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27 Abstract

28 Objectives

29 To triage patients with a high likelihood of osteopenia before referring them for a standard bone 

30 mass density test for diagnosis.

31 Introduction

32 Osteopenia defined by low bone mineral density, is a precursor for osteoporosis and is primarily 

33 associated with aging-linked natural bone loss in adulthood. The model and findings can be used 

34 to adopt an inclusive screening and swift treatment model that can work in most settings where 

35 resources are limited.

36 Methods

37 We developed a diagnostic prediction rule based on clinical characteristics. A retrospective cohort 

38 of 798 patients who were going to be diagnosed with osteopenia or osteoporosis, within January-

39 September 2022. The multivariable logistic regression to assess potential predictors. The logistic 

40 coefficients were transformed as a risk-based scoring system. The internally validation was 

41 performed using a bootstrapping procedure.

42 Results

43 The model initially included seven predictors: sex, age, height, weight, body mass index, diabetes 

44 mellitus, and estimated glomerular filtration rate. However, after using backward elimination for 

45 model reduction, only three predictors—sex, age, and weight—were retained in the final model. 

46 The discrimination performance was assessed with the area under the receiver operating 

47 characteristic curve (AuROC); it was 0.779 (95%CI 0.74-0.82), and the calibration plot showed 
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48 good calibration. For internal validation, bootstrap resampling was utilized, yielding an AuROC of 

49 0.768 (95% CI 0.73-0.81), indicating robust performance of the model.

50 Conclusions

51 This study developed and internally validated the Osteopenia Simple Scoring System. This clinical 

52 risk score could be one of the important tools for diagnosing osteopenia and allocating resources 

53 in resource-limited settings.

54

55 Keywords

56 Osteopenia, Osteoporosis, Risk prediction, Diagnostic prediction rule, Clinical prediction

57

58 Introduction

59 Osteopenia is a decrease in bone mineral density (BMD) below normal values for their 

60 ages, is the initial stage of bone loss, which may progress to a more severe condition i.e. 

61 osteoporosis. However, that doesn't always lead to osteoporosis depending on many factors. The 

62 primary cause of osteopenia is the natural bone loss that occurs gradually during adulthood. 

63 Secondary causes supposed to accelerate bone loss include lifestyle factors[1] such as smoking, 

64 certain underlying diseases, steroid usage, early menopausal woman, rheumatoid arthritis, and 

65 some medications as well. Osteopenia is often a precursor to osteoporosis, which are now 

66 diagnosed by measuring bone mineral density using dual energy X-ray absorptiometry bone 

67 scans.[2] The osteopenia, as defined by the World Health Organization (WHO) is a t-score 

68 between -1 to -2.5, while values less than -2.5 are diagnostic for osteoporosis.[3, 4] Osteopenia 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 23, 2024. ; https://doi.org/10.1101/2024.05.23.24307788doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.23.24307788
http://creativecommons.org/licenses/by/4.0/


Page 4 of 20

69 is not considered a disease while osteoporosis is. In the other hand, osteopenia is considered a 

70 marker for risk of fractures.[5]

71 The potential predictors of bone mass density in patients with fractures treated in hospitals 

72 were found that factors such as age, sex, smoking, history of adult wrist fractures, spinal 

73 deformities[6, 7], history of adult hip fractures, and osteoarthritis of the spine[8] significantly 

74 differed statistically between groups with normal bone mass density and those with bone mass 

75 density below -1 standard deviation. Low body mass index, low vitamin D level[9] and diabetes[10, 

76 11], chronic kidney disease[12] are also associated with osteoporosis.

77 There has been increasing attention to the clinical predictive models of diagnostic 

78 screening models for the prediction of fracture risk in patients diagnosed with osteoporosis.[13-

79 16] Clinical predictive models are commonly used in clinics for the purpose of disease diagnosis, 

80 outcome prediction, and evaluation of the clinical response.[17, 18] We used multivariable logistic 

81 regression to develop predictive models for possible use in the facilitation of early treatment and 

82 screening for osteopenia.

83 In countries with limited resources, access to a test for bone mass density would be far-

84 fetched. This research aims to help triage patients at high risk of having osteopenia before they 

85 are referred for a standard BMD test for diagnosis. This work could be extended to programs 

86 aimed to osteopenia or osteoporosis screening in the community.

87

88 Methods

89 Study design and setting
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90 This diagnostic prediction research, utilizing a retrospective cohort design, was conducted 

91 at Suranaree University of Technology Hospital in Nakhon Ratchasima, located in the lower 

92 northeastern region of Thailand. Our university hospital conducts more than 2,000 bone mass 

93 density tests annually. 

94 This study gathered demographic and laboratory data, including age, weight, height, body 

95 mass index, smoking status, early menopause, rheumatoid arthritis, diabetes mellitus, chronic 

96 kidney disease, serum creatinine, and estimated glomerular filtration rate levels from the 

97 electronic medical records of Suranaree University Technology Hospital. The data collection 

98 period spanned from January to September 2022. BMD was used in the analysis. Participants 

99 previously diagnosed with osteopenia or osteoporosis were excluded from the study.

100

101 Confirmation of cases

102 All patients included in this study underwent a BMD test on a single machine at the 

103 hospital's checkup center. In this study, osteopenia is defined as a T-score of less than -1, and 

104 osteoporosis is defined as a T-score of less than -2.5.

105

106 Statistical analysis and sample size calculations

107 Continuous variables were assessed for normality and presented as means and standard 

108 deviations if normally distributed, or medians and interquartile ranges if not. Mean differences of 

109 the variables between the two groups were compared by using an independent t-test, or rank-

110 sum test based on the distribution of the data. Categorical data were expressed as frequencies 

111 and percentages of the total in each group and compared between groups using either the exact 

112 probability test or chi-square test where applicable. We assessed diagnostic performance and 
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113 potential prediction by univariable logistic regression, using crude odds ratios (OR) and their 

114 corresponding area under the receiver operating characteristic curves (AuROC). Statistically 

115 significant two-sided p-values less than 0.05 were considered in applicable cases. All analyses 

116 were done using Stata statistical software version 17. In the development of clinical prediction 

117 rules based on methods described by Riley et al.[19], it was estimated that the minimum sample 

118 size for a multivariable prediction model with a binary outcome was required. This was estimated 

119 from a model c-statistic of 0.8, six candidate predictors, and an assumed prevalence of 

120 osteopenia from a preliminary study, standing at 46%, to get the minimum sample size of 382 

121 cases with 176 events.

122

123 Model development and validation

124 All potential predictor variables necessary for diagnostic prediction of osteopenia in our 

125 routine practice were extracted from the hospital's electronic medical records. These included 

126 age, sex, height, weight, smoking status, serum creatinine levels, diabetes mellitus (with or 

127 without insulin use), hypertension, early menopause, chronic kidney disease, steroid use, and 

128 rheumatoid arthritis. 

129 We identified potential predictors based on prior knowledge; about the biological process, 

130 a review of the literature, and available prediction models. Subsequently, the exploratory analysis 

131 of significant predictors was done using a univariable logistic regression. We assessed the 

132 significance of the predictors through the diagnostic odds ratio and the corresponding p-value. 

133 Additionally, we assessed the area under the receiver operating characteristic curve (AuROC) for 

134 each univariable logistic model. Any predictor variable showing an odds ratio >1.00, significant p-

135 value of <0.05, and higher AuROC than others was included in the model. Continuous potential 

136 variables were categorized into ordinal following the preceding model and review of literature. 
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137 Therefore, in this respect, understanding the nature of the relationship between the dependent 

138 variable and the outcome to determines the cut-off point.

139 The model to be used for the study is derived from the multivariable logistic regression 

140 with a binary outcome. The factors that not contributing to the outcome were removed using the 

141 backward elimination method. A total of four predictors got pruned from the model: height, body 

142 mass index, diabetes mellitus, and estimated glomerular filtration rate. Diagnostic performance of 

143 the developed model was assessed using the reduced multivariable model by means of 

144 calibration and discrimination. Calibration was assessed by the Hosmer-Lemeshow goodness-of-

145 fit test, and a plot was applied to show both the model-estimated disease probabilities and 

146 observed disease data. The discriminative ability of the model was graphically tested through a 

147 distributional plot. It was reported with the area under the curve of the receiver operating 

148 characteristic. The internal validation was conducted using the bootstrapping procedure of 1000 

149 replications.

150

151 Simplified score derivation

152 Each predictor in the multivariable model was assigned a specific score based on the 

153 logistic regression coefficients. The coefficient of each predictor was divided by the smallest 

154 coefficient and then rounded up to the nearest whole number. Utilizing a population-analogue 

155 approach, the positive predictive value (PPV) was calculated to demonstrate the predictive 

156 performance. Calibration and discrimination measurements were also conducted using the score-

157 based multivariable logistic model.

158

159 Ethical considerations
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160 This research was conducted based on ethical standards of clinical research. According 

161 to the Helsinki Declaration and began its activity only after it received approval and permission 

162 from the Institutional Review Board of Suranaree University of Technology regarding the review 

163 of the research protocol. Retrospective data were extracted through data record forms. The 

164 patients were treated by the routine hospital staff and were not affected by any research protocols, 

165 the informed consent was waived. The study adhered to the reporting guidelines outlined in the 

166 Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis 

167 (TRIPOD) statement. The study protocol received approval from the Institutional Review Board 

168 of Suranaree University of Technology, with approval number COA No.32/2567.

169

170 Results

171 Participants

172 A total of 798 participants were evaluated for osteopenia at the Suranaree University of 

173 Technology check-up center from January to September 2022. After excluding 242 patients 

174 previously diagnosed with osteopenia or osteoporosis, the remaining 556 patients were divided 

175 into two groups: 230 in the osteopenia group and 326 in the non-osteopenia group. The 

176 prevalence of osteopenia and osteoporosis was 41.4% and 5.4%, respectively. Of these, 198 

177 patients in the osteopenia group and 188 in the non-osteopenia group were female. The mean 

178 age for the osteopenia group was 65.07±10.34 years, compared to 59.03±9.14 years for the non-

179 osteopenia group. The average weight was 57.40±9.58 kg for osteopenia cases and 57.40±12.71 

180 kg for non-osteopenia cases. Average heights were 155.22±7.50 cm for the osteopenia group 

181 and 160.53±8.00 cm for the non-osteopenia group. The mean BMI was 24.68±14.44 kg/m^2 for 

182 osteopenia cases and 25.64±4.02 kg/m^2 for non-osteopenia cases (Table 1). There were 
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183 significant differences in groups in terms of female gender, age, weight, height, BMI, and current 

184 underlying diseases, including diabetes mellitus, as well as in laboratory factors such as estimated 

185 glomerular filtration rate (eGFR) (p < 0.001). There were no significant differences in the serum 

186 creatinine, early menopause, rheumatoid arthritis, and smoking status.

187

188 Model development and internal validation

189 The following continuous variables were converted to ordinal variables: eGFR, body mass 

190 index, weight, age, and height. The cut points were determined based on information gathered 

191 from the literature and prior models. The model was developed using multivariable logistic 

192 regression, which demonstrated the relevant characteristics included in the regression for 

193 predicting osteopenia were female gender, age, height, weight, BMI, diabetes mellitus, and eGFR. 

194 These factors remained significant in the multivariable logistic regression analysis and were 

195 integrated into the full risk prediction model (Table 2).

196 The reduced model employed a backward elimination strategy. Multivariable logistic 

197 regression indicated that female gender, age, and weight, which were included in the final model, 

198 were found to be statistically significant. The scoring ranged from 1 to a maximum of 5 points, 

199 accumulating to a total of 13 points, summing up to 133. Ages over 70 years were assigned the 

200 highest scores (Table 3).

201 The calibration plot of the estimated risk of osteopenia compared to the actual risk showed 

202 acceptable calibration, with observed probabilities closely matching the expected probabilities 

203 and exhibiting minimum variation from the ideal (Figure 2). The Hosmer-Lemeshow goodness-of-

204 fit statistic yielded a non-significant result for the outcome (p = 0.614), suggesting that the 

205 statistical fitness of the model was satisfactory, given that a p-value larger than 0.1 was regarded 
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206 indicative of a good fit. Area under the receiver operating characteristic curve (AuROC) was 

207 0.7792 (95% CI 0.74-0.82), showing a good performance in model discrimation (Figure 3).

208 The process of internal validation was conducted by utilizing a bootstrap resampling 

209 technique with 1000 repeats. Following the adjustment for optimism in discrimination, the 

210 bootstrap analysis produced an area under the receiver operating characteristic curve (AuROC) 

211 of 0.768 (95% CI 0.73-0.81), indicates a good ability and a significant level of agreement between 

212 the estimated and observed probabilities of risk (Supplementary material).

213

214 Simple score cut point identification

215 A very high sensitivity of 94.8% (95% CI 91.1-97.3) was observed at a cut point of ≥4, 

216 while the specificity was 28.5% (95% CI 23.7-33.8). At a score of ≥10, the specificity was high at 

217 91.7% (95% CI 88.2-94.5), but the sensitivity was lower at 44.3% (95% CI 37.8-51.0). The best 

218 cut point was determined by achieving a balance between sensitivity and specificity. For a score 

219 of 6 or above, the sensitivity was 82.2% (95% CI 76.6-86.9), and the specificity was 55.2% (95% 

220 CI 49.6-60.7), with a likelihood ratio of positive result of 1.83 (95% CI 1.60-2.10). The positive 

221 predictive value was 56.4% (95% CI 50.9-61.8), whereas the negative predictive value was 81.4% 

222 (95% CI 75.7-86.3) (Table 4).

223

224 Clinical utility

225 In the context of triaging patients for osteopenia, the newly developed diagnostic 

226 prediction rule was applied. 32.37% (180 patients out of 556) were true negatives, this model can 

227 reduce the unnecessary BMD tests. Among the 211 patients who scored negatively (simple score 

228 below 6), 41 patients (18.55%) were false negatives for osteopenia, and only 2 patients (0.36% 
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229 of all patients) were diagnosed with osteoporosis. On the other hand, among those with a positive 

230 score test (simple score above 6), 146 patients had normal BMD and were recommended for 

231 follow-up, while 189 patients were confirmed to have osteopenia and received medical treatment 

232 according to the treatment guidelines.

233

234 Discussion

235 Despite the limitations, the current study managed to establish a diagnostic rule for 

236 predicting patients with osteopenia, which could strengthen an early diagnosis and the treatment 

237 of patients in osteopenia. This finding is highly relevant because our hospital faces a significant 

238 burden of bone density testing and a high prevalence of osteopenia. Moreover, the application of 

239 a predictive diagnosis logistic regression model, as conducted in the current study, also supports 

240 the efforts of other studies to implement more predictive analytics in clinical settings[20].

241 Our results emphasize the importance of a multi-factor approach in novel predictive model 

242 formulation. Specifically, our model uses the same age, sex, and weight as the known risk factors, 

243 established to predict osteopenia and osteoporosis, proven to be significant in other studies.[21] 

244 Similarly, the use of backward elimination for the purpose of precise identification of the factors 

245 allowed reducing the insignificant height and BMI from the model, as these variables have 

246 negligible impact on the model’s predictability of outcomes in our patients.[22]

247 The calibration and discrimination results of our model are satisfactory and being 

248 confirmed. The results of the Hosmer-Lemeshow test and AuROC testify to the model’s effective 

249 prediction of true osteopenia cases. This is confirmed by the literature on the appropriateness of 

250 calculating these metrics to check how well a diagnostic tool performs in clinical epidemiology 

251 and diagnostics.[23]
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252 Furthermore, the use of this model demonstrated its significant clinical use. The 

253 prioritization of resources based on a simple score, which identifies high and low-risk patients, 

254 may also lower the risk of untreated osteopenia transitioning to osteoporosis and adhere to WHO, 

255 who suggests that more tests should be conducted on populations at higher risks.[24, 25]

256 Although the FRAX score is currently used in predicting the 10-year probability of hip 

257 fracture[26, 27], a study by Teeratakulpisarn et al[28]. reports that even though there is 

258 concordance between the 10-year probability of hip fractures for FRAX scores with and without 

259 BMD, this concordance declines in elderly and osteoporotic participants, and in those with FRAX 

260 scores without BMD. Therefore, to achieve higher accuracy, it is advisable to undergo BMD 

261 testing.

262 In 2001, Koh LK et al.[29] designed a simple tool to categorize postmenopausal Asian 

263 women (OSTA score). They utilized a questionnaire to identify those in the cohort with 

264 osteoporosis, defined as BMD T-scores ≤ -2.5 and use multivariable logistic regression analysis. 

265 The tool had a good performance with an area under the ROC curve of 0.79. Subsequently, it 

266 showed sensitivity of 91%, specificity of 45%, among others.[29] Additionally, upon a validation in 

267 Thai population, OSTA score presented sensitivity of 51.7% and specificity of 77.4% with a false 

268 negative rate of ~20%.[30-33] The OSTA risk classification system showed that high and medium-

269 risk patients were significantly more likely to sustain injuries in falls and have different femoral 

270 bone fractures patterns compared to low-risk patients. Machine learning models particularly 

271 artificial neural networks offer another opportunity to predict low BMD. Comparison of both ANN 

272 models to logistic regression models to predict low BMD had no significantly different in 

273 performance for either the femoral neck or lumbar spine.[34] Although the OSTA score performs 

274 well within the Thai population and particularly among postmenopausal women, however, it can 

275 be limited use to the general population.
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276 Our model’s stability and reliability were internal validation via bootstrapping, process 

277 accounting for the potential optimism that can compromise prediction models developed in narrow 

278 or specific populations. All of these methods make our research more reliable and can be used 

279 to apply to similar settings with limited health care resources.

280 The study also has its limitations. In particular, the specificity of the model at some cut 

281 points was insufficient for real-life applications, resulting in overdiagnosis and overtreatment. This 

282 compromise between sensitivity and specificity is common in the development of diagnostic 

283 instruments, and it needs to be adjusted depending on the costs and risks of the disease. For 

284 future research, it is possible not only to include new, more prognostic factors but also to progress 

285 statistical instruments, such as machine learning. Further external validation is also required 

286 before adopting this model in other settings.

287

288 Conclusion

289 The development of a diagnostic prediction rule for osteopenia in a resource-limited 

290 context is a major progress in the field of bone health management. This instrument is likely to 

291 enhance patient prognosis and maximize the use of available healthcare resources by detecting 

292 and offering timely therapeutic treatment to those at risk.

293
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307 Figure legends

308 Figure 1: Study flow.

309 Figure 2: Calibration plot for model predicted risk for osteopenia versus actual risk.

310 Figure 3: Discrimination performance of the newly developed model, using clinical 

311 characteristics to classify patients with normal and low bone mass density.

312 Figure 4: Clinical utility.

313
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315 Table 1: Baseline patient characteristics, underlying diseases, and laboratory investigations of 

316 the derivation cohort, along with a comparison of osteopenia cases and normal bone mineral 

317 density tests (n = 556).

Osteopenia cases
(n = 230)

Non-osteopenia 
cases

(n = 326)Patient characteristics
n (%) n (%)

Univariable 
OR (95%CI)

p-
value AuROC

Female gender 198 (86.09) 188 (57.67) 4.54 (2.94-
7.00)

< 
0.001

0.64 (0.61-0.68)

Age, years (mean ± SD) 65.07 ± 10.34 59.03 ± 9.14 1.07 (1.05-
1.09)

< 
0.001

0.68 (0.64-0.73)

Weight, kg (mean ± SD) 57.40 ± 9.58 66.30 ± 12.71 0.93 (0.91-
0.95)

< 
0.001

0.29 (0.25-0.34)

Height, cm (mean ± SD) 155.22 ± 7.50 160.53 ± 8.03 0.92 (0.89-
0.94)

< 
0.001

0.32 (0.28-0.37)

BMI, km/m2 (mean ± SD) 24.68 ± 14.44 25.64 ± 4.02 0.88 (0.84-
0.93)

< 
0.001

0.37 (0.33-0.42)

Current smoking 1 (0.43) 5 (1.54) 0.28 (0.03-
2.40)

0.245 0.49 (0.49-0.50)

Early menopause 5 (2.17) 10 (3.09) 0.70 (0.24-
2.07)

0.516 0.50 (0.48-0.51)

Rheumatoid arthritis 1 (0.43) 2 (0.62) 0.70 (0.06-
7.80)

0.774 0.50 (0.49-0.51)

Diabetes mellitus 15 (6.52) 45 (13.89) 0.43 (0.23-
0.80)

0.007 0.46 (0.44-0.49)

Creatinine, g/dL (mean ± 
SD)

0.87 ± 0.72 0.87 ± 0.37 1.01 (0.72-
1.42)

0.967 0.42 (0.37-0.48)

eGFR, ml/min/1.73 m2 
(mean ± SD)

68.59 ± 24.13 83.71 ± 25.39 0.97 (0.97-
0.98)

< 
0.001

0.32 (0.28-0.37)

Chronic kidney disease 25 (10.92) 37 (11.46) 0.95 (0.55-
1.62)

0.844 0.50 (0.47-0.52)

318 Abbreviations: eGFR, estimated glomerular filtration rate; OR, odds ratio; CI, confidence interval

319

320 Table 2: Full model multivariable logistic regression analysis.

Full modelPredictors mOR 95% CI P-value
Female 5.33 3.03 - 9.38 0.000
Age, year
   ≤ 59
   60 – 69
   ≥ 70

1
3.59
6.91

2.25 - 5.74
3.62 - 13.20

< 0.001
< 0.001

Height, cm
   ≥ 155
   < 155

1
0.97 0.57 - 1.64 0.903

Weight, kg
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   ≥ 70
   60 – 69
   50 – 59
   ≤ 49

1
1.15
1.66
1.72

0.61 - 2.17
0.72 - 3.82
0.54 - 5.54

0.656
0.233
0.360

Body mass index, kg/m2

   ≥ 25.0
   23.0 – 24.9
   18.5 – 22.9
   < 18.5

1
1.19
1.71
3.94

0.64 - 2.22
0.79 - 3.69

0.87 - 17.90

0.577
0.169
0.076

Diabetes mellitus 0.35 0.17 - 0.71 0.004
Estimated GFR
   ≥ 60
   30 – 59
   15 – 29
   ≤ 14

1
0.84
1.89

1

0.45 - 1.54
0.22 - 16.05

Empty

0.565
0.558

Model intercept .062
321 Abbreviation: mOR, multivariable odds ratio; BMI, body mass index; GFR, glomerular filtration 

322 rate

323

324

325

326

327

328

329

330 Table 3: Reduced model with logit coefficients.

Predictors mOR 95% CI P-value  Coefficient Score
Female 4.09 2.51 - 6.68 0.000 1.41 4
Age, year
≤ 59
60 – 69
≥ 70

1
3.29
5.52

2.13 - 5.08
3.21 - 9.50

0.000
0.000

1.19
1.71

3.5
5

Weight, kg
≥ 70
60 – 69
50 – 59
≤ 49

1
1.40
2.60
3.96

0.80 - 2.45
1.51 - 4.50
2.02 - 7.76

0.240
0.001
0.000

0.34
0.96
1.38

1
3
4

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 23, 2024. ; https://doi.org/10.1101/2024.05.23.24307788doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.23.24307788
http://creativecommons.org/licenses/by/4.0/


Page 17 of 20

Model intercept .065
331 Abbreviation: mOR, multivariable odds ratio; BMI, body mass index

332

333 Table 4: Selection of score cut-off point with sensitivity, specificity, LHR+, PPV, NPV, and along 

334 with 95% confidence interval.

Score cut point Sensitivity (%) Specificity (%) LHR+ (%) PPV (%) NPV (%)
≥ 4 94.8 (91.1-97.3) 28.5 (23.7-33.8) 1.33 (1.23-1.43) 48.3 (43.6-53.1) 88.6 (80.9-94.0)
≥ 6 82.2 (76.6-86.9) 55.2 (49.6-60.7) 1.83 (1.60-2.10) 56.4 (50.9-61.8) 81.4 (75.7-86.3)
≥ 10 44.3 (37.8-51.0) 91.7 (88.2-94.5) 5.35 (3.63-7.90) 79.1 (71.0-85.7) 70.0 (65.4-74.3)

335 Abbreviation: LHR+, likelihood ratio for positive test; PPV, positive predictive value; NPV, 

336 negative predictive value

337

338

339

340

341

342
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