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S1 Appendix.

Technical details of simulation model.

Overview

The model captures the dynamics of infection spread and health opinion competition in
a fixed-size population. Infection transmission dynamics is described by
Susceptible-Infected-Removed (SIR) framework whereupon each individual belongs to
one of three classes. Susceptible individuals who come into contact with infectious
individuals can become infected. If transmission of infection has taken place, individuals
become infectious. After a period of time infectious individuals recover and become
immune to further acquisition of infection. There are two mutually exclusive health
opinions circulating in the population: health-positive,

⊕
, and health-neutral,

⊗
. Each

individual holds one of two opinions. Individuals can switch opinion upon interacting
with their peers who hold the opposite opinion. The more such individuals the faster
this switch will occur. Switching of opinions can occur in a disease-free population.

Infection transmission dynamics and opinion switching are coupled via two
mechanisms. Presence of the infection as captured by the global prevalence leads to
increase in the switch rate to health-positive opinion. If in a response to the outbreak a
lockdown is initiated, switch rate to health-neutral opinion increases, such that the
increase is positively correlated to stringency and the duration of the lockdown.

Below we describe mathematical formulations and methods used to simulate the
described dynamics.

Networks

In the context of the model definition, individuals are represented as nodes in a
multiplex network. The first layer of the network (physical network) corresponds to
physical interactions which can result in infection acquisition. The second layer (social
network) represent social interactions necessary for opinion competition dynamics.
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Table A. Model parameters

Symbol Description Value(s), unit

β,K Watts-Strogatz algorithm [1] rewiring probability and mean
degree, respectively

β = 0.08
K = 14

γ Disease recovery rate 1.0, week-1

cphys(j, j
′) Physical contact rate between individuals j, j′ 7.0, week-1

cinf(j, j
′) Information contact rate between individuals j, j′ 10.0, , week-1

p Opinion switch probability per information contact event 0.04
k, θ Opinion switch propensity function shape parameters k = 1.8

θ = 7.0

ϵ⊕, ϵ⊗ Infection probability for opinion
⊕

,
⊗

individuals per phys-
ical contact event with infected peer (of arbitrary opinion)

ϵ⊕ = 2.0× 10−2

ϵ⊗ = 3.5× 10−2

Cfat Weight factor of lockdown fatigue contribution to opinion
switch propensity

5.0× 10−2

Chs Weight factor of prevalence related contribution to opinion
switch propensity

2.0

fs Threshold prevalence for lockdown initiation (0.5, 1.0, 2.0, 3.5, 5.0) ×
10−2

fe Threshold prevalence for lockdown lifting 1.5× 10−3

q Lockdown stringency 0.00, 0.25, 0.5, 0.75, 1.00
α Lockdown adherence for opinion

⊗
individuals (high,

medium, low)
1.0, 0.5, 0.0

In each network, connection of two nodes(j and j′) by an edge represents an
interaction that persists in time with a certain frequency. In the physical network the
frequency of interactions (physical contact rate) is denoted by cphys(j, j

′), in social
network (information contact rate) it is denoted by cinf(j, j

′).
At the start of the simulation, both networks are identical. However, as an outbreak

develops and lockdowns are initiated, the physical network changes its structure. Once
a lockdown is relaxed, the physical network reverts to its pre-lockdown state. The
networks are small-world networks created using the Watts-Strogatz algorithm [1],
which starts with a ring lattice with average degree K = 14 and rewires network edges
with probability β = 0.08 per edge. The resulting networks have clustering coefficient
0.54 and average path length 5.4.

We present a schematic representation of a small-world population network in
Fig. S1. The label of a node indicates the disease state of an individual as either
Susceptible (S), Infected (I), or Recovered (R). The color of the node indicates the
opinion status, being either health-positive (blue) or health-neutral (red). Solid lines
mean that the contact edge between two individuals is of both a physical and
informational nature, whereas a dashed line indicates that the physical nature of the
edge is switched off temporarily due to an active lockdown state. Disease transmission
can only occur through solid lines.

Simulation algorithm

The dynamics of infection transmission and opinion switching processes are modeled
using the Gillespie Algorithm [2,3] as follows.

The state of the population, denoted X, which encompasses both epidemiological
state distribution and opinion distribution, can be modified by an event l. This event
might either cause a change in individual’s epidemiological status or a switch of their
opinion. Each event has an associated propensity function ϕl(X) defined as follows. At
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Fig S1. A small-world network consisting of 20 nodes. In the example shown,
the mean degree is K = 4 and the rewiring probability for the Watts-Strogatz algorithm
is β = 0.1. Letters indicate disease status (Susceptible, Infected, or Recovered), and
colors represent opinion state (blue for health-positive, red for health-neutral). Solid
lines allow for both informational and physical contact, whereas dashed lines allow for
informational contact only, preventing disease transmission through such an edge.

a time t, given the state of the system X(t), an event l has probability of occurring in
the interval [t+ τ, t+ τ +∆τ) given by

p(τ, l|X(t)) = ϕl(X(t)) exp(−ϕ0 (X(t)) τ)∆τ (S1)

where
ϕ0(X(t)) =

∑
l

ϕl(X(t)) (S2)

where l iterates over the set of all possible events.
Thus, at each time point, given the current state of the system, we calculate the

propensities for each possible event to take place. Then, using the joint probability
distribution given by Eq. (S1) and Eq. (S2), an event that occurs and the time of its
occurrence are determined. The system is updated accordingly and the step is
completed. Note that given a model population size N , in each step we need to
calculate propensities for 2N events.

Epidemiological state switch propensities

In the context of infection transmission dynamics, each individual can experience one of
two possible events: infection (S → I) or recovery (I → R) with transition rates ϕSI

and ϕIR, respectively. Note that at any given time, an individual can undergo either
one or the other event.

The propensity of individual j holding opinion Op(j) ∈ {
⊕

,
⊗

} with the set of
infected peers on the physical interaction network given by IPN(j) to experience event
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S → I is defined by

ϕSI(j) = ϵOp(j)

∑
j′∈IPN(j)

cphys(j, j
′), (S3)

where ϵOp(j) is the probability for infection acquisition per contact with an infected peer.
The infection acquisition probability ϵOp(j) is lower for individuals holding
health-positive opinion

⊕
than for individuals with health-neutral opinion

⊗
, and

these probabilities remain fixed throughout the simulation.
Contact rates cphys are a subject to presence of the lockdown. During a lockdown, a

proportion q ∈ [0, 1] of contact rates will be set to zero. This implements the effect of
lockdowns on the contact rates and subsequently on transmission of infection. When the
lockdown ends, the contact rates revert to their original value.

In the model, health-neutral individuals can partially ignore lockdown rules, so the
probability that contact rates between two such individuals reduce to zero is smaller
than for contact rates between people where at least one of the two peers is of
health-positive opinion. We define the parameter α ∈ [0, 1] to encode the resistance of
health-neutral individuals to lockdown rules, such that the lower is the value of α the
less likely individuals to comply with lockdown.

Therefore, to calculate contact rates (and thus, the propensities of infection
transmission) in the conditions of lockdown, we iterate through all edges jj′ of the
physical interaction network, and set the contact rate (weight) of the edge to zero with
probability pjj′ , which we define as

pjj′ =

{
(1− α)q, if Op(j) = Op(j′) = B

q, otherwise
(S4)

The I → R transition only depends on the recovery rate γ, and is simply written

ϕIR(j) = γ. (S5)

Opinion state switch propensities

Opinion switches can take place from
⊕

to
⊗

and from
⊗

to
⊕

. The model
incorporates opinion switching in the disease-free regime based on information exchange
with peers of opposite opinion, as described in [4]. For an individual i, denote the
fraction of their peers with health opinion l ∈ {

⊕
,
⊗

} by nl(j). Then the rates with
which individuals switch their opinion are given by the following functions

ϕ̃⊕⊗(j) = cinf
p⊗n⊗(j)k

1 + θ⊗n⊗(j)k
, from

⊕
to

⊗
(S6)

ϕ̃⊗⊕(j) = cinf
p⊕n⊕(j)k

1 + θ⊕n⊕(j)k
, from

⊗
to

⊕
(S7)

where pl is the probability of switching opinion per contact and θl and k are parameters
that determine the shape of the switch rate function. By adjusting these shape
parameters, we can continuously transform the switch rate propensity from a linear
dependence on nl to a function that saturates at a given threshold, and finally to a
sigmoid shape. We present examples of several possible choices of the shape parameters
in Fig. S2. In the simulations, we have set k and θ such that switch rate function have
sigmoidal shape which results in a possibility of stable co-existence of two opinions in
the population. Probabilities of switching opinion per contact, p, were set to the same
value for both opinions, and the initial proportion of individuals holding either opinion
was set to 0.5. These settings, in the absence of infection, lead to a quasi-steady
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Fig S2. Examples of opinion switch propensity function. By varying the shape
parameters, we can model linear (blue, solid), saturating (orange, dash-dotted), and
sigmoidal (red/green dashed) dependence of switch propensities on the independent
variable. The green dashed sigmoid has a delayed growth onset as compared to the red
dashed sigmoid. In our simulations, we have used function whose shape is similar to the
red dashed curve.

distribution of opinions of around (0.5, 0.5). Note that for simplicity we have implicitly
assumed information contact rates of all edges to take the same value cinf.

To model feedback relationship between infection spread, measures aiming to control
it, and opinion competition, we modified the opinion switch propensity functions by
including additional terms. To reflect the ‘lockdown-fatigue’ effect, which mimics people
gradually getting weary of being in a lockdown regime and therefore, becoming more
inclined to switch to a health-neutral opinion, we introduced a second term in the

⊕
→⊗

opinion switch propensity function. We assume that the fatigue effect is stronger for
more stringent and longer lockdowns. To capture this effect in the model we define a
quantity ξ⊕⊗(tl, q), where tl is the duration of the lockdown at time t (i.e., the time
since initiation of the lockdown measures until the current point t) and q is the
lockdown stringency. We assume that ξ is an increasing function of both tl and q. In
the simulations presented here, we defined ξ as

ξ⊕⊗(tl, q) = Clf tl q. (S8)

The parameter Clf determines the relative weight of the lockdown-fatigue function with

respect to the opinion switch based on local opinion distributions, ϕ̃.
Combining the two processes yields the propensity ϕ⊕⊗ for an individual j with

opinion
⊕

to change their opinion to
⊗

as follows:

ϕ⊕⊗(j) = ϕ̃⊕⊗(j) + ξ⊕⊗(tl, q). (S9)

Similarly, to model the ‘health-scare’ dynamic, we introduce an additional term in
the

⊗
→

⊕
opinion switch rate. ‘Health-scare’ refers to the phenomenon when people

are influenced to adopt a health-positive opinion when the population-level disease
prevalence increases. Therefore, during an outbreak the switch propensity

⊗
→

⊕
depends on the global disease prevalence P , with the functional dependence of the
propensity for a health-scare-induced opinion given by

ξ⊗⊕(P ) = ChsP. (S10)
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The complete expression for propensity ϕ⊗⊕ for an opinion switch from
⊗

to
⊕

is
then

ϕ⊗⊕(j) = ϕ̃⊗⊕(j) + ξ⊗⊕(P ). (S11)
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S2 Appendix.

Parameter calibration. The values of the infection probabilities ϵ⊕, ϵ⊗ and the
opinion switch weight factors Cfat, Chs were fixed sequentially using a calibration
procedure. For each parameter, we outlined heuristic conditions that we wanted our
model to satisfy. We then performed 500 simulation runs for a range of candidate values
of that parameter, and picked the value for which the appropriate heuristic condition
was best met.

The first parameter to be calibrated was the probability of infection for
health-positive individuals ϵ⊕. The rationale for choosing the value of this parameter
was that the infectious disease introduced to a population consisting solely of
health-positive individuals should, in most cases, stay slightly below the epidemic
threshold, meaning that the effective reproduction number is below 1. This means that
the epidemic does not take off, but goes extinct after a short time. In the calibration
runs for this parameter, no lockdowns were imposed, so that all individuals remain in
the

⊕
state (cf. (S7)). We used the values ϵ⊕ ∈ {0.015, 0.02, 0.025, 0.03, 0.035} as the

candidate range. As seen in Fig. S3, the choice ϵ⊕ = 0.02 leads to a scenario where the
median time to extinction of the epidemic is short, and the upper 95% quantiles only
exhibit very small outbreaks. The median epidemic size is roughly the same for
ϵ⊕ = 0.025, but the 95% quantiles now show larger outbreaks. Therefore, we fixed the
infection probability for health-positive individuals to ϵ⊕ = 0.02.
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Fig S3. Median and 95% CI of the prevalence over time (t, in weeks) for different values of the infection
probability ϵ⊕ for health-positive individuals.

Next, we calibrated the probability of infection probability for health-neutral
individuals ϵ⊗, setting ϵ⊕ to its fixed value 0.02 and the health-scare opinion switch
weight factor Chs to zero. We assumed that in a population with equal numbers of
health-neutral and health-positive individuals larger outbreaks of the infectious disease
should be possible. We tested the range ϵ⊗ ∈ {0.025, 0.03, 0.035} and chose ϵ⊗ = 0.035
(see Fig. S4). Note that opinion switches do occur in these simulation runs, but since
Chs = 0 and no lockdowns are imposed, the opinion switches are only induced by the
local opinion distribution and the population-level opinion distribution remains
approximately constant.
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Fig S4. Median and 95% CI of the prevalence over time (t, in weeks) for
different values of the infection probability ϵ⊗ for health-neutral individuals.

The next parameter to be calibrated was the weight factor Chs for the health-scare
function ξ⊗⊕ in the opinion switch propensity from health-neutral to health-positive
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(cf. equations S10 and S11). The rationale here was that the population should undergo
a sizeable shift towards a health-positive opinion during an outbreak, but this should
not lead to extinction of the health-neutral opinion. As shown in Fig. S5, the value
Chs = 2.0 is a choice fulfilling this requirement. The rightmost graph shows that the
health-neutral opinion goes extinct in the median scenario for the choice Chs = 8.0.
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Fig S5. Median and 95% CI of the proportion of health-positive individuals over time (t, in
weeks) for different values of the health-scare weight factor Chs.

Finally, we calibrated the weight factor Cfat for the lockdown fatigue function, which
increases the propensity for health-positive individuals to switch to a health-neutral
opinion (cf. equations S8 and S9). Using the previously described method to calibrate
Chs, we chose a value of Cfat for which the population makes a strong shift towards a
health-neutral opinion. The graphs shown in Fig. S6 support our choice of Cfat = 0.05
for this parameter.
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Fig S6. Median and 95% CI of the proportion of health-positive individuals over time (t, in
weeks) for different values of the lockdown fatigue weight factor Cfat.

S3 Appendix

Additional results. In Fig. S7 we show the final proportion of health-neutral
individuals (FPHN) for each individual simulation run, plotted against the total number
of weeks during which there was an active lockdown in that run. This provides further
insight into the mutual interaction between higher proportions of health-neutral
individuals and higher disease prevalences. In this figure, detrimential effect on health
opinion landscape of a non-effective lockdown is evident, regardless of whether it was
due to low stringency or to low adherence. In this scenario, the lockdowns result in a
significant increase in FPHN, not only compared to the baseline scenarios, but also
compared to scenarios where lockdowns were more effective and subsequently shorter.

The results of additional sensitivity analyses for the stringency parameter q and the
adherence parameter α can be found on this project’s GitHub page [5].
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Fig S7. Opinion distribution and lockdown duration. The relative final proportion
of health-neutral individuals (FPHN) versus the total lockdown duration, across various
levels of lockdown adherence parameter α = 1.0, 0.5, 0.0. The FPHN is reported relative
to the mean FPHN in the scenario where no lockdown is implemented (q = 0). Each
marker corresponds to a single simulation run. The threshold prevalence for lockdown
initiation is fixed at fs = 0.005.
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