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KEY POINTS 

Question: Can single-lead electrocardiogram (ECG) tracings predict heart failure 

(HF) risk? 

Findings: We evaluated a noise-adapted artificial intelligence (AI) algorithm for 

single-lead ECGs as the sole input across multinational cohorts, spanning a diverse 

integrated US health system and large community-based cohorts in the UK and 

Brazil. A positive AI-ECG screen was associated with a 3- to 7-fold higher HF risk, 

independent of age, sex, and comorbidities. The AI model achieved incremental 

discrimination and improved reclassification for HF over the pooled cohort equations 

to prevent HF (PCP-HF).  

Meaning: A noise-adapted AI model for single-lead ECG predicted the risk of new-

onset HF, representing a scalable HF risk-stratification strategy for portable and 

wearable devices. 
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ABSTRACT 

Importance: Despite the availability of disease-modifying therapies, scalable 

strategies for heart failure (HF) risk stratification remain elusive. Portable devices 

capable of recording single-lead electrocardiograms (ECGs) can enable large-scale 

community-based risk assessment.  

Objective: To evaluate an artificial intelligence (AI) algorithm to predict HF risk from 

noisy single-lead ECGs. 

Design: Multicohort study. 

Setting: Retrospective cohort of individuals with outpatient ECGs in the integrated 

Yale New Haven Health System (YNHHS) and prospective population-based cohorts 

of UK Biobank (UKB) and Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). 

Participants: Individuals without HF at baseline. 

Exposures: AI-ECG-defined risk of left ventricular systolic dysfunction (LVSD). 

Main Outcomes and Measures: Among individuals with ECGs, we isolated lead I 

ECGs and deployed a noise-adapted AI-ECG model trained to identify LVSD. We 

evaluated the association of the model probability with new-onset HF, defined as the 

first HF hospitalization. We compared the discrimination of AI-ECG against the 

pooled cohort equations to prevent HF (PCP-HF) score for new-onset HF using 

Harrel’s C-statistic, integrated discrimination improvement (IDI), and net 

reclassification improvement (NRI).  

Results: There were 194,340 YNHHS patients (age 56 years [IQR, 41-69], 112,082 

women [58%]), 42,741 UKB participants (65 years [59-71], 21,795 women [52%]), 

and 13,454 ELSA-Brasil participants (56 years [41-69], 7,348 women [55%]) with 

baseline ECGs. A total of 3,929 developed HF in YNHHS over 4.5 years (2.6-6.6), 

46 in UKB over 3.1 years (2.1-4.5), and 31 in ELSA-Brasil over 4.2 years (3.7-4.5). A 
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positive AI-ECG screen was associated with a 3- to 7-fold higher risk for HF, and 

each 0.1 increment in the model probability portended a 27-65% higher hazard 

across cohorts, independent of age, sex, comorbidities, and competing risk of death. 

AI-ECG’s discrimination for new-onset HF was 0.725 in YNHHS, 0.792 in UKB, and 

0.833 in ELSA-Brasil. Across cohorts, incorporating AI-ECG predictions in addition to 

PCP-HF resulted in improved Harrel’s C-statistic (Δ=0.112-0.114), with an IDI of 

0.078-0.238 and an NRI of 20.1%-48.8% for AI-ECG vs. PCP-HF. 

Conclusions and Relevance: Across multinational cohorts, a noise-adapted AI 

model with lead I ECGs as the sole input defined HF risk, representing a scalable 

portable and wearable device-based HF risk-stratification strategy.  
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BACKGROUND 

Accessible strategies for risk stratification for heart failure (HF) remain elusive 

despite the availability of evidence-based therapies that can effectively modify the 

trajectory of the disease.1,2 Clinical scores to predict HF risk, including the pooled 

cohort equations to prevent HF (PCP-HF) and the Health ABC score,3,4 require 

extensive clinical evaluation, including detailed history and physical exam, a 12-lead 

electrocardiogram (ECG), and other specialized testing.3–8 These complex inputs 

limit their use, systematically excluding those without access to healthcare and 

preventing wider deployment for community-based screening.7–9 Similarly, serum-

based biomarkers such as N-terminal pro–B-type natriuretic peptide and high-

sensitivity cardiac troponin, which portend a higher risk of HF when elevated, are 

limited by the need for blood draws, the need for storing blood samples, and frequent 

inaccessibility at the point-of-contact.10–15 Thus, there is an unmet need for a simple, 

efficient, and scalable strategy for identifying those at the highest risk for developing 

HF in the community. 

Given their increasing utility and ubiquity, portable and wearable devices 

capable of recording single-lead ECG tracings have been proposed as a platform for 

cardiovascular monitoring and screening.16–19 Further, artificial intelligence (AI)-

enhanced interpretation of ECGs (AI-ECG) has been shown to detect hidden 

cardiovascular disease signatures from single-lead ECGs, highlighting the potential 

of these devices for improving cardiovascular health.20–24 However, these portable 

ECGs are prone to the introduction of noise during acquisition, which can limit the 

performance of AI models unless specialized measures are taken to ensure they are 

resilient to such noise.20,25 Recently, we reported a novel approach for single-lead 

ECGs that incorporates random noising during model development, enabling the 
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model to maintain consistent diagnostic performance across varying levels of real-

world noises.20 This initial deployment of our approach focused on developing a 

model that detects reduced left ventricular ejection fraction (LVEF) on single-lead 

ECG based on information from a concurrent echocardiogram, with the potential 

application of identifying subclinical left ventricular systolic dysfunction (LVSD). 

Recent studies also suggest that the AI-ECG signature for LVSD identifies other 

subtle markers of LV dysfunction, including abnormal LV strain and diastolic function, 

especially among those with a positive screen but preserved LVEF.26 Of note, each 

of these is known to be associated with elevated HF risk.27  

Given the increasing accessibility of single-lead ECGs, we tested the 

hypothesis that an AI model developed to detect the cross-sectional signature of 

LVSD from single-lead ECG tracings can identify the risk of developing HF. We 

longitudinally evaluated our approach in a cohort of individuals undergoing outpatient 

ECGs within a diverse US health system and two large population-based cohort 

studies in the UK and Brazil.  

 

METHODS 

Data Sources 

We included three large cohorts spanning different countries and settings who had 

undergone an ECG: (i) individuals seeking outpatient care in the Yale New Haven 

Health System (YNHHS), a large and diverse healthcare system in the Northeastern 

US, including five independent hospitals and an outpatient medical network, (ii) 

participants in the UK Biobank, a nationwide UK-based cohort study, and (iii) 

participants in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil), the 

largest community-based cohort study from Brazil. While YNHHS included testing 
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and follow-up as a part of routine clinical care in an integrated health system, 

participants in UKB and ELSA-Brasil had detailed protocolized evaluation at baseline 

and comprehensive longitudinal follow-up. An overview of all data sources is 

included in the eMethods.  

 

Study Population 

In YNHHS, to approximate a cohort resembling a screening setting, we identified 

patients undergoing a 12-lead ECG in an outpatient health encounter during 2014-

2023 without HF before the ECG. To account for the ECGs potentially being 

obtained as a part of a workup for HF, we included a 1-year blanking period from the 

first recorded encounter in the electronic health records (EHR) to identify those with 

prevalent HF (eMethods; eFigure 1). In YNHHS, 255,604 individuals had at least 

one outpatient ECG after the blanking period. We excluded 47,720 patients in the 

original model development population and 11,954 patients with prevalent HF. To 

further focus the cohort on those without established precursors of HF, we excluded 

1,590 patients with LV dysfunction (LVEF under 50% or moderate/severe LV 

diastolic dysfunction) before the index ECG (eFigure 2). 

In UKB, we included 42,366 participants who had undergone a 12-lead ECG 

during their imaging study visit in 2014-2020. We used the linkage of UKB with the 

EHR from the UK National Health Service to exclude 225 participants who had been 

hospitalized with a principal or secondary discharge diagnosis of HF before the ECG. 

In ELSA-Brasil, we included 13,739 participants who had undergone a 12-lead ECG 

during 2008-2010, excluding those with an HF diagnosis (N=227) or with an LVEF 

under 50% (N=58) on their baseline echocardiogram (eFigure 2).  
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Study Outcomes  

We defined the study outcome as new-onset HF characterized by HF 

hospitalizations. In YNHHS, this was defined as a hospitalization with an 

International Classification of Disease Tenth Revision – Clinical Modification (ICD-

10-CM) code for HF as the principal discharge diagnosis (eTable 1). This approach 

was guided by the over 95% specificity of HF diagnosis codes, especially as the 

principal discharge diagnosis for a clinical diagnosis of HF.28 Similarly, in UKB, we 

used the linked EHR to identify hospitalizations with HF as the principal diagnosis 

code. In ELSA-Brasil, HF was identified by in-person interview or telephonic 

surveillance for all hospitalizations, followed by independent medical record review 

and adjudication of HF hospitalizations by two cardiologists (eMethods).29 

We further evaluated the association of AI-ECG probabilities with alternate 

definitions of new-onset HF, and composite outcomes, including (i) any 

hospitalization with a principal or secondary diagnosis code for HF, (ii) a subsequent 

echocardiogram with an LVEF under 50%, and (iii) a composite outcome of HF or 

all-cause death (eMethods). To evaluate the specificity of the AI-ECG-defined HF 

risk, we examined the risk of other cardiovascular conditions, including acute 

myocardial infarction (AMI), stroke hospitalizations, and all-cause mortality (eTable 

1). A composite outcome of major adverse cardiovascular events (MACE) was 

defined as death or hospitalization for HF, AMI, or stroke.  

 

Study Exposure 

We defined the study exposure as the output probability of an AI-ECG model trained 

to detect a concurrent LVEF of less than 40% on lead I of a 12-lead ECG, 

representing the lead commonly captured by portable ECG devices.20 This was 
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developed at the Yale New Haven Hospital (YNHH) using a novel approach of 

augmenting training data with random Gaussian noise (eMethods). The model 

achieved excellent discrimination (area under the receiver operating characteristic 

curve of 0.899 [95% CI, 0.888-0.909]; eTable 2) for detecting concurrent reduced 

LVEF across various noisy ECGs.  

We deployed this established model without further development to lead I 

ECG signals across included individuals to obtain the LVSD probability, representing 

a continuous HF risk score. We defined a positive AI-ECG screen as a model output 

probability greater than 0.08, representing the probability threshold at which the 

model achieved a sensitivity of 90% for detecting LVSD during internal validation.20 

We further defined graded thresholds based on AI-ECG probabilities of 0-0.2, 0.2-

0.4, 0.4-0.6, 0.6-0.8, and 0.8-1 to evaluate the association of a higher risk score with 

HF. Notably, while the model was developed for detecting the cross-sectional 

signature of LVSD using data from the YNHH alone, it was applied across all 

YNHHS sites and the population-based cohorts without any further development or 

fine-tuning for prediction of HF risk. 

 

Study Covariates 

We identified available demographic characteristics across cohorts, including age at 

the time of ECG, sex, and self-reported race and ethnicity. Comorbidities, including 

ischemic heart disease, hypertension, and type 2 diabetes mellitus, were defined 

using relevant EHR diagnosis codes in YNHHS and UKB (eTable 1). Obesity was 

defined as BMI ≥30 kg/m2. In ELSA-Brasil, covariates were recorded at the baseline 

study visit.30 Race was self-classified based on Brazil’s National Bureau of Statistics 

definition and classified as White, Black, “Pardo”, Asian, or Others.30,31 
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Study Comparator 

The PCP-HF score was used as the study comparator for predicting HF risk, 

representing a complex clinical risk model developed and validated with data from 

seven community-based cohorts.3 The PCP-HF risk score uses demographics (age, 

sex, race), physical exam-based features (smoking status, BMI, systolic blood 

pressure), laboratory measurements (total cholesterol, high-density cholesterol, 

fasting blood glucose), medication history (antihypertensive medication use, 

antihyperglycemic medication use), and electrocardiographically-defined QRS 

duration. Across the study cohorts, these input features were determined using the 

EHR and/or study visits (eMethods).32–35 

 

Statistical Analysis 

We used age-, sex-, and comorbidity-adjusted Cox proportional hazard models with 

time-to-first HF event as the dependent variable and the AI-ECG-based screen 

results (positive/negative) or continuous model probability as the independent 

variable to evaluate the association of the model output with HF risk. Multi-outcome 

Fine-Gray subdistribution hazard models were used to account for the competing 

risk of death.36  

The incremental discrimination of AI-ECG over PCP-HF for predicting time-to-

HF hospitalization was reported as the difference in Harrel's C-statistics and 95% 

confidence interval (CI) using a one-shot nonparametric approach.37 We calculated 

integrated discrimination improvement (IDI), categorical and continuous time-to-

event net reclassification improvement (NRI),38 and compared the net benefit of the 

AI-ECG model and the PCP-HF score across all probability thresholds, with further 
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details in eMethods.39 We also evaluated the association of AI-ECG with HF, overall 

and across racial groups, after adjusting for the PCP-HF score in Cox models.  

 

RESULTS  

Study Population 

From YNHHS, we included 194,340 individuals with a median age of 56 years (IQR, 

41-69), comprising 112,082 (57.7%) women, 119,051 (61.3%) non-Hispanic White, 

30,840 (15.9%) non-Hispanic Black, and 33,456 (17.2%) Hispanic. Over a median 

4.5-year follow-up (IQR, 2.6-6.6), 3,929 (2.0%) had an HF hospitalization, 7,847 

(4.0%) had an HF hospitalization or an LVEF below 50% on subsequent 

echocardiogram, and 10,747 (5.5%) died (eTables 3-4).  

The 42,141 UKB participants had a median age of 65 years (IQR, 59-71), 

including 21,795 (51.7%) women, with 40,691 (96.6%) identifying as White and 304 

(0.7%) as Black. Over a median follow-up of 3.1 years (IQR, 2.1-4.5), 46 (0.1%) had 

an HF hospitalization, and 346 (0.8%) died (eTable 3).  

From ELSA-Brasil, the 13,454 participants had a median age of 51 years 

(IQR, 45-58), comprising 7,348 (54.6%) women, 6,920 (51.4%) adults identifying as 

White, 2,130 (15.8%) as Black, and 3,767 (28.0%) as “Pardo”. Over a median of 4.2 

years (IQR, 3.7-4.5), 31 (0.2%) people developed HF, and 229 (1.7%) died. 

 

Risk Stratification for New-Onset HF 

In YNHHS, 43,559 (22.4%) patients screened positive on the AI model applied to the 

baseline single-lead ECG signal. A positive screen was associated with over 5-fold 

higher risk of developing HF (HR 5.07 [95% CI, 4.76-5.40]; Table 1). After 

accounting for differences in age and sex, a positive AI-ECG screen was associated 
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with a 3.3-fold higher risk of HF compared with a negative screen (adjusted HR 

[aHR], 3.32 [95% CI, 3.11-3.54]). The association remained statistically significant 

after accounting for differences in HF risk factors of prior ischemic heart disease, 

hypertension, type 2 diabetes, and obesity (aHR 2.81 [95% CI, 2.64-3.01]) and after 

additionally accounting for the competing risk of death (aHR of 2.73 [95% CI, 2.55-

2.93]) (Table 1). The association of a positive screen with an elevated risk of HF was 

noted across YNHHS sites (eTable 5), demographic subgroups (eTable 6), and 

different HF definitions (eTables 7-8).  

 In UKB, 5,513 (13.1%) participants screened positive with the AI-ECG model. 

A positive AI-ECG screen portended a 7.5-fold higher hazard for developing HF (HR 

7.52 [95% CI, 4.21-13.41]). After accounting for age, sex, HF risk factors, and the 

competing risk of death, screen-positive participants had a 5-fold higher risk of HF 

(aHR 5.02 [95% CI, 2.77-9.09]; Table 1).  

 In the ELSA-Brasil cohort, 1,928 (14.3%) participants had a positive AI-ECG 

screen, with a 9-fold higher risk for HF (age- and sex-adjusted HR 8.74 [95% CI, 

4.13-18.48]) compared with screen-negative participants. This association was 

consistent even after accounting for the comorbidities and the competing risk of 

death (aHR 7.71 [95% CI, 3.62-16.46]; Table 1).  

 

Risk Across Model Probability Increments  

Across the YNHHS network, each 0.1 increment in the model output probability 

portended a 28% higher hazard of developing HF, adjusted for age, sex, 

comorbidities, and accounting for the competing risk of death (aHR 1.28 [95% CI, 

1.26-1.30]; Table 1). Higher model probabilities were progressively associated with a 

higher risk of future HF across various probability bins, with consistent patterns 
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across the individual hospitals and the outpatient medical network (Figure 2, 

eTables 5, 9-10).  

Across both UKB and ELSA-Brasil cohorts, a 0.1 increment in model 

probability was associated with 51% and 66% higher adjusted risk of HF (aHR 1.49 

[95% CI, 1.36-1.63] and aHR 1.65 [95% CI, 1.46-1.87], respectively, Table 1), 

respectively. Model output probabilities of over 0.8 portended age- and sex-adjusted 

HRs of 13.68 (1.86-100.45) and 112.33 (25.75-489.96), at UKB and ELSA-Brasil, 

respectively, compared with those with probabilities under 0.2 (Figure 2, eTable 9).  

 

Comparison with PCP-HF 

The AI-ECG model had a discrimination based on Harrel’s C-statistic of 0.725 (95% 

CI, 0.704-0.746) in YNHHS, compared with 0.634 (95% CI, 0.612-0.656) for PCP-HF 

score (p<0.001; Table 2). In UKB and ELSA-Brasil, the AI-ECG model’s 

discrimination for HF was 0.792 (95% CI, 0.696-0.889) and 0.833 (95% CI, 0.720-

0.946), respectively, which was not significantly different from PCP-HF (UKB: 

p=0.45; ELSA-Brasil: p=0.87). Across all cohorts, incorporating model probability 

with PCP-HF yielded a statistically significant improvement in discrimination over the 

use of PCP-HF alone (ΔC-statistic in YNHHS: 0.112 [95% CI, 0.091-0.134]; UKB: 

0.114 [95% CI, 0.027-0.200]; ELSA-Brasil: 0.114 [95% CI, 0.034-0.194]; Table 2). 

Compared with the PCP-HF score, the AI model had a positive IDI across all 

study cohorts, with an IDI of 0.078 (95% CI, 0.003-0.160) for YNHHS, 0.165 (95% 

CI, 0.075-0.252) for UKB, and 0.238 (95% CI, 0.107-0.369) for ELSA-Brasil (Table 

3). The categorical NRI for AI-ECG compared with the PCP-HF score over the 0.08 

threshold was 20.1% (95% CI, 1.48%-42.2%) in YNHHS, 29.1% (95% CI, 9.18%-

49.4%) in UKB, and 48.8% (95% CI, 18.8%-49.4%) in ELSA-Brasil. The continuous 
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NRI was 44.2% (95% CI, 11.1%-77.9%) higher for AI-ECG than PCP-HF in YNHHS. 

Although continuous NRI was also numerically higher in UKB (15.5% [95% CI, -

21.1% to 47.8%]) and ELSA-Brasil (7.7% [95% CI, -23.8% to 32.4%]), the 

differences were not statistically significant (Table 3). The AI-ECG model 

demonstrated consistent superior net benefit over PCP-HF across all probability 

thresholds in UKB and ELSA-Brasil. In YNHHS, the net benefit of AI-ECG was 

higher than that of PCP-HF in probability thresholds greater than 0.04, where the AI-

ECG threshold is 0.08 (eFigure 3). 

A positive AI-ECG screen was an independent predictor of HF risk after 

accounting for PCP-HF score, with a 3-fold hazard (aHR 3.29 [95% CI, 2.88-3.77]) in 

YNHHS, and 7- to 11-fold hazards in UKB (7.16 [95% CI, 3.67-13.98]) and ELSA-

Brasil (11.27 [95% CI, 4.53-28.04]; eFigure 4), respectively, with consistent patterns 

across racial groups (eFigure 5).  

 

Non-HF Cardiovascular Outcome Prediction 

In YNHHS, a positive AI-ECG screen was associated with a modestly elevated risk 

of stroke and MACE (age- and sex-adjusted HRs: stroke, 1.17; MACE, 1.77; 

eTables 11-12) compared with a 3-fold increase in HF risk. In UKB and ELSA-Brasil, 

a positive screen portended a 1.5- to 4-fold hazard of stroke, death, and MACE 

compared with a 6- to 9-fold increase in HF risk (eTable 11). 

 

DISCUSSION 

Across clinically and geographically distinct cohorts, a noise-adapted deep learning 

model, trained to detect cross-sectional LVSD from only a lead I ECG, predicted the 

risk of future HF among individuals seeking outpatient care and community-dwelling 
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adults. Individuals with a positive AI-ECG screen had a 3- to 7-fold higher risk of 

developing HF compared with those with a negative screen, independent of known 

demographic and clinical risk factors. Higher AI-ECG probabilities were progressively 

associated with a higher risk of HF, with each 10% increment portending a 27-65% 

higher risk-adjusted hazard for HF across all cohorts. Further, the AI-ECG model 

demonstrated incremental discrimination, improved reclassification, and superior net 

benefit over the PCP-HF score. Therefore, our AI-based approach presents ideal 

characteristics for use as a non-invasive digital biomarker for elevated HF risk using 

a single-lead ECG.  

Applications of deep learning for ECGs have demonstrated the ability to 

identify subtle signatures of structural heart disorders previously considered 

electrically silent,40–48 with applications extending to detecting LVSD from single-lead 

tracings.20,49–51 Recently, the US Food and Drug Administration also granted 

clearance to an AI tool using electronic stethoscope-based single-lead ECGs for 

cross-sectional LVSD detection.52 Our study demonstrates that a noise-adapted AI-

ECG model can predict the risk of new-onset HF using single-lead ECG tracings. 

Given the increasing accessibility of portable and wearable devices capable of 

acquiring ECG signals outside a clinical setting,19,53,54 this approach can be applied 

widely to identify individuals at a high risk of HF.54 While the ECGs acquired with 

these devices are often distorted by positioning and movement of electrodes or 

artifacts due to skeletal muscle contraction during acquisition,25,55 our unique noise-

adapted training approach can ensure reliable inference from these noisy ECGs.20 

In this study, we opted for a specific definition of HF based on the principal 

discharge diagnosis code, a criterion that has demonstrated high specificity.28 

Nonetheless, the association of a positive screen with an elevated HF risk was 
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consistent across several sensitivity analyses that defined the condition differently in 

YNHHS and UKB, and in ELSA-Brasil where the outcomes were explicitly 

adjudicated. The robust performance across clinically and demographically distinct 

cohorts indicates that the model captures a predictive signature of HF across a 

spectrum of disease phenotypes independent of site-specific coding practices.56,57 

Moreover, the dose-dependent association of higher AI-ECG scores with 

progressively elevated HF risk enables graded risk stratification and risk-informed 

management. Notably, while a positive screen was also associated with a modestly 

elevated risk of other cardiovascular outcomes, including MACE, the predictive 

signature identified by the model was more specific for HF. 

Our study has important implications for defining HF risk. While several 

clinical risk score- and serum biomarker-based strategies have been proposed to 

identify those at the highest risk for developing HF, these strategies often require 

extensive clinical evaluation and blood testing.7,8,15 This limits their scope to patients 

with established access to healthcare services, preventing community-based 

application.8,15,58,59 In contrast, our AI-based approach using single-lead ECG 

tracings can enable HF risk stratification outside clinical settings. The ability to use a 

single portable device to record ECGs for multiple individuals allows for the design of 

innovative and efficient community-based screening programs.60,61 Successful health 

promotion strategies, such as targeted hypertension management in barbershops 

and cancer screening in churches across the US,62,63 can be adapted to promote HF 

screening, especially among individuals who are traditionally less likely to seek 

preventive medical care.58 The ease of use and the brief time required for ECG 

acquisition with these devices can enable a non-laboratory-based strategy, with the 

potential for integration into national-level non-communicable disease screening 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 27, 2024. ; https://doi.org/10.1101/2024.05.27.24307952doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.27.24307952
http://creativecommons.org/licenses/by-nc/4.0/


 

 17

programs globally, especially in low- and middle-income countries.60,61,64 This 

scalability and potential community health benefits necessitate prospective clinical 

and cost-effectiveness assessments for AI-based HF risk stratification using portable 

and wearable devices.  

Our study has certain limitations. First, waveforms extracted from the lead I of 

clinical ECGs may not be identical to those captured by portable devices. While our 

noise-augmentation approach has previously demonstrated sustained performance 

during testing on ECGs with real-world noises,20 prospective validation of the model 

on portable- and wearable-acquired ECGs is necessary before deployment for HF 

screening in a community setting. Second, despite the wide geographic coverage of 

YNHHS, out-of-hospital clinical outcomes may not have been captured, thereby 

representing a lower risk of HF and other cardiovascular outcomes compared with 

the protocolized follow-up in UKB and ELSA-Brasil. Moreover, while we included 

only ECGs performed in an outpatient setting, the patients who underwent ECG 

testing were clinically selected, indicating an unmeasured potential risk profile of 

those who underwent a clinical ECG but had a negative AI-ECG screen. However, 

the controls in this setting all underwent ECG screens as well. Finally, while the 

approach offers an accessible strategy for identifying individuals at elevated risk of 

HF, it is not clear if this risk is modifiable. Nonetheless, a robust screening strategy 

can enable targeted management of known HF risk factors. 

 

CONCLUSION 

Across clinically and geographically distinct cohorts, we used a noise-resilient AI 

model with a lead I ECG tracing as the sole input to define the risk of future HF, with 

value over conventional risk scores in both performance and ease of deployment. 
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With the increasing availability of single-lead ECGs on portable and wearable 

devices, this AI-ECG-based non-invasive digital biomarker can enable scalable 

stratification of HF risk across communities. 
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FIGURES 

Figure 1. Study Overview. Abbreviations: BMI, Body Mass Index; BP; Blood 
Pressure; CNN, Convolutional Neural Network; ECG, Electrocardiogram; EF, 
Ejection Fraction; EHR, Electronic Health Record; ELSA-Brasil, Brazilian 
Longitudinal Study of Adult Health; HDL, High-density Lipoprotein Cholesterol; HF, 
Heart Failure; LV, Left Ventricle; YNH, Yale New Haven Hospital; YNHHS, Yale New 
Haven Health System. 
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Figure 2. Age- and Sex-adjusted Hazard for Heart Failure across Model Output Probability Bins. Abbreviations: ELSA-Brasil, 
Brazilian Longitudinal Study of Adult Health; UKB, UK Biobank; YNHHS, Yale New Haven Health System 
 
  

  

 . 
C

C
-B

Y
-N

C
 4.0 International license

It is m
ade available under a 

 is the author/funder, w
ho has granted m

edR
xiv a license to display the preprint in perpetuity. 

(w
h

ich
 w

as n
o

t certified
 b

y p
eer review

)
T

he copyright holder for this preprint 
this version posted M

ay 27, 2024. 
; 

https://doi.org/10.1101/2024.05.27.24307952
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2024.05.27.24307952
http://creativecommons.org/licenses/by-nc/4.0/


 

 29

 
TABLES 
 
Table 1. Cox Proportional Hazard Models for Predicting Heart Failure Risk Based on AI-ECG Probability. Abbreviations: 
ELSA-Brasil, Brazilian Longitudinal Study of Adult Health; IHD, Ischemic Heart Disease; HTN, hypertension; T2DM, type-2 diabetes 
mellitus; UKB, UK Biobank; YNHHS, Yale New Haven Health System. 
 
 

Predictive Model Inputs 
YNHHS UKB ELSA-Brasil 

Positive Screen Per 0.1 Increment Positive Screen Per 0.1 Increment Positive Screen Per 0.1 Increment 

AI-ECG Probability 5.07 (4.76-5.40) 1.45 (1.44-1.47) 7.52 (4.21-13.41) 1.55 (1.40-1.71) 11.11 (5.32-23.19) 1.83 (1.64-2.05) 

AI-ECG Probability + Age + Sex 3.32 (3.11-3.54) 1.32 (1.30-1.33) 5.96 (3.32-10.68) 1.52 (1.37-1.68) 8.74 (4.13-18.48) 1.75 (1.56-1.97) 

AI-ECG Probability + Age + Sex + 

IHD + HTN + T2DM + Obesity 2.81 (2.64-3.01) 1.28 (1.26-1.30) 5.02 (2.77-9.09) 1.49 (1.33-1.66) 7.71 (3.62-16.46) 1.72 (1.52-1.93) 

AI-ECG Probability + Age + Sex and 

accounting for competing risk of 

death 
3.22 (3.01-3.45) 1.30 (1.29-1.32) 5.91 (3.33-10.50) 1.51 (1.38-1.66) 8.67 (4.02-18.70) 1.74 (1.55-1.96) 

AI-ECG Probability Age + Sex + IHD 

+ HTN + T2DM + Obesity and 

accounting for competing risk of 

death 

2.73 (2.55-2.93) 1.27 (1.25-1.28) 4.99 (2.81-8.87) 1.49 (1.36-1.63) 6.53 (2.91-14.67) 1.65 (1.46-1.87) 
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Table 2. Comparison of Discrimination for AI-ECG Model Output Probability and Pooled Cohort equations to Prevent Heart 
Failure for Heart Failure. Abbreviations: ELSA-Brasil, Brazilian Longitudinal Study of Adult Health; PCP-HF, Pooled Cohort 
equations to Prevent Heart Failure; UKB, UK Biobank; YNHHS, Yale New Haven Health System. 
 

Covariates 

YNHHS UKB ELSA-Brasil 

Harrel’s C-

statistic 

Marginal 

difference over 

Harrel’s C-

statistic for PCP-

HF 

P-value 
Harrel’s C-

statistic 

Marginal 

difference over 

Harrel’s C-

statistic for PCP-

HF 

P-value 
Harrel’s C-

statistic 

Marginal 

difference over 

Harrel’s C-

statistic for PCP-

HF 

P-value 

PCP-HF  
0.634 

(0.612 - 0.656) 
- - 

0.740 

(0.646 - 0.834) 
- - 

0.821 

(0.748 - 0.893) 
- - 

AI-ECG Model 

Output Probability 

0.725 

(0.704 - 0.746) 

0.091 

(0.063 - 0.120) 
< 0.001 

0.792 

(0.696 - 0.889) 

0.052 

(-0.083 - 0.186) 
0.45 

0.833 

(0.720 - 0.946) 

0.012 

(-0.144 - 0.168) 
0.87 

AI-ECG Model 

Output Probability 

+ Age + Sex 

0.726 

(0.705 - 0.746) 

0.092 

(0.068 - 0.116) 
< 0.001 

0.836 

(0.762 - 0.909) 

0.096 

(-0.106 - 0.202) 
0.07 

0.904 

(0.844 - 0.964) 

0.084 

(-0.017 - 0.185) 
0.10 

AI-ECG Model 

Output Probability 

+ PCP-HF 

0.746 

(0.727 - 0.766) 

0.112 

(0.091 - 0.134) 
< 0.001 

0.854 

(0.785 - 0.923) 

0.114 

(0.027 - 0.200) 
0.01 

0.934 

(0.903 - 0.966) 

0.114 

(0.034 - 0.194) 
0.005 
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Table 3. Integrated Discrimination Improvement and Categorical and Continuous Time-to-Event Net Reclassification Index 
of AI-ECG Model Output Probability over Pooled Cohort Equations to Prevent Heart Failure. Abbreviations: ELSA-Brasil, 
Brazilian Longitudinal Study of Adult Health; IDI, Integrated Discrimination Improvement; NRI, Net Reclassification Index; PCP-HF, 
Pooled Cohort equations to Prevent Heart Failure; UKB, UK Biobank; YNHHS, Yale New Haven Health System. 
 

Metric YNHHS UKB ELSA-Brasil 

IDI 0.078 (0.003 to 0.160) 0.165 (0.075 to 0.252) 0.238 (0.107 to 0.369) 

Categorical NRI 0.201 (0.015 to 0.422) 0.291 (0.092 to 0.494) 0.488 (0.188 to 0.741) 

Continuous NRI 0.442 (0.111 to 0.779) 0.155 (-0.211 to 0.478) 0.077 (-0.238 to 0.324) 
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