could be delays 259 

in case identification or sample collection, resulting in an inaccurate reflection of the overall 260 

viral load in the population. For example, we observed lower population Ct values for severe 261 

cases in early wave 5 but higher values in late wave 5 and early wave 6, compared to mild-to-262 

moderate cases (Figure S2), coincided with observed disparities in delays from symptom onset to 263 

sample collection (Figure S8). Our stratified analyses of sample severity profile also revealed a 264 

complex impact of severity on the Ct-based estimation of ��, highlighting the importance of 265 

stable sample representativeness. During waves 3 and 4 in Hong Kong, when intensive 266 

surveillance and contact-tracing adopted amid low virus circulation in the community, models 267 

trained on all cases outperformed those trained only on mild-to-moderate cases, as they better 268 

represented the full spectrum of case exposure time distribution (Figure S3-S7). Conversely, 269 

when training the model using data that has significant increases in the proportion of severe 270 

samples with delayed reporting, the model may inaccurately associate these changes in severity 271 

profile and reporting to changes in transmission, leading to reduced model performance (Table 272 

S4). This observation is consistent with the shorter delays observed between initial Ct reports 273 

and clinical outcomes during Omicron waves compared to the delays observed during waves 3 274 

and 4 (Figure S9). Future research on the impact surveillance delays and sample 275 
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representativeness on association between population viral shedding and transmission would 276 

better inform the applicability of the Ct-based estimation framework.  277 

 278 

The accuracy of Ct-based �� estimates for wave 6 was not optimal, irrespective of whether the 279 

model was trained with the data from the same wave or other waves, with deviations mainly 280 

occurring in late May and early June 2022 (Figure S1). A possible reason could be the low and 281 

relatively consistent community transmission, as evidenced by the incidence-based �� stably 282 

fluctuating around 1 and its Gini coefficient of 0.140 (95% CI, 0.125, 0.156) (Table S5). 283 

Simultaneously, fewer samples available to obtain Ct values led to increased uncertainties 284 

surrounding the �� estimates, as suggested by our previous study.4 Whilst increased AUCs for 285 

testing sets in wave 4 and 6 were observed when we excluded days with less than 30 or 60 286 

records (Table S6). Besides, the training period included for wave 6 coincided with the presence 287 

of multiple Omicron variants, including BA.2 and BA.4/BA.5. These variants were indicated to 288 

exhibit distinct viral kinetics and infectiousness,29,30 however, limited genotyping data pose 289 

challenges in evaluating the impact of the transition period when competing Omicron variant 290 

coexisted on our model's performance. Future study on model predictions during co-circulation 291 

or transition period are warranted for better understanding of our model applications under these 292 

complex situations. 293 

 294 

Our work has several limitations. Firstly, we were unable to further examine the effect of 295 

vaccines and variants due to the limited individual data. Secondly, the reduction in case 296 

ascertainment as non-pharmaceutical interventions were relaxed8 and the potential bias towards 297 

reporting severe cases in the later epidemic waves may have affected the accuracy of �� 298 
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estimation based on case counts. Further research is needed to address this issue and refine the 299 

model accordingly. Additionally, it is worth noting that our model requiring less computation 300 

efforts and crude metric AUC enables robust binomial estimation of �� values exceeding 1 or 301 

descending below 1
.
 Whilst it may not afford absolute quantitative estimates, as was 302 

demonstrated in the nowcast for wave 5 (Table S7 and Figure S1-C). Therefore, it is necessary to 303 

validate the model in other populations to improve its generalizability.  304 

 305 

Our study provides valuable insights into the potential of population-level Ct distribution as a 306 

predictive tool for timely assessing �� during waves characterized by variants dominating and 307 

population immunity shifting. These findings suggest the potential generalizability of this 308 

simplified framework across various settings and situations. It is important to exercise caution 309 

when interpreting the results due to the fluctuation of sampling delay and severity proportion. 310 

Further research is required to validate these findings and address the issue of estimating �� 311 

when daily records are limited and when community transmission were stable and consistent.  312 
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Figure. Temporal distribution of incidence-based �� (estimated by cases count), and 

population-level Ct values (measured by daily mean and skewness). a. Locally confirmed 

COVID-19 cases with available Ct values by date of reporting and incidence-based �� estimated 

by cases count. Black bars indicate daily case counts. Lines and shaded areas indicate the means 

and 95% credible intervals (CrIs) for incidence-based �� over the entire observed period. b. 

Temporal distribution of population-level Ct values and main dominant strains. Black bars 

indicate the number of daily collected samples. Brown lines and shaded areas indicate the 

average and 95% confidence intervals (CIs) of Ct values estimated by a generalized additive 

model (GAM) during the third and fourth waves which were dominated by ancestral strain. 

Orange lines and shaded areas correspond to the fifth and sixth waves which were dominated by 

Omicron variants. c. Temporal distribution of Ct skewness. Dots and vertical lines represent the 

mean and 95% CIs of daily Ct skewness. d, e. Correlations between the incidence-based �� and 

Ct mean (panel d) or skewness (panel e) during the fifth and sixth waves. Box plots indicate the 

interquartile ranges (IQR) and medians of the incidence-based �� under various intervals of daily 

Ct mean (panel d) and skewness (panel e). 
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Table 1. Spearman's correlation coefficients (ρ) between Ct and the natural log-transformed incidence-based Rt. 

  Wave 3 Wave 4 Wave 5 Wave 6 Wave 7 

 (Jul - Aug 2020) (Nov 2020 - Mar 2021) (Jan 2022 - May 2022) (May 2022 - Sep 2022) (Oct 2022 - Jan 2023) 
  ρ P-value^ ρ P-value^ ρ P-value^ ρ P-value^ ρ P-value^ 

Ct mean -0.79 <0.001 -0.51 <0.001 -0.69 <0.001 -0.14 0.105 -0.58 <0.001 
Ct skewness 0.8 <0.001 0.27 0.001 0.62 <0.001 0.11 0.221 0.55 <0.001 
^Two-sided P-values that were rounded to 3 decimal places. 

Table 2.  Model performance using different training periods to estimate Ct-based Rt in the other four waves. 
  Training period: wave 3* Training period: wave 4 Training period: wave 5 Training period: wave 6 Training period: wave 7 

 （19 Jul-18 Aug 2020) (24 Nov - 24 Dec 2020) (21 Feb -23 Mar 2022) (23 Aug-22 Sep 2022) (19 Dec 2022-18 Jan 2023) 

  AUCa Consistencyb AUCa Consistencyb AUCa Consistencyb AUCa Consistencyb AUCa Consistencyb 

 Wave 3 
0.94  

(0.86, 1.00) 94.7% 
0.92  

(0.84, 1.00) 94.7% 
0.80 

(0.70, 0.90) 77.2% 
0.91  

(0.83, 1.00) 93.0% 
0.92  

(0.85, 1.00) 93.0% 

 Wave 4 
0.68  

(0.60, 0.75) 71.9% 
0.69  

(0.61, 0.76) 73.3% 
0.67  

(0.59, 0.75) 66.4% 
0.70  

(0.62, 0.77) 74.7% 
0.71  

(0.64, 0.79) 74.7% 

 Wave 5 
0.98  

(0.96, 1.00) 97.1% 
0.98  

(0.96, 1.00) 97.1% 
0.96  

(0.92, 1.00) 96.2% 
0.99  

(0.97, 1.00) 98.1% 
0.98  

(0.96, 1.00) 97.1% 

 Wave 6 
0.62  

(0.53, 0.70) 67.9% 
0.62  

(0.53, 0.70) 67.9% 
0.53  

(0.49, 0.57) 35.9% 
0.66  

(0.58, 0.74) 59.5% 
0.66  

(0.57, 0.75) 68.7% 

 Wave 7 
0.80  

(0.73, 0.88) 80.2% 
0.81  

(0.73, 0.88) 81.0% 
0.49  

(0.46, 0.53) 37.2% 
0.53  

(0.50, 0.56) 41.3% 
0.67  

(0.59, 0.75) 62.8% 

Overallc 
0.78  

(0.74, 0.82) 78.1% 
0.83  

(0.79, 0.86) 82.9% 
0.53  

(0.49, 0.57) 51.2% 
0.69  

(0.65, 0.73) 73.4% 
0.80  

(0.76, 0.84) 80.6% 
Incidence-based Rt was natural log-transformed. * The main model used to estimate Ct-based Rt 
a AUC: area under the receiver operating characteristic curve (ROC)  
b Directional consistency. 
c Overall: combined all test sets into one to calculate corresponding AUC and directional consistency 
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