1	
2	Supplementary Information for
3	
4	Multiplexed detection, partitioning, and persistence of wild
5	type and vaccine strains of measles, mumps, and rubella
6	viruses in wastewater
7	
8	
9	Jingjing Wu ¹ , Michael X. Wang ² , Prashant Kalvapalle ¹ , Michael Nute ³ , Todd J. Treangen ^{2,3} ,
10	Katherine Ensor ⁴ , Loren Hopkins ⁵ , Rachel Poretsky ⁶ , and Lauren B. Stadler ¹
11	
12	Author affiliations:
13	1. Department of Civil and Environmental Engineering, Rice University, Houston, TX, 77005
14	2. Department of Bioengineering, Rice University, Houston, TX, 77005
15	3. Department of Computer Science, Rice University, Houston, TX, 77005
16	4. Department of Statistics, Rice University, Houston, TX, 77005
17	5. Houston Health Department, 8000 N. Stadium Dr., Houston, TX, 77054
18	6. Department of Biological Sciences, University of Illinois Chicago, Chicago, IL, 60607
19 20	*To whom correspondence should be addressed: Lauren B. Stadler, lauren.stadler@rice.edu

21 SI 1. Materials and Methods

22 SI 1.1 Assay development for measles, mumps and rubella viruses

23 For measles, 105 complete D8 genomes (Supplementary Data 1) and 55 complete B3 genomes (Supplementary Data 2) were downloaded from the NCBI Virus database ¹, with 24 25 sample collection dates between Jan. 1, 2019 to Mar. 10, 2024, as well as 7 vaccine genomes 26 (NCBI accessions: AF266286, AF266287, AF266288, AF266289, AF266291, FJ416067, 27 DQ345723). A multiple sequence alignment (MSA) of all genomes above was generated with MAFFT² using default parameters. The primer pair and the WT1 probe were designed within a 28 conserved region of the M gene with Primer3Plus³. WT2 and VA probes were designed within a 29 region that was conserved among the wild type genomes yet bearing mismatches among the 30 31 vaccine genomes.

For rubella, 63 complete genomes (Supplementary Data 3) were downloaded from the NCBI Virus database, with sample collection dates between Jan. 1, 2010 to Apr. 18, 2023. MSA was generated and the primer pair and the probe were designed within a conserved region of the start of RUBVgp1 gene with Primer3Plus.

For mumps, 108 complete genomes (Supplementary Data 4) were downloaded from the
NCBI Virus database, with sample collection dates between Jan. 1, 2018 to Jun. 6, 2023. MSA
was generated and the primer pair and the probe were designed within a conserved region of the
L gene with Primer3Plus. The probe was manually redesigned to avoid starting with guanine.
Primer3Plus settings were as follows: product size of 70-150bp, primer size of 18-30bp
(optimal 23bp), primer Tm (melting temperature) of 53-57°C (optimal 55°C), probe Tm (melting

42 temperature) of 59-63°C (optimal 61°C), with all other parameters set to default. Output primers

43	and probes were validated with NCBI BLAST+ ⁴ against the nucleotide collection (nt/nr)
44	database, with the target species excluded, to ensure no non-specific amplification.
45	For the Sanger sequencing primers of measles, a conserved region of the L gene was
46	input to Primer3Plus with settings: product size of 400-500bp, primer size of 18-35bp (optimal
47	25bp), primer Tm (melting temperature) of 58-62°C (optimal 60°C).
48	
49	SI 1.2 WWTP influent liquid and solid fraction concentration and target viral RNA
50	quantification
51	Wastewater samples were homogenized by inverting the bottle containing the sample
52	several times and then aliquoting the sample into 50 mL centrifuge tubes. Tubes containing
53	wastewater were centrifuged at 4,100 g and 4°C for 20 minutes to separate liquid and solid
54	fractions. The wastewater liquid fraction concentration was described previously by Laturner et
55	al. (2021) and Lou et al. (2022) ^{5,6} and summarized as follows. After centrifugation, the
56	supernatant was carefully poured into an MF 3, 300ml Magnetic Filter Holder with lid kit
57	(20030001, Sterlitech) attached to the Multi-Vac 600-MS Manifold (180600-01, Sterlitech) and
58	Rocker 800 Oil Free Laboratory Vacuum Pump (167800, Sterlitech) system without disturbing
59	the pellet. The Electronegative Microbiological Analysis Membrane HA Filter (HAWG047S6,
60	Millipore Sigma) was placed into the manifold system prior to the sample addition. One mL of
61	1.25 M MgCl ₂ ·H ₂ O (M0250, Sigma Aldrich) solution was added to the sample in the filter cup
62	and then gently swirled with the pipette tip to mix and allowed to stand for 5 minutes before the
63	vacuum pump was turned on. After all the sample passed through the filter, the filter was folded
64	and transferred into a filled bead beating tube containing 0.1 mm diameter glass beads and 1 mL
65	of lysis buffer from the chemagic TM Prime Viral DNA/RNA 300 Kit H96 (CMG-1433,

PerkinElmer), which was used for nucleic acid extraction. For the wastewater solid fraction, the
pellets that remained at the bottom of the tube were resuspended using 1 mL of lysis buffer from
the chemagicTM Prime Viral DNA/RNA 300 Kit H96 (CMG-1433, PerkinElmer) and transferred
into a filled bead beating tube containing 0.1 mm diameter glass beads.
Bead beating tubes containing filters or pellets were beaten for 1 minute at 3,500
oscillations/m, two times using the Mini-Beadbeater 24 (112011, BioSpec) with a 2-minute
break, where the tubes were placed on ice. After bead beating, the tubes were centrifuged at

73 17,000 g and 4°C for 5 minutes. 300 μ L of lysate was used as input to nucleic acids extraction

viral DNA/RNA 300 Kit H96 (Chemagic, CMG-1433, PerkinElmer),

following the manufacturer's protocol, and the extracted nucleic acids were eluted in 50 μ L of

sterile, nuclease-free water. The extracts were stored at 4°C for no more than 2 hours before

77 quantification.

78 The concentrations of target viral RNA were quantified using one-step RT-ddPCR

79 Advanced Kit for Probes (1864021, Bio-Rad). Droplet generation was performed using an

80 Automated Droplet Generator (1864101, Bio-Rad) and RT-ddPCR was completed using a C1000

81 ThermalCycler (Bio-Rad) and QX600 AutoDG Droplet Digital PCR System (Bio-Rad). Results

82 were analyzed using QuantaSoft v1.7.4 software.

83

84 SI 1.3 RT-ddPCR assays setup and thermal cycling conditions

Table SI.1: Primers, probes, and standards used for quantification of measles, mumps, and

86 rubella with RT-ddPCR

Target	Assay Name	Sequence (5'-3') / Catalogue #	Accession
			(coordinates)
Measles	Forward	AATGAAAAACTGGTGTTCTACAA	NC_001498.1
(M gene)	Primer		(37593781)

VC_001498.1
39263904)
NC_001498.1
38973878)
NC_001498.1
38883858)
NC_001498.1
38883858)
NC_002200.1
1331213333)
NC_002200.1
1344413422)
NC_002200.1
1335113375)
NC_076948.1
218237)
NC_076948.1
313294)
NC_076948.1
267286)

GCAATTTCGCGGTATACCCGCCGCCA	
TTGGATCGAGTGGGGCCCTAAAGAA	
GCCCTACACGTC	

Table SI.2: Final concentrations of the primer-probe mix for each target

Assay Name	Final concentration (µM)	40x concentration (µM)
Forward Primer	0.9	36
Reverse Primer	0.9	36
Probe	0.25	10

89

90 **Table SI.3:** Reaction composition for RT-ddPCR assay

Reagent	Volume (µL)
One-step RT-ddPCR supermix	5.5
Reverse Transcript (10x)	2.2
300 mM DTT	1.1
Primer-Probe mix of each target (40x)	0.55*
RNase/DNase-free water	0.45
RNA template	10

91 ^{*}Final concentrations in reaction: 0.25μM (probe) and 0.9μM (forward and reverse primers)

92 **Table SI.4:** Thermal cycling condition for measles, mumps, and rubella virus RT-ddPCR assay

Cycling Step	Temperature °C	Time	Number of Cycles
Reverse transcription	50	60 min	1
Enzyme activation	95	10 min	1
Denaturation	94	30 sec	40
Annealing/Extension	55	60 sec	
Enzyme Deactivation	98	10 min	
Hold (optional)	4	Infinite	1

93

94 SI 1.4 RT-PCR assays setup and thermal cycling conditions for measles Sanger sequencing

Table SI.5: Primers used for gene amplification of measles with RT-PCR

Target	Assay Name	Sequence (5'-3')	Accession (coordinates)
L gene (Measles)	Forward Primer	AAAAACGGATTTTCCAACCAAATGA	NC_001498.1 (93939417)
	Reverse Primer	CTACCAGTGAAGAATACAGGTGTGT	NC_001498.1 (98059829)

Amplicon	437	
length		

97 **Table SI.6:** Reaction composition for RT-PCR assay

Reagent	Volume (µL)
2X Platinum [™] SuperFi [™] RT-PCR Master Mix	25
Forward primer (10 µM)	2.5*
Reverse primer (10 µM)	2.5*
SuperScript [™] IV RT Mix	0.5
Template RNA	10
Nuclease-free water	9.5

98 ^{*}Final concentrations in reaction: 0.5μM (forward and reverse primers)

99 Table SI.7: Thermal cycling condition for measles virus RT-PCR assay

Cycling Step	Temperature °C	Time	Number of Cycles
Reverse transcription	50	10 min	1
RT inactivation/initial	98	2 min	1
denaturation			
Amplification	98	10 sec	40
	56	10 sec	
	72	20 sec	
Final extension	72	5 min	1
Hold (optional)	4	Infinite	1

100

101 SI 1.5 Calculation of partition coefficients

102 **SI. Eq 1:**

103
$$K_d = \frac{C_S/TSS}{C_w \times (1 L/1000 mL)}$$

- 104 Where:
- 105 K_d : partitioning coefficient of target virus in wastewater solid and liquid fraction, mL/g
- 106 C_s: target viral concentration in wastewater solid fraction, copies/L
- 107 C_W: target viral concentration in wastewater liquid fraction, copies/L
- 108 TSS: wastewater total suspended solids, g/L*
- 109 *TSS was measured based on the Standard Method 2540 7

111 SI 1.6 Calculation of recovery rate and inhibition factor

- 112 <u>Recovery rate calculation</u>
- 113 SI. Eq 2:

114
$$Recovery \, rate = \frac{C_{WW} \times V_{WW}}{C_{std} \times V_{std}} \times 100\%$$

115 Where:

116 C_{ww}: concentration of target viral RNA detected in wastewater spiked with virus standards using

- 117 RT-ddPCR, copies/L
- 118 V_{ww} : volume of concentrated wastewater sample, L

119 C_{std} : concentration of diluted virus standards spiked into wastewater sample, copies/ μ L

- 120 V_{std} : volume of diluted virus standard spiked into each wastewater sample, μL
- 121

122 <u>Inhibition factor calculation</u>

123 **SI. Eq 3:**

124 Inhibition factor
$$= \frac{C_{10-fold}}{C_0}$$

125 Where:

126 C₀: concentration of target viral RNA detected using original nucleic acid extracts of wastewater

127 spiked with virus standards and RT-ddPCR, copies/L

128 C_{10-fold}: concentration of target viral RNA detected using 10-fold diluted nucleic acid extracts of

129 wastewater spiked with virus standards and RT-ddPCR, copies/L

- 131 SI 1.7 Measles, mumps, and rubella RNA persistence in wastewater
- 132 SI. Eq 4:

$$C_t = C_0 e^{-kt}$$

134
$$\log_{10}\left(\frac{C_t}{C_0}\right) = \frac{-kt}{\ln (10)}$$

- 135 Where:
- 136 C₀: original viral concentration in the wastewater sample, copies/L
- 137 C_t: viral concentration in the wastewater sample at day t, copies/L
- 138 k: first-order decay constant, 1/days
- t: number of days between the measurement of viral concentration in wastewater and the day that
- 140 the experiment starts, days
- 141 **SI. Eq 5:**
- 142

$$T_{90} = \frac{ln \ (10)}{k}$$

- 143 Where:
- 144 T₉₀: number of days needed for target viral concentration to decrease by 90% of the original
- 145 concentration, days
- 146 k: first-order decay rate constant, 1/days
- 147

148 SI 1.8 Quality control measures and limit of detection (LOD) calculation

- 149 The quality control measures and the calculation of LOD are described by Lou et al.
- 150 $(2022)^6$ and are summarized briefly as follows. Duplicates of negative control samples were
- 151 included in the sample treatment, concentration, extraction, and quantification steps to assess
- 152 potential contamination⁸. Specifically, for wastewater samples spiked with ATCC virus

153	standards, triplicate influent unspiked wastewater samples were stored and processed in the same
154	way and used as negative controls for the treatment. Two 50 mL aliquots of deionized (DI) water
155	were processed in the same way as wastewater samples and used as negative controls for
156	concentration. Two bead tubes containing glass beads and lysis buffer were included as
157	extraction negative controls. The negative controls for concentration and extraction were
158	included in all ddPCR quantification plates containing the wastewater samples that were
159	processed together with the controls. In addition, each ddPCR quantification plate included at
160	least two no-template controls (NTCs) with RNAse-free water and two positive controls using
161	gBlock Gene Fragments (IDT, USA; sequence provided in Tables SI.1).
162	An acceptable total droplet count of at least 10,000 was established for all sample wells
163	as recommended by the manufacturer. The method limit of detection (LOD) for ddPCR was
164	determined as three positive droplets per well plus the maximum number of positive droplets
165	among the negative controls. The LOD was converted to copies per μ L of DNA template and
166	copies per liter of wastewater based on the estimated droplet volume (0.86 nL), the number of
167	total droplets, the volume fraction of DNA template within a droplet ($10/22$), and the
168	concentration factor during sample processing. The equations used for the LOD calculation are
169	presented in Eq SI. 7-9.

- 170 Limit of Detection (LOD) Calculation Equations
- 171 SI. Eq 6:

172 $LOD_{droplet} = 3 + maximum number of positive droplets across all process blanks^*$

^{*}Process blanks include: two concentration blanks, two extraction blanks, and no less than two no

template controls per plate included in ddPCR quantification.

175 **SI. Eq 7:**

176 $LOD_{\mu L-DNA \ template}$

$$177 = \frac{LOD_{droplet}}{0.86 \frac{nl}{droplet} \times n \text{ total droplets in each well}^* \times \frac{10}{22} \text{ fraction of template within droplet}}$$

$$178 = \frac{LOD_{droplet} \times 2558.14}{n \text{ total droplets}} \text{ copies per } \mu L \text{ of } DNA \text{ template}$$

$$179 \quad ^* \text{ The average number of total droplets in each well for measles, mumps, and rubella RT-ddPCR}$$

$$180 \quad \text{assay is } 19884.$$

$$181 \quad \text{SI. Eq 8:}$$

$$182 \quad LOD_{L-wastewater}$$

$$183 \quad = LOD_{\mu L-DNA \text{ template}} \times 100 \ \mu L \text{ total extraction}$$

$$184 \quad \times \frac{1000 \ \mu L \text{ of } lysis \text{ buf fer with wastewater fraction resuspended}}{600 \ \mu L \text{ of lysis buf fer used for extraction}}$$

$$185 \quad \times \frac{1}{50 \ mL \text{ wastewater concentrated}} \times \frac{1000 \ mL}{1 \ L}$$

$$186 \quad = LOD_{\mu L-DNA \ template} \times \frac{1000000}{300} \text{ copies per L of wastewater}$$

$$187 \quad \text{SI 2. Results}$$

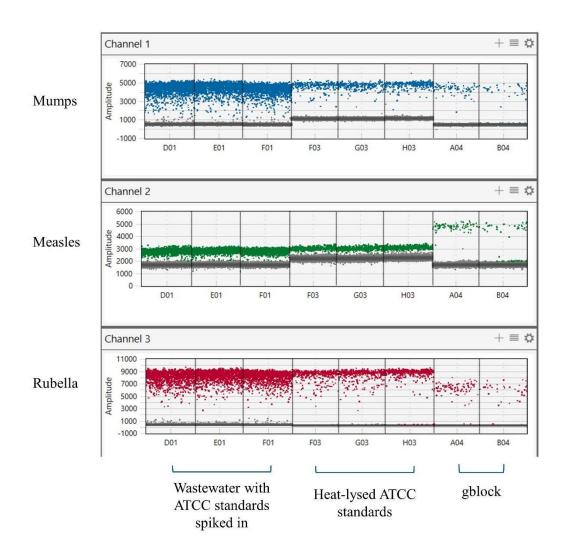
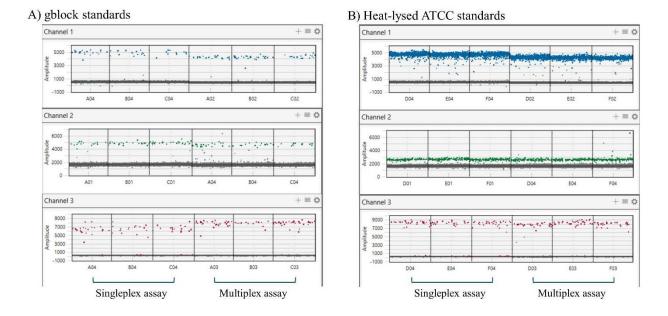
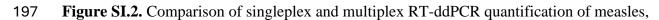

188 SI 2.1 Measles, mumps and rubella assay validation

Table SI.8: Number of mismatches between measles genome sequences and measles assays by

190 genotype


Assay	Target	Number of mi	Source		
	gene	WT - D8	WT - B3	Edmonston	
				Vaccine	
WT1 assay	M gene	0	0	1 (probe)	This study
WT2 assay	M gene	0	1 (probe)	2-3 (probe)	This study
VA assay	M gene	2 (probe)	1 (probe)	0-1 (probe)	This study
CDC WT assay	N gene	0	1 (probe)	0	Hummel et al.,
					2006 9


	CDC VAC assay	N gene	1 (probe)	3 (primers) 1 (probe)	0-1 (primer)	Roy et al., 2017 ¹⁰
--	------------------	--------	-----------	--------------------------	--------------	--------------------------------

193 Figure SI.1. Multiplexed ddPCR results of measles, mumps, and rubella viral RNA assays using

- 194 influent wastewater samples spiked with virus standards (columns D01, E01, and F01), heat-
- 195 lysed virus standards (F03, G03, and H03), and gblock standards (A04, B04).

198 mumps, and rubella viral RNA using gblock standards (A) and heat-lysed virus standards (B).

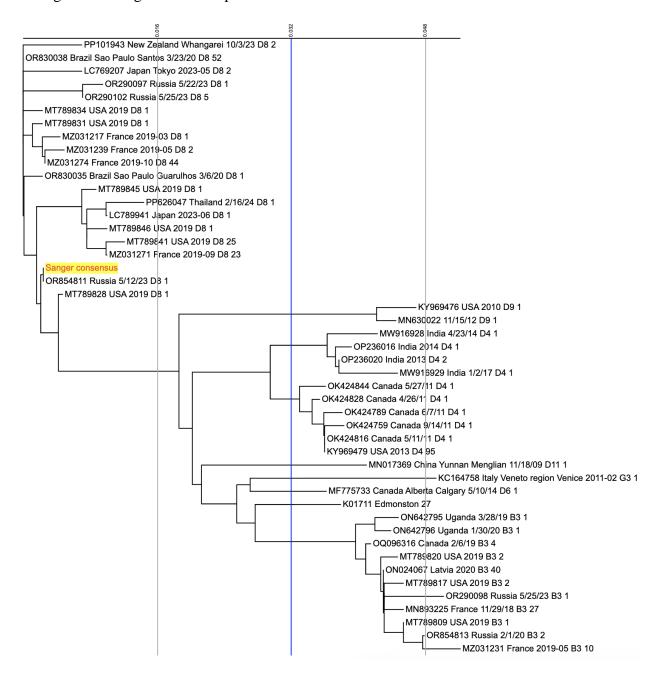
- **Table SI.9:** Concentration of measles, mumps, and rubella viral RNA in gblock standards and
- 201 heat-lysed virus standards measured with singleplex and multiplex RT-ddPCR assays.

Target	Type of standards	Singleplex concentration (± standard error, copies/µL)	Multiplex concentration (± standard error, copies/µL)	p-value
Measles	gblock	3.37 ± 0.37	2.70 ± 0.47	0.33
Mumps	gblock	3.19 ± 0.37	3.03 ± 0.68	0.85
Rubella	gblock	3.67 ± 0.78	3.16 ± 0.35	0.60
Measles	Heat-lysed virus	19.19 ± 0.29	20.52 ± 0.92	0.29
Mumps	Heat-lysed virus	105.96 ± 3.92	98.81 ± 0.27	0.21
Rubella	Heat-lysed virus	4.63 ± 0.11	4.63 ± 0.20	0.99

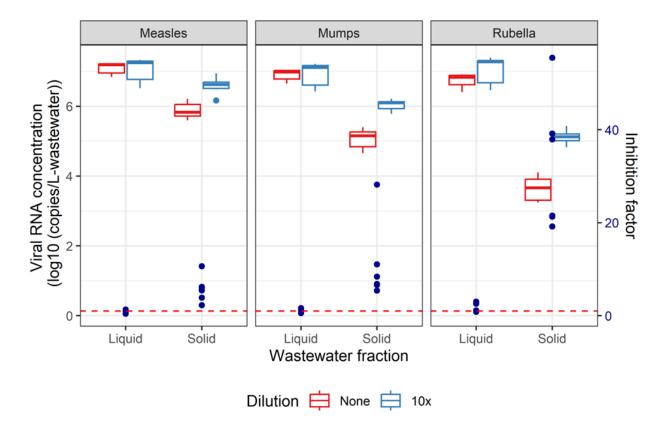
Table SI.10: Concentrations of wild type B3 and vaccine measles strains measured with measles

204 WT2 and VA singleplex and multiplex RT-ddPCR assays.

Strain of standards	Concentration measured with WT2 assay (± standard error,	Concentration measured with VA assay (± standard error, log 10
	log 10 (copies/L-wastewater)	(copies/L-wastewater)

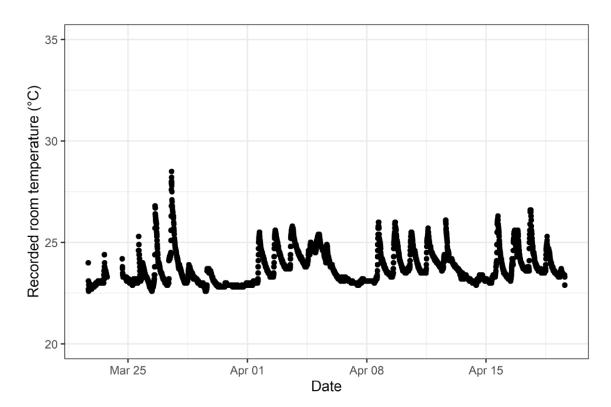

B3 and vaccine ¹	5.41 ± 0.06	5.43 ± 0.06
B3 and vaccine ²	4.22 ± 0.09	5.39 ± 0.06
B3	4.28 ± 0.03	4.27 ± 0.03
Vaccine	5.36 ± 0.02	5.36 ± 0.02

 $\frac{1}{1}$ Both assays measured the concentration of both measles strains (wild type B3 and vaccine


206 strain)

² The WT2 assay only measured the concentration of wild type B3 measles strain, and the VA

assay only measured the concentration of vaccine measles strain. The droplets from ddPCR weredistinguished using different amplitudes.


- 212 Figure SI.3. A phylogenetic tree based on the consensus sequence of the Sanger sequencing
- 213 replicates of selected measles-positive wastewater samples. The phylogenetic tree was generated
- using iTOL. The positive wastewater sample contained D8 genotype measles virus.
- 215
- 216 SI 2.2 Evaluating recovery of measles, mumps, and rubella RNA from liquid and solid
- 217 fractions of influent wastewater samples

- 218
- 219

Figure SI.4. Boxplots of measles, mumps, and rubella viral RNA concentrations in influent
 wastewater liquid and solid fractions. Concentrations were determined using undiluted (red) and
 ten-fold diluted (blue) nucleic acid extracts from wastewater samples spiked with virus
 standards. Dark blue dots indicated the inhibition factor (calculations as described in section SI

- 1.3). Higher inhibition factors indicate greater inhibition of RT-ddPCR. The red dashed line
- indicates no inhibition (inhibition factor = 1).
- 226

227 SI 2.3 Measles, mumps, and rubella RNA persistence in wastewater

Figure SI.5. Logged room temperature measurements during the persistence experiment.
Temperature data on day 2 is missing due to an issue with the temperature measurement
instrument.

Table SI.11: Results from measles, mumps, and rubella RNA persistence tests in wastewater.

Initial RNA concentrations (day = 0) of each target in each condition from triplicates are shown.

- The results include the first-order decay constant (k) with standard errors, the significance level
- of the first-order decay constant (p-value), the number of days required for 90% reduction (T₉₀),
- 237 and the R^2 of the linear regression.

Target	Log-transformed concentration at day 0 (copies/L-wastewater)	Temperature	k (± standard error)	p-value	T 90	R ²
Measles	7.09 ± 0.18	4°C	0.057 ± 0.008	< 0.001	40.5	0.74
		Room	0.282 ± 0.017	< 0.001	8.2	0.94
	6.17 ± 0.03	4°C	0.079 ± 0.004	< 0.001	29.3	0.96
		Room	0.369 ± 0.014	< 0.001	6.2	0.98
Mumps	6.90 ± 0.17	4°C	0.050 ± 0.007	< 0.001	45.7	0.72
		Room	0.205 ± 0.011	< 0.001	11.2	0.95
	6.00 ± 0.06	4°C	0.060 ± 0.005	< 0.001	38.4	0.88
		Room	0.253 ± 0.010	< 0.001	9.1	0.97
Rubella	6.74 ± 0.21	4°C	0.075 ± 0.007	< 0.001	30.8	0.84
		Room	0.441 ± 0.024	< 0.001	5.2	0.95
	5.86 ± 0.06	4°C	0.073 ± 0.004	< 0.001	31.6	0.95
		Room	0.452 ± 0.024	< 0.001	5.1	0.96

References

241 242 243 244 245	1	E. W. Sayers, E. E. Bolton, J. R. Brister, K. Canese, J. Chan, D. C. Comeau, R. Connor, K. Funk, C. Kelly, S. Kim, T. Madej, A. Marchler-Bauer, C. Lanczycki, S. Lathrop, Z. Lu, F. Thibaud-Nissen, T. Murphy, L. Phan, Y. Skripchenko, T. Tse, J. Wang, R. Williams, B. W. Trawick, K. D. Pruitt and S. T. Sherry, Database resources of the national center for biotechnology information, <i>Nucleic Acids Res.</i> , 2022, 50 , D20–D26.
246	2	K. Katoh, J. Rozewicki and K. D. Yamada, MAFFT online service: multiple sequence
247		alignment, interactive sequence choice and visualization, <i>Brief. Bioinform.</i> , 2019, 20 ,
248		1160–1166.
249	3	A. Untergasser, I. Cutcutache, T. Koressaar, J. Ye, B. C. Faircloth, M. Remm and S. G.
250		Rozen, Primer3—new capabilities and interfaces, Nucleic Acids Res., 2012, 40, e115.
251	4	C. Camacho, G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer and T. L.
252		Madden, BLAST+: architecture and applications, BMC Bioinformatics, 2009, 10, 421.
253	5	Z. W. Laturner, D. M. Zong, P. Kalvapalle, K. R. Gamas, A. Terwilliger, T. Crosby, P.
254		Ali, V. Avadhanula, H. H. Santos, K. Weesner, L. Hopkins, P. A. Piedra, A. W. Maresso
255		and L. B. Stadler, Evaluating recovery, cost, and throughput of different concentration
256		methods for SARS-CoV-2 wastewater-based epidemiology, Water Res., 2021, 197,
257		117043.
258	6	E. G. Lou, N. Sapoval, C. McCall, L. Bauhs, R. Carlson-Stadler, P. Kalvapalle, Y. Lai,
259	-	K. Palmer, R. Penn, W. Rich, M. Wolken, P. Brown, K. B. Ensor, L. Hopkins, T. J.
260		Treangen and L. B. Stadler, Direct comparison of RT-ddPCR and targeted amplicon

261		sequencing for SARS-CoV-2 mutation monitoring in wastewater, Sci. Total Environ.,
262		2022, 833 , 155059.
263	7	In Standard Methods For the Examination of Water and Wastewater, American Public
264		Health Association, 2017.
265	8	M. A. Borchardt, A. B. Boehm, M. Salit, S. K. Spencer, K. R. Wigginton and R. T.
266		Noble, The Environmental Microbiology Minimum Information (EMMI) Guidelines:
267		qPCR and dPCR Quality and Reporting for Environmental Microbiology, Environ. Sci.
268		<i>Technol.</i> , 2021, 55 , 10210–10223.
269	9	K. B. Hummel, L. Lowe, W. J. Bellini and P. A. Rota, Development of quantitative gene-
270		specific real-time RT-PCR assays for the detection of measles virus in clinical specimens,
271		J. Virol. Methods, 2006, 132 , 166–173.
272	10	F. Roy, L. Mendoza, J. Hiebert, R. J. McNall, B. Bankamp, S. Connolly, A. Lüdde, N.
273		Friedrich, A. Mankertz, P. A. Rota and A. Severini, Rapid Identification of Measles Virus
274		Vaccine Genotype by Real-Time PCR, J. Clin. Microbiol., 2017, 55, 735-743.
275		