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Blood Collection/Processing and On-site Testing 
 
Up to 500 µL of blood was collected with Tasso SST devices (Tasso, Inc., Seattle, WA) as as per 
manufacturer’s guidelines. Briefly, the device was attached to the participant’s arm and a button 
released a small needle upon pressing, the pre-attached tube (containing no-anticoagulants or 
other additives) then filled with blood within 5-10 minutes.  
 
The blood-filled tube was detached, and one drop of whole blood used for the US Food and Drug 
Administration (FDA) emergency use authorized (EUA) approved point of care test (FaStep from 
Assure Tech, Hangzhou, China) to measure SARS-CoV-2 anti-immunoglobulin (Ig)G and IgM 
antibodies as indicated by the manufacturer. The FaStep test is a rapid lateral flow 
chromatographic immunoassay for qualitative detection and differentiation of IgM and IgG 
antibodies to SARS-CoV-2 Spike and Nucleocapsid. The POC test results were communicated 
back to the participants immediately, explaining that the outcomes should not be used to make 
any clinical decisions or behavioral changes regarding COVID-19 transmission prevention 
measures. Further, participants were offered a $50 time and travel reimbursement in the form of 
a Visa gift card. 
 
The rest of the blood was transported to the laboratory, incubated at room temperature (RT) for 
30 minutes, and centrifuged at 1,500 g for 10 minutes at RT to separate the serum. The serum 
fraction was aliquoted and stored at -20 °C for further serological screening, see Luminex 
Methods.  
 
Saliva Collection and Processing 
 
Saliva samples were collected with SuperSal2 devices (Oasis Diagnostics, Vancouver, WA) as 
indicated by the manufacturer. Briefly, the collection device was held under the tongue of the 
participant until the red circle turned red, indicating saturation. The saliva was then squeezed out 
into a provided tube. Saliva samples were centrifuged at 10,000 g for 5 minutes at RT, the 
supernatant transferred to new tubes (removing debris) and stored at -20 °C for further serological 
screening, see Luminex Methods. 
 
Banked saliva samples, collected with the same SuperSal2 devices, served as alternative saliva 
control group for the seroprevalence calculation. We obtained 50 banked adult saliva samples 
that were collected in September of 2020 at Ahero, Kisumu County, Kenya. The first laboratory-
confirmed COVID-19 case in Kisumu County, Kenya was identified on June 9, 2020, and the first 
wave peaked in July 2020.(1) 
 
Multiplex Luminex Assay - Blood 
 
The following SARS-CoV-2 antigens were coupled to Luminex MagPlex Microspheres as 
indicated by the manufacturer (see Supplemental Table 5 for protein source information): Wild-
type full-length spike, nucleocapsid, receptor-binding domain (RBD) Wuhan, RBD alpha, RBD 
beta, RBD gamma,  RBD delta, RBD lambda, and RBD omicron. Additional human coronavirus 
(hCoV) and a Bovine Serum Albumin (BSA) control were coupled: hCoV HKU1, hCoV OC43, 
hCoV NL63, hCoV 229E. 

After validation of  conjugated beads, the participant blood samples were screened on 
96- or 384-well plates following the Luminex Multiplex Immunoassay protocols on FlexMap3D 
equipment. Briefly, beads conjugated with each of the 20 antigens were combined and diluted 
in ABE buffer (PBS, BSA 0.1 %, TWEEN 20 %, Sodium Azide 0.05 %) and added to each well 
of a 96- or 384-well (500 beads per region/antigen for the panel bead mix). The plate was 
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incubated on a magnet to fix the beads and the ABE buffer removed. Then 50 µL of serum 
samples diluted in ABE buffer (1:100) were added to the wells and incubated for 2 hours at RT 
on a plate shaker (300 rpm). Each plate also included a seven- or ten-point serial dilution of a 
prescreened positive control for SARS-CoV-2 (blood samples of confirmed COVID-19 cases). 
Following the incubation beads were washed three times with ABE buffer, post-magnet 
incubation. Then 50 µL of biotinylated anti-human secondary IgG or IgA (BD Pharmingen) 
diluted in ABE (1:1000) was added to each well containing the beads and incubated for 1 hour 
at RT on a plate shaker (300 rpm). Following incubation, beads were washed again three times 
with ABE and 50 µL of ABE diluted phycoerythrin conjugated streptavidin (1:1000; BD 
Pharmingen catalog # 554061) added to the wells containing the beads. After a final 15-minute 
incubation at RT on a plate shaker (300 rpm), a set of three ABE washes were performed and 
the beads resuspended in ABE (125 µL for 96-well plate and 75 µL for the 384 plate). After 
resuspension the plate was read on the FlexMap3D Luminex instrument where the median 
fluorescence intensity (MFI) of each antigen and bead count was recorded. Once the control 
MFIs, standards, and bead counts (minimum 50 beads per antigen in each well) were validated, 
BSA was subtracted (including for the standards) to account for non-specific binding. Previous 
studies showed that non-specific antibody binding (directly binding to the beads) may occur(2), 
which can be accounted for by subtracting the BSA-linked reads.   

 
Previously described de-identified banked blood/serum samples served as negative 

blood controls (total n=50).[6] Briefly, SARS-CoV-2 negative banked blood samples were 
sourced from UMass Chan (collected between October of 2003 and January of 2020, n=19) 
and Case Western Reserve University (pre-screened samples from community blood drive, 
collected in July 2020, n=31). Previously described banked blood samples from COVID-19 
patients hospitalized at UMass Memorial Hospital (collected between April and August of 2020) 
served as positive blood controls (n=50).[6] 

 
Due to lack of adequate controls for the SARS-CoV-2 variants (RBD alpha, beta, 

gamma, delta, lambda, and omicron) and hCoVs (OC43, HKU1, 229E, and NL63) the 
serological outcomes (raw MFI minus BSA) for serum IgG were evaluated solely as quantitative 
results and not translated into qualitative outcomes.  
 
Multiplex Luminex Assay - Saliva 
 
To screen saliva for anti-SARS-CoV-2 and hCoV IgA and IgG antibodies the multiplex panel 
and Luminex methods were applied as described for blood, except that 50 µL of undiluted 
human saliva samples was added instead of serum. Additionally, the undiluted saliva samples 
were screened for total IgG and total IgA to account for differential salivation flow rates and 
therefore total antibody dilution in saliva by coupling anti-human IgG gamma chain (Bio-Rad, 
Hercules, CA) and anti-human IgA alpha chain protein (Abcam, Cambridge, UK) respectively, 
to Luminex MagPlex Microspheres as indicated by the manufacturer.  
 
Across-plate Normalization 
 
For the across plate normalization, dilution series of post-BSA subtracted standards for each 
antigen were weighted and a normalization factor determined and applied, rescaling the data to 
a weighted average scale. 
 
Briefly, Luminex-based multiplex antibody measurements (MFI) quantify the concentration of 
antibodies (c). We assume that log2c for dilution series saturates asymptotically and has a 
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sigmoidal shape as a function of antibody concentration, which goes inversely as the dilution 
factor. Hence, concentration and dilution are interchangeable. The following dominant within-
plate and across plate effects are considered here in order to obtain an across-plate 
normalization protocol. Within plate: serial dilution protocols lead to a compounding of 
uncertainties accumulated during pipetting (i.e., if the dilution was incorrect at an earlier point 
due to pipetting error, loss of liquid clinging to the pipetting tip, etc, the later dilutions will be 
incorrect  as well). Accounting for this effect, we define the variance of the linear fit to be directly 
proportional to the dilution as detailed in the mathematical description below. Across-plate: The 
measurements performed on different plates could have high variance due to plate-specific 
factors such as background light during measurements, varying bead batches, instrument 
variations, among other factors. To account for this effect, we estimate the plate-specific 
variance from the data for that plate and weigh the plate in an inverse proportion to this variance 
in order to obtain an average plate, see below. 
 
For a given antigen, we first determine the linear regime for the sigmoid curves corresponding 
to dilution curves post-BSA subtraction for all the plates and restrict the domain to this regime. 
Let xi be the dilution at step i, and let yij be the log2 of the corresponding measurement value in 
this linear regime. We propose a dilution-dependent Normal distribution for each plate, with 
linear mean and variance proportional to dilution to account for compound uncertainties with 
increasing dilution. The proportionality constant here, σ2

j, denotes the plate-dependent 
variance. That is, yij is normally distributed as follows-  

yij ~ N( mjxi+sj, iσ2
j), for dilution  I in 	{1,2,….,n} and plate j in {1,2,….,m}. 

 
We then use the data available to define maximum likelihood estimator for each plate to find 
dilution-weighted best-fit lines using custom MATLAB fits, along the way estimating mj, sj, and 
σ2

j. The slope and the intercept of the best fit line (mj and sj) quantify the change in signal per 
unit change in dilution. The proportionality constant for the variance for each plate (σ2

j) 
ascertains how well the data fit the line, i.e., it is a proxy of how linear the plate of interest 
behaves in this regime. 

Hence, to normalize across plates, a reference standard dilution series was determined 
by averaging the standards of all plates encompassing one antigen/isotype combination by 
giving standards with less variance more weight. This way plates with less linear outcomes 
skewed the reference curve less. That is, the reference standard dilution curve has a value zi at 
the dilution xi as defined below-  
 

𝑧! =
1
𝐾
𝛴"

1
𝜎"#
'𝑚"𝑥! + 𝑠",, 𝑤ℎ𝑒𝑟𝑒𝐾 = 𝛴$

1
𝜎"#
. 

 
Once the weighted average dilution curve was determined, the plate standards were translated 
to this curve to get a normalization factor (i.e., a single value for each antigen-plate pair) as 
follows- 𝐿" =

%
&
𝛴!'𝑧" −𝑚"𝑥! − 𝑠",are the translation factors in log2-space, used to define 𝑁𝐹" =

2'!as the normalization factors for the given antigen for plate j. 
Once the normalization factors were calculated, we applied it to the sample data by 

multiplying each antigen/isotype-specific sample MFI by the normalization factor corresponding 
to the plate. The transformed data was then pooled and used to determine the qualitative 
outcomes, see below. 
 
HKU1 had low values across the standards (note the standards were chosen to target SARS-
CoV-2) for IgA in serum and saliva. As BSA and these standard measurements were the same 
order of magnitude, post-BSA subtraction the values for these were within very small and often 
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negative. Hence, we used the raw MFI measurements (without BSA subtraction) for all 
standards on the plates covering saliva and serum IgA for HKU1 to perform the across-plate 
normalization calculations. We additionally imposed the condition mj≤0 to account for the fact 
that the signal should decrease with increasing dilution. 
 
Qualitative Outcome Calculations 
 
Summary 
 
Sample MFIs were translated to qualitative (i.e., binary positive/negative) outcomes  as 
described in reference (3) and below. Briefly, for the blood (i.e., serum) samples, empirical 
training data (in the form of positive and negative controls) were taken as approximate 
probability models of measurement outcomes for each antigen, conditioned on knowing the 
class of the underlying sample. Given the training data, we first determined the prevalence q 
(and 95% confidence intervals [CI]) of the test population according to Eq. (4) of Ref. [3]. This 
estimate was used to adaptively determine a quadratic cutoff boundary that minimizes the  
classification error of the test population. This error is given by E=q(1-Se) + (1-q)(1-Sp), where 
the sensitivity Se and specificity Sp were computed with respect to the training data. The analysis 
was applied to multidimensional data by treating up to three antigens as distinct axes in a 
coordinate space. Thus, the classification boundaries were allowed to be high-dimensional 
surfaces; see Supplemental Figure 1. To determine the positive/negative outcomes of the test 
samples, MFI points falling on one side of the classification surface Sc (Sc,+), were labeled 
positive, and those falling on the other (Sc,-) were labeled negative.  

Due to lack of collection method- and population-matched controls, the saliva-based IgG 
seroprevalence calculations were determined without well-defined positive training data, and 
alternative control samples from a 2020 Kenyan study were used as a proxy for negative training 
data. Because these two datasets were expected to have significantly different fractions of 
positive individuals (which are unknown a priori), we estimated the prevalence for both 
populations using the more advanced analysis of Ref. [3] applicable to impure training data. 
Briefly, we (i) treated the available data as if it were pure; (ii) constructed a family of boundaries 
that minimize the empirical classification error defined in terms of these populations by varying 
the corresponding “pseudo-prevalence;” and (iii) solved a resulting system of nonlinear 
equations that yield the unknown prevalence estimates of the populations. This analysis can be 
adapted to estimate an analog of 95% CIs; see Ref. [3].  
 
Determining Qualitative Outcomes for Blood/Serum Samples 
 
Sample MFIs were classified as negative or positive according to the methods of reference (3). 
As a first step, all data were log-transformed according to the methods of reference [2]. This set 
the characteristic scale of the data to be of order unity, which is useful for stabilizing all 
subsequent numerical computations. Next, empirical training data (in the form of positive and 
negative controls) were taken as approximate probability models of measurement outcomes for 
each antigen conditioned on the class of the underlying sample. The boundary separating 
classes were not assumed to be a fixed object, but rather a variable that changes with 
prevalence to minimize classification error; see reference [2]. Thus, given the training data, the 
first step in the analysis was to determine the prevalence q of the test population according to 
the unbiased, classification-free prevalence estimate of reference [2]. The second step was to 
determine the cutoff boundary that minimized the total classification error as a function of q.  Of 
note, this analysis was applied to M-dimensional (1 ≤ 𝑀 ≤ 3	) vectors whose components are 
log-transformed MFI values associated with a specific antigen. This yields classification 
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boundaries that are M-1 dimensional surfaces or manifolds; see Supplemental Figure 1 for a 
three-dimensional classification boundary example based on RBD, S, and N training data. 

 
Prevalence estimation: To estimate the prevalence q of the test population, the analysis first 
constructed an M-1 dimensional quadratic surface S that maximized the fractions Qp and Qn of 
positive and negative training samples on opposite sides of the manifold, subject to the 
constraint that Qp=Qn.  Refer to the side with more positives (negatives) as S+ (S-). Note that 
this S was not used for classification. Next, let Qt denote the fraction of test samples falling on 
side S+. The prevalence was then estimated using the equation q=(Qt + Qn– 1)/(Qp + Qn – 1), 
which is a mathematically unbiased and converging estimator.  
 
A bound on the variance of the prevalence estimate is given by the formula:  
𝜎#  =   ()"#$)(%+)"#$)
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where 𝜌./0 = 1 − 𝑄1 and S is the number of samples. This quantity is an upper bound on the 
prevalence uncertainty given by the estimator described above; derivation and justification 
thereof is provided in a forthcoming manuscript. The approximate 95% confidence intervals 
were then estimated to be 𝑞 ± 2𝜎. In cases for which the prevalence estimate was 100 %, we 
instead used the “rule of three”, defining the confidence interval to be A1 − 2

,
, 1B. 

 
Classification: Given a prevalence estimate, the analysis then determined a new, M-1 
dimensional classification surface Sc such that points falling on one side, call it Sc,+, were labeled 
positive, and those falling on the other (Sc,-) were labeled negative. In this work, Sc was defined 
as the quadratic manifold that minimized the error E=q(1-Se) + (1-q)(1-Sp), where the sensitivity 
Se and specificity Sp were computed with respect to the training data. Note that E depended on 
q.  
 
Determining Qualitative Outcomes for Saliva Samples 
 
For saliva data, the classes of the samples in the two available populations (Kenyan samples 
and US samples) were not known a priori. This means that we had to solve an “unsupervised” 
problem to determine both the prevalence estimates and classes of each sample.   
 
Because the two populations were sampled at different times in the pandemic, it was reasonable 
to assume that they had different prevalence outcomes. This allowed us to leverage a novel set 
of data analysis techniques that can yield exact solutions. We refer the reader to reference [2] 
for complete details. Briefly, despite the two populations having unknown prevalence estimates, 
we temporarily assumed that they are pure in that one is treated as corresponding to a “pseudo-
prevalence” of 𝛿 = 0	and the other is treated as if 𝛿 = 1. 	This pseudo-prevalence is interpreted 
as the probability that a sample at random from a test population belongs to one of the two 
impure populations. We then found a family of boundaries that minimized the classification error 
as a function of the variable pseudo-prevalence. This led to a system of nonlinear equations in 
terms of the numbers of samples on either side of the classification boundaries.   

Ideally, the solution to this system yields a single prevalence estimate for each of the 
impure populations. However, in practice, two problems arise. First, this system is defined in 
terms of binomial random variables with a non-zero variance. We thus estimated the 95% 
confidence range of prevalence estimates as those for which the nonlinear system is solved to 
within two standard deviations of the random terms of the equation. Second, we can only 
estimate uncertainties on a finite grid of pseudo-prevalence values.  Thus, in cases, where there 
is only one grid-point satisfies the equations to within uncertainties, we use estimate the 
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uncertainty in prevalence as twice the standard deviation of the corresponding binomial random 
variable. In cases where prevalence is 100 %, we instead use the “rule of three” estimate. 
 
Statistical analysis tools 
 
Statistical calculations and graphs were done in Prism v9.4.1, R v2023.09.1+494, MATLAB 
R2023a Update 5 (9.14.0.2337262), and SeroNIST Beta Version 0.10, 0.11, and 0.12 (MATLAB 
scripts based on method described in reference (3)).  
 
 
 
 
 
 
S1 Table. Self-reported vaccine uptake and pre-existing health conditions among study 
participants (n=290).  
 

Category  n (%)  
COVID-19 Vaccine  
Yes  265 (91.4) 
No 18 (6.1) 
Missing 7 (2.4) 
  
Vaccine Type*  
Moderna  121 (45.7) 
Pfizer 106 (40.0) 
Johnson & Johnson 23 (8.6) 
Other  15 (5.7) 

  
Flu Vaccine**  
Yes  230 (79.3) 
No 53 (18.3) 
Missing 7 (2.4) 

  
Pre-ex. Conditions***  
Hypertension 32 (11.0) 
Obesity 26 (9.0) 
Diabetes II 25 (8.6) 
Asthma 24 (8.3) 
Chronic Disease (any)  21 (7.2) 
Diabetes I 9 (3.1) 
Psych. Condition 9 (3.1) 
Cancer 7 (2.4) 
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Substance Use Dis. 6 (2.1) 
CND 4 (1.4) 
Hepatitis 3 (1.0) 
Auto/Immunocomp.  3 (1.0) 
Alcoholism 2 (0.7) 
CKD 2 (0.7) 
CLD 1 (0.3) 
CRD 1 (0.3) 
Dementia 1 (0.3) 
Epilepsy 1 (0.3) 
None 168 (57.9) 
  
Smoke/Vape  
No  241 (83.1) 
Yes 39 (13.5) 
Missing  (3.4) 

 
*Among those who reported getting the COVID-19 vaccine (n=265), these are the vaccine types 
received for the first series.  
**Self-reported receiving influenza vaccine in the past 5 years.  
***Self-reported pre-existing health conditions: A subset of participants reported more than one 
pre-existing health condition (i.e., percent do not add up to 100%). Psych. conditions: 
Psychological and mental conditions, Substance Use Dis.: Substance Use Disorder, CND: 
Chronic Neurological Conditions, Auto/Immunocomp: Autoimmune and immunocompromised 
conditions, CKD: Chronic kidney disease, CLD: Chronic liver disease, CRD: Chronic respiratory 
disease.  
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S2 Table. SARS-CoV-2 serum-based IgG seroprevalence for each antigen (RBD, S, and N) and 
combination listed in percent (%) with 95% confidence intervals (95% CI), along with respective 
predicted classification accuracy (accuracy), sensitivity, and specificity and the CI range. The 
accuracy, sensitivity, and specificity were calculated based on the training data (i.e., pre-defined 
positive and negative controls). The associated classification boundaries for each antigen 
combination were determined adaptively as a function of the study data prevalence to maximize 
the classification accuracy when the analysis was applied to the study data, while being subject 
to sensitivity constraints (min. 70% sensitivity).  
 
 Serum IgG Accuracy Sensitivity Specificity 

 % (± 95% CI) % (CI range)  % (CI range) % (CI range) 
RBD, S, N  97.5 (2.4)  100.0 (96.7, 100.0)  100.0 (94.0, 100.0)  100.0 (97.3, 100.0) 
RBD, S 99.9 (3.4) 96.9 (93.0, 99.4) 98.0 (93.3, 100.0)      96.3 (92.5, 99.1) 
S, N 97.2 (2.0) 100.0 (96.7, 100) 100.0 (94.0, 100.0) 100.0 (97.3, 100.0) 
RBD, N 96.5 (2.2) 100.0 (96.7, 100.0) 100.0 (94.0, 100.0) 100.0 (97.3, 100.0)  
RBD     96.5 (2.2) 100.0 (96.7, 100.0) 100.0 (94.0, 100.0) 100.0 (97.3, 100.0) 
S   97.9 (1.7) 100.0 (96.7, 100.0) 100.0 (94.0, 100.0) 100.0 (97.3, 100.0) 
N  49.9 (7.0) 94.0 (90.2, 97.4) 86.3 (76.0, 95.1) 97.5 (94.3, 100.0) 

 
 
 
S3 Table. SARS-CoV-2 serum-based IgA seroprevalence for each antigen (RBD, S, and N) and 
combination listed in percent (%) with 95% confidence intervals (95% CI), along with respective 
predicted classification accuracy (accuracy), sensitivity, and specificity and the CI range. The 
accuracy, sensitivity, and specificity were calculated based on the training data (i.e., pre-defined 
positive and negative controls). The associated classification boundaries for each antigen 
combination were determined adaptively as a function of the study data prevalence to maximize 
the classification accuracy when the analysis was applied to the study data, while being subject 
to sensitivity constraints (min. 70% sensitivity). 
  
 Serum IgA Accuracy Sensitivity Specificity 

 % (± 95% CI) % (CI range)  % (CI range)  % (CI range)  
RBD, S, N  87.2 (6.4) 95.1 (90.7, 99.0) 98.0 (93.2, 100.0) 92.6 (85.2, 98.3) 
RBD, S 83.1 (6.7) 94.2 (89.3, 98.1) 95.9 (89.4, 100.0) 92.6 (84.9, 98.3) 
S, N 84.8 (6.6) 96.1 (91.9, 99.1)  100.0 (93.9, 100.0) 92.6 (84.6, 98.3) 
RBD, N 39.8 (12.2) 83.5 (76.2, 90.3) 89.8 (80.5, 97.7) 77.8 (66.1, 88.4) 
RBD     62.7 (14.5) 80.8 (73.0, 88.2) 78.0 (66.0, 88.9) 83.3 (72.7, 92.9) 
S   84.0 (6.7) 94.2 (89.3, 98.2) 95.9 (89.2, 100.0) 92.6 (85.1, 98.3) 
N  14.1 (25.5) 80.6 (73.3, 87.6) 65.3 (51.9, 78.4) 94.4 (87.5, 100.0) 

 
 
 



 9 

S4 Table. SARS-CoV-2 saliva-based IgG seroprevalence for each antigen (RBD, S, and N) and 
combination in percent (%) and associated uncertainty ranges (uncertainty range, %). The listed 
seroprevalences do not have respective classification accuracies, sensitivities, and specificities 
because we calculated the saliva-based seroprevalence assuming impure training data as 
described in results, methods and reference (3). Hence, without knowing the true classes of the 
training data we could not estimate the predicted classification accuracies, sensitivities, and 
specificities. *The N-based saliva seroprevalence resulted in high level of uncertainty due to 
extensive overlap in MFI between the study sample and control groups (lack of separation in the 
population-specific outcomes).  
 
 Saliva IgG 

 % (uncertainty range,%) 
RBD, S, N  100.0 (98.7 - 100.0) 
RBD, S 100.0 (98.7 - 100.0) 
S, N 96.0 (92.4 - 99.6) 
RBD, N 86.9 (81.6 - 96.4) 
RBD     86.9 (75.8 - 96.2) 
S   96.0 (92.4 - 99.6) 
N  48.0 (48.0 - 99.7)* 

 
 
 
S5 Table. Coupled antigen type and source.  

Antigen Virus Source/Company Additional 
Identifier 

RBD Wuhan 
(WT) 
 

SARS-CoV-2 MassBiologics of 
UMass Chan 
Medical School 

Lot #: 021820 RS 
040780 

Nucleocapsid 
Wuhan (WT)  

SARS-CoV-2 MassBiologics of 
UMass Chan 
Medical School 

Lot #: 060420B 
RS 063020 

Wild-type Full 
Length Spike 
Trimer 

SARS-CoV-2 Frederick National 
Laboratory, Icahn 
School of Medicine 
at Mt. Sinai, NCI 
SeroNet 
Consortium 

SARS-CoV-2 S-
2P(15-1213)-T4f-
His6 protein,  
Lot # :P210721.02  

HCoV-229E 
Spike 

Endemic 
coronavirus 

Sino Biology 40605-V08B 

HCoV-NL63 
Spike 

Endemic 
coronavirus 

Sino Biology 40604-V08B 
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HCoV-OC43 
Spike 

Endemic 
coronavirus 

Sino Biology 40607-V08B 

HCoV-HKU1 
Spike 

Endemic 
coronavirus 

Sino Biology 40021-V08H 

BSA -- Sigma Aldrich A7030-100G 

RBD alpha SARS-CoV-2 MassBiologics of 
UMass Chan 
Medical School(4) 

 

RBD beta SARS-CoV-2 MassBiologics of 
UMass Chan 
Medical School(4) 

 

RBD gamma SARS-CoV-2 MassBiologics of 
UMass Chan 
Medical School(4) 

 

RBD delta SARS-CoV-2  MassBiologics of 
UMass Chan 
Medical School(4) 

 

RBD lambda SARS-CoV-2 MassBiologics of 
UMass Chan 
Medical School(4) 

 

RBD omicron SARS-CoV-2 Frederick National 
Laboratory, Icahn 
School of Medicine 
at Mt. Sinai, NCI 
SeroNet 
Consortium 

TPA-CoV-2-
S(318-529)-3C-
His8-SBP 
B.1.1.529, 
RP1211220.112, 
Lot #: P211220.02 
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S1 Fig. Representative graphic of a three-dimensional classification boundary. The 
graphic of a three-dimensional (3D) classification boundary graphic was based on training data 
covering anti-RBD, -S, and -N antibodies from confirmed positive and negative samples. S, 
Spike. RBD, Receptor Binding Protein. N, Nucleocapsid. 
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S2 Fig. Analysis of samples that were non-concordant between the multiplex analysis 
and the point-of care test. Comparison of samples that were positive for the multiplex assay 
and negative for the point-of care test (POC) test across all antigen combinations). (A) The 
average SARS-CoV-2 spike (S) median fluorescence intensity (MFI) of the non-concordant 
samples (n=15) was lower compared to the concordant samples (n=265, p=0.0005). (B) The S-
based OC43 measurements of the non-concordant samples were not significantly higher than 
the concordant samples (p=0.12). Hence, the multiplex assay was more sensitive compared to 
the POC test and but not more likely to be picking up OC43 among the non-concordant samples. 
The statistical outcomes may be affected by the unequal sample sizes (15 vs 265). MFI, median 
fluorescence intensity. S, Spike. Ns, non-significant (p>0.05). Non-conc., non-concordant 
samples (multiplex assay vs. POC test). Conc., concordant samples (sample that had the same 
qualitative outcome both with the multiplex assay and POC test). POC, point-of-care test. *** = 
p<0.001, Welch’s t-test. 
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S3 Fig. Comparison of receptor binding protein-specific serum IgG and IgA outcomes. 
Comparison of receptor binding protein (RBD)-specific serum IgG and IgA outcomes as median 
fluorescence intensity (MFI, mean and standard deviations) among the study participants (mean 
and standard deviations). **** = p<0.0001, Welch’s t-test. MFI, median fluorescence intensity. 
RBD, Receptor Binding Protein. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
S4 Fig. Comparison of spike-specific serum IgG and IgA outcomes. Comparison of spike 
(S) protein-specific serum IgG and IgA outcomes (MFIs) among the study participants (mean 
and standard deviations). **** = p<0.0001, Welch’s t-test. S, Spike Protein. 
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S5 Fig. Comparison of nucleocapsid-specific serum IgG and IgA outcomes. Comparison 
of nucleocapsid (N) protein-specific serum IgG and IgA outcomes (MFIs) among the study 
participants (mean and standard deviations). **** = p<0.0001, Welch’s t-test. N, Nucleocapsid 
Protein. 
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S6 Fig. Comparison of serum- and saliva-based serological outcomes. Line up of saliva 
versus serum comparisons of antigen-specific outcomes (MFI minus BSA for serum and 
transformed MFI for saliva [antigen- and isotype-specific MFI minus BSA, divided by total Ig, 
multiplied by 1000]), for anti-SARS-CoV-2 receptor binding domain (RBD; A, B), spike (S; C, 
D), and nucleocapsid (N; E, F) IgG (left column) and IgA (right column) antibody measurements. 
The outcomes between serum and saliva did not correlate for any antigen or isotype 
combination. 
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S7 Fig. Comparison of serological outcomes from study versus control samples. 
Comparison of study and control population by line up of saliva-based antigen-specific 
transformed MFI (antigen- and isotype-specific MFI minus BSA, divided by total Ig, and 
multiplied by 1000) for IgG (left column) and IgA (right column). For saliva IgG, the control 
sample population (sample collection method-matched samples from Kenya) always clusters in 

A B 

C D 

E F 
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low MFI area and separate well from the study sample population (A, C, E), whereas for IgA the 
outcomes/MFIs from the control sample population overlap significantly with the study sample 
population for at least one antigen (B, D, F) and score higher maximum MFIs for RBD-specific 
outcomes (B, D). Hence, no saliva IgA percent seroprevalences could be calculated for the 
study samples based on these controls. S, Spike. RBD, Receptor Binding Protein. N, 
Nucleocapsid.  
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
S8 Fig. Comparison of receptor binding protein-specific saliva IgG and IgA serological 
outcomes. Comparison of RBD-specific saliva IgG and IgA outcomes (transformed MFI = [raw 
MFI/total Ig]*1000) among the study participants (mean and standard deviations). **** = 
p<0.0001, Welch’s t-test. RBD, Receptor Binding Protein. 
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S9 Fig. Comparison of spike protein-specific saliva IgG and IgA serological outcomes. 
Comparison of S-specific saliva IgG and IgA outcomes (transformed MFI = [raw MFI/total 
Ig]*1000) among the study participants (mean and standard deviations). **** = p<0.0001, 
Welch’s t-test. S, Spike. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
S10 Fig. Comparison of nucleocapsid protein-specific saliva IgG and IgA serological 
outcomes. Comparison of nucleocapsid (N)-specific saliva IgG and IgA outcomes (transformed 
MFI = [raw MFI/total Ig]*1000) among the study participants (mean and standard deviations). 
**** = p<0.0001, Welch’s t-test. For N-specific outcomes in saliva, the IgA reads are higher 
compared to IgG. Whereas for RBD and S, the IgG reads in saliva are higher. Overall, the N-
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specific saliva IgG and IgA outcomes (transformed MFI) are lower than for RBD and S (i.e., 
lower overall MFI, see y-axis comparison between Supplemental Figures 8, 9, and 10). N, 
Nucleocapsid. 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
S11 Fig. Serum IgG outcome distribution in linear scale. Linear scale dot plot with means and 
95% confidence intervals (CI) of antigen-specific antibody measurements (MFI minus BSA and 
normalized across plates) for serum IgG SARS-CoV-2 and variants, along with human endemic 
coronaviruses OC43, HKU1, NL63, 229E. MFI, median fluorescence intensity. N, Nucleocapsid. 
S, Spike. RBD, Receptor Binding Protein. hCoV, human endemic coronaviruses. WT, wild-type 
(Wuhan). 
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