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Abstract 

Background 

The characteristics of the hemorrhagic location of spontaneous intracerebral hemorrhage 

(sICH) is pivotal for both identifying its etiology and prognosis. While empirical conclusions 

have been obtained in clinical practice, a comprehensive and quantitative modeling approach 

has yet to be thoroughly explored.  

Methods  

We employed lesion-symptom mapping to extract the location features of sICH. We 

registered patients' non-contrast computed tomography image and hematoma masks with 

standard human brain templates to identify specific affected brain regions. Then, we 

generated hemorrhage probabilistic maps of different etiologies and prognoses. By 

integrating radiomics and clinical features into multiple logistic regression models, we 

developed and validated optimal etiological and prognostic models across three centers, 

comprising 1162 sICH patients.  

Results   

Hematomas of different etiology have unique spatial distributions. Location features robustly 

categorized the etiology sICH (mean area under the curve (AUC) = 0.825) across different 

datasets), yielding clear add on value in models (fusion model mean AUC = 0.915) compared 

to clinical features (mean AUC = 0.828). In the prognostic analysis, patients with more 

extensive hematoma had a worse prognosis, the location (mean AUC = 0.762) and radiomic 

features (mean AUC = 0.837) also providing reliable add on value effects (fusion model 

mean AUC = 0.873) compared to clinical features alone (mean AUC = 0.771).  

Interpretation   
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Our results show that location features were more intrinsically robust, generalizable relative, 

strong interpretability to the complex modeling of radiomics, our approach demonstrated a 

novel interpretable, streamlined, comprehensive etiologic classification and prognostic 

prediction framework for sICH. 
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Introduction 

Spontaneous intracerebral hemorrhage (sICH) is characterized by the extravasation of blood 

within the intracranial space due to the rupture of cerebral vessels, encompassing brain 

parenchymal hemorrhage, intraventricular hemorrhage, and subarachnoid hemorrhage. The 

heightened mortality rate and unfavorable prognosis associated with sICH poses a significant 

challenge for clinicians and patients. Non-contrast computed tomography (NCCT) imaging is 

the preferred method of diagnosis1. Within the context of sICH (nontraumatic), the 

identification of disparate etiologies gives rise to distinct and varied treatment indications. 

For instance, aneurysms may require interventions such as embolism or craniotomy, while 

hypertensive intracerebral hemorrhage is typically addressed through conservative or 

decompressive measures. Upon hospital admission the primary imperative for sICH patients 

is prompt determination of the underlying cause2. Survivors of sICH frequently encounter 

severe complications, enduring neurological impairments, even debilitating disabilities, if not 

treated promptly and correctly3, 4.   

In their quest to identify the underlying etiology of sICH, clinicians routinely incorporate 

brain spatial location into their assessments of hemorrhagic impact. For instance, aneurysmal 

hemorrhage tends to manifest in the subarachnoid space5, hypertensive hemorrhage 

predominantly presents in the deep nucleus region6, and vascular malformations are 

commonly observed in cortex7. And in terms of prognostic prediction, hyperglycemia, 

hypertension, advanced age, and hematoma location characteristics, all have been empirically 

identified as crucial factors that influence outcomes3, 8. Accordingly, the localization of 

hematoma is of paramount importance for both etiologic and prognostic purposes. 

Current analyses of sICH location often focus on specific cerebral regions, lacking a 

comprehensive investigation across the entire anatomical space of the brain. Lesion-symptom 
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mapping, a population-based analysis method, provides standardized location features of 

lesions by calculating normalized lesion locations. In recent years, this method has been used 

in studies of ischemic stroke and glioma, yielding significant advances in the precision and 

full context of localization9-12. Utilizing this approach, probabilistic maps can be drawn, and 

the impact of clinical variables can be statistically quantified, enabling a quantitative analysis 

of location features based on the visualized distribution of hematoma effects throughout the 

entire brain13, 14. 

Based on these insights, we posit that the location features of hematoma bear a close 

association to etiology and possess predictive value for determining prognosis. In this project, 

we employed lesion-symptom mapping to extract the location features of sICH and generated 

probability maps of etiology and prognosis for each and every brain region. We then 

combined these radiomic metrics with clinical features (e.g. hypertension, sex, and 

chronological age) to train and multiple models of etiology and prognosis, utilizing model 

comparison statistics to determine final, optimal models. Our study encompassed a 

comprehensive cohort of 1162 sICH patients across three medical centers, ensuring a robust, 

diverse, and generalizable dataset for our analyses. This study’s fundamental aim is to expand 

our understand how lesion location features affect the etiology and prognosis of sICH, and to 

provide a quantitative methodology for efficiently making these determinations. 

Materials and Methods 

Study Population and clinical Information 

This retrospective study encompassed the collection of sICH patients from three distinct 

medical centers, Jinling Hospital (dataset 1, January 2015 to December 2019), Yi Jishan 

Hospital (dataset 2, January 2018 to December 2020), and Nanjing First Hospital (dataset 3, 
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January 2019 to December 2020). The confirmation of intracranial hemorrhage was achieved 

through NCCT. Patients were excluded if they presented with secondary hemorrhage 

resulting from head trauma, hemorrhagic transformation of ischemic infarction, brain tumors, 

or exhibited abnormalities in blood coagulation, liver, kidney function, or were subject to 

drug-induced cerebral hemorrhage. Supplementary Figure 1 illustrates the retrospective 

inclusion and exclusion flowchart in detail.  

The following baseline clinical characteristics of patients were extracted from medical 

records: chronological age,  sex, hypertension (defined as systolic blood pressure ≥140 mm 

Hg and/or diastolic blood pressure ≥90 mmHg, or self-reported use of antihypertensive 

medication within the past 2 weeks), diabetes mellitus (fasting plasma glucose concentration 

≥7.0 mmol/L or exceeding 11.1 mmol/L 2 hours post-meal), hyperlipidemia (abnormal blood 

lipids were detected in serum), history of previous stroke, smoking, alcohol consumption, 

Glasgow Coma Scale (GCS) score at admission, and the known time interval from onset to 

baseline CT if witnessed or self-reported by the patient. All demographic and clinical 

information are shown in Table 1.  

The etiologies of sICH were categorized into four classifications: hypertension, aneurysm 

rupture, vascular malformation, and clinically unclear diagnosis by discharge diagnosis. 

Modified Rankin Scale (mRS)15 scores were determined based on clinical examinations or 

telephone follow-ups at twelve months post sICH event.  Consistent with prior literature, we 

defined good outcome as "mRS = 0-2", poor outcome as "mRS = 3-6"16, 17
. 

Ethics review and institutional review board approval in each center were both obtained. 

Informed consents from participating patients were exempted because of the retrospective 

nature of this study. 
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Image Acquisitions and Preprocess 

NCCT covering the entire brain was acquired with a slice thickness of less than 10.0 mm in 

all patients. All images underwent meticulous quality checks to eliminate those displaying 

significant motion artifacts. The hematoma areas were delineated from the NCCT images 

utilizing artificial intelligence brain hemorrhage auto-segmentation software (Dr. Wise TM 

software available at http://label.deepwise.com/). A physician's review of the segmentation 

results revealed no obvious segmentation errors.  

Lesion-symptom mapping and location features 

The NCCT scans and hematoma areas were subjected to spatial normalization and alignment 

with the standard Montreal Neurological Institute (MNI) template. The normalization process 

employed the CT normalization function offered by Standard Space Lesion Symptom 

Mapping (SPLSM，https://github.com/JLhos-fmri/SPLSM_version1.0) toolkit, which was 

based on the Clinical Toolbox of SPM12 (https://github.com/spm/spm12), utilizing a cost 

function masking method. Based on normalized hemorrhagic areas, the frequency occurrence 

of hematoma at each voxel was computed, creating a voxel-based probabilistic map for each 

patient (Figure 1A).   

This yielded a location feature set that quantified hemorrhage involvement of intracerebral 

regions in the parenchyma (cortical, white matter, and sub-cortical), subarachnoid space, and 

ventricles. A hemorrhagic event was considered present if more than 20% of the voxels in a 

given region showed a positive indication of a hemorrhage.  

The brain parenchyma analyses utilized the Johns Hopkins University (JHU) template, 

comprised of 178 annotated brain regions, encompassing 68 white matter and 110 gray matter 

regions (Figure 1B). The subarachnoid space (10 regions) and ventricles (4 regions) were 
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delineated using an in-house manually crafted template. List of intracranial regions see 

Supplementary Table 1.  

In the etiological prediction analysis, 192 regions were sorted into 5 intracranial structures: 

ventricle, subcortical, white matter, cortical, and subarachnoid space. In each intracranial 

structure, a paired one-way ANOVA was used to calculate whether there was a significant 

difference in the rate of involvement in the region of the hemorrhage for the three etiologies. 

In the prognostic analysis, the rate of hemorrhage at 192 regions were compared by 

Chi-square test.  

Radiomics features 

Radiomics features were extracted by the python package PyRadiomics (Version 3.0.1; 

https://pypi.org/project/pyradiomics). 1454 radiomic features were extracted for each 

hematoma region. It included first-order features, shape-based features, gray cooccurrence 

matrix, gray dependence matrix, gray running length matrix, gray size area matrix, and a 

neighborhood gray-tone difference matrix (Figure 1B). Given the possibility of multiple 

regions of hematoma of a portion of patients, it was essential to assign weights to the radiomic 

features of each region, creating a patient-level feature set. To achieve this, we used a deep 

learning multi-locus attention model algorithm to generate adaptive weights of focus-level 

features. The model underwent training and iteration within a training cohort using 5-fold 

cross-validation. The adjustment of model parameters occurred based on prognostic and error 

considerations (loss function). Subsequently, the radiomic features from multiple regions were 

amalgamated into patient-level radiological group features, as detailed in the Supplementary 

Method and Supplementary Figure 2. After adaptive weighting, 1454 radiomics features based 

on patient level were obtained.  

Model development for etiology and prognosis 
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The models developed in this study served dual purposes: classifying sICH etiology and 

predicting prognosis. In the actual clinical determination of etiology, doctors often judge by 

clinical characteristics and the location of hemorrhage. Therefore, we only included cases 

with known clinical and hemorrhage location features in our etiology classification models 

(n.b., by this criterion 53 patients with an unknown etiology at discharge were excluded).  A 

multiclassification strategy was also used to predict whether the etiology is hypertension, 

ruptured aneurysm, or vascular malformation. Three models were constructed: clinical 

features only, location features only, and a fused location-clinical model (referred to as the 

loc-cli model).  

In the prognostic task, clinical and hemorrhage location features, along with the above 1454 

radiomic features, were utilized. Based upon these feature sets used to predict good (mRS = 

0-2) or bad (mRS = 3-6) outcome16, 17. Four models were tested: clinical, location, radiomics, 

and a combined or fused clinical-location-radiomics model (referred to as the loc-cli-rad 

model) (see Figure 1C). Dataset 1 was utilized for model training, while datasets 2 and 3 

were reserved for independent testing and validation of the models. 

Logistic regression in scikit-learn (https://scikit-learn.org) toolkit was used to construct the 

model. In training set, Spearman correlations were used to eliminate feature redundancy. 

Correlation coefficients greater than 0.8 between two or more features are retained for only 

one of them. L1 feature selection methods were adopted for reducing dimensionality in our 

models.  Fivefold cross-validation and a grid search with F1 score as the optimization goal 

were implemented on the training set, thereby tuning the model hyperparameters and 

predictive performances. The fusion model utilized “model fusion” in the training set, a 

technique that employed an average information strategy to combine the prediction scores 

generated after running each individual model during cross validation. 
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In modeling etiology, we plotted confusion matrices and receiver operating characteristic 

(ROC) curves to evaluate the models. To obtain ROC curves from these tri-categorical 

models, we reduced the multiclassification problem to three two-level classification 

problems, and averaged the corresponding true positive rate at the same false positive rate on 

the ROC curve and plotted the macro average ROC curve using the average of false positive 

rate and true positive rate. 

 In the prognosis prediction model, ROC curves were used for model evaluation. To compare 

the accuracy between models, we calculated the difference in the area under the curve (AUC) 

values between the fusion model and the other models. Subsequently, we verified the 

significance of these differences using the Delong test (Figure 1D). 

Results  

This study involved a total of 1162 patients (655 males, 507 females), with a mean age of 

57.65 ± 13.19 years. We categorized sICH etiology as hypertension, aneurysm, vascular 

malformation, or unknown, with respective counts of 563, 435, 111, and 53 patients. The 

clinical functional prognosis was stratified by outcome, with 721 and 441 patients for good 

and poor outcomes, respectively. Table 1 provides a comprehensive summary of sample 

demographic and clinical characteristics.  Detailed demographics and clinical characteristics 

for each dataset are provided in Supplementary Results, Supplementary Tables 2 and 3. 

Association between hematoma location and etiology 

The distribution of hematoma by etiology (hypertension, aneurysm, vascular malformation) is 

depicted in Figure 2A. Hypertensive hematoma manifested primarily in deep brain, 

particularly the basal ganglia area. Conversely, hematoma resulting from aneurysm rupture 

were concentrated primarily in the subarachnoid space, encompassing regions such as the 

lateral fissure cistern and the anterior longitudinal fissure cistern in subarachnoid area. 
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Notably, vascular malformation-related hematoma demonstrated a more even and widespread 

distribution, with a higher likelihood in the ventricles. The proportion of individuals affected 

in each intracranial region based on intracranial structure (ventricle, subcortical, white matter, 

cortical, and subarachnoid space) is summarized in Figure 2B. Significant differences were 

observed in the distribution of cerebral hemorrhage for the different etiologies. A noteworthy 

result is that vascular malformations and ruptured aneurysms appeared likely to involve the 

ventricles. Hypertension and vascular malformations tended to involve the brain parenchyma, 

but hypertension tended to be sub-cortical, whereas vascular malformations tended to be 

cortical. In addition to ruptured aneurysms, which are most likely to involve the subarachnoid 

space, vascular malformations also involved the subarachnoid space. The pattern of 

hematoma distribution was consistent across datasets 1, 2, and 3 (Supplementary Figure 3, 4, 

5).  

Association between hematoma location and prognosis 

Probability plots show that, in general, patients with a poorer prognosis have a wider 

distribution of hematoma in subarachnoid space, parenchyma, and ventricles (Figure 3A). 

When the hematoma was located in the radiation crown, marginal gyrus, cerebellum, bilateral 

lateral ventricle and fourth ventricle, the prognosis was generally poor. In contrast, patients 

with hematoma in the subarachnoid area had a relative good prognosis (Figure 3B). Detailed 

results for the separate datasets (1, 2, and 3) are provided in Supplementary Figure 6, 7, 8. 

 

Etiology classification  

In the etiological classification task, the clinical model demonstrated an average AUC of 

0.828 (range: 0.806 ~ 0.848 cross different dataset), while the location model achieved an 

AUC of 0.825 (range: 0.807 ~ 0.842). Notably, the fusion model exhibited a higher AUC of 
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0.915 (range: 0.909~0.923). See Supplementary Table 4 for details of model performances in 

each dataset. The confusion matrix in Figure 4A was employed to assess the mean accuracy 

of each model cross datasets. The location models achieved overall accuracies exceeding 

86% for hypertension and aneurysm, with suboptimal performance (12.6%) for the prediction 

of vascular malformation. The fusion model, however, improved the diagnostic ability of all 

three etiological types (hypertension = 94.7%, aneurysm = 91.5%), especially for vascular 

malformations (42.3%). Detailed results of each dataset are provided in Supplementary 

Figure 9. Delong tests confirmed that the fusion model consistently outperformed the clinical 

models, showing significantly higher AUC in all datasets (all p<0.001) (Supplementary Table 

10), indicating that location features provided significant predictive value (Supplementary 

Table 5). 

In the clinical model, hypertension, male sex, and history of stroke displayed the strongest 

positive contribution to predicting hypertensive sICH, whereas these features showed the 

strongest negative contribution in association with aneurysms, indicating that the presence of 

these features made it less likely that an aneurysm was present. In vascular malformation, 

male sex had a positive contribution, whereas hypertension and age had a negative 

contribution (Supplementary Figure 11). In the location models, hypertension was strongly 

associated with deep regions such as the lentiform nucleus, striae terminalis, and 

hippocampus. In contrast, hemorrhage of the superior frontal gyrus and anterior longitudinal 

fissure contributed negatively to the model, reducing the likelihood that hypertensive sICH 

was present. Aneurysms ruptured mainly in the subarachnoid space, especially in the lateral 

fissure cistern and anterior longitudinal fissure cistern. Hemorrhage in the fornix and 

cerebellum, however, contributed negatively to the model, indicating that aneurysmal 

cerebral hemorrhage were less likely to reside in these areas. Vascular malformations were 
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primarily distributed in the posterior cingulate gyrus and superior frontal gyrus, whereas they 

were rare in the lenticular fasciclus and dorsal anterior cingulate regions (Figure 4B). 

Prognosis prediction 

In the prognostic prediction task, the clinical model demonstrated an average AUC of 

0.771(range: 0.762 ~ 0.799), while the radiomics model achieved an average AUC of 0.837 

(range: 0.831 ~ 0.840). In contrast, the location model exhibited an average AUC of 0.760 

(range: 0.785 ~ 0.725). The fusion model outperformed all other models with an average 

AUC of 0.873 (range: 0.895 ~ 0.850). ROC of each dataset is shown in Figure 5 Detailed 

model performances are shown in Supplementary Table 4. Delong tests confirmed that the 

fusion model consistently outperformed the clinical models, displaying significantly higher 

AUC in all datasets (all p < 0.01), indicating that location and radiomics features consistently 

provided predictive value above and beyond standard clinical predictors (see Supplementary 

Table 5).  

The most important features in the clinical model were lower GCS, age and presence of 

hypertension. In contrast, in the radiomics model, higher shape mesh volume original, lower 

GLDM, and lower NGTDM were the most important (see Supplemental Figure 12 for a 

complete list of feature weights). In the location model (see Figure 5D), the most important 

features making a positive contribution to poor prognosis were right inferior frontal gyrus 

orbitalis, right pontine, left posterior insula, and right cingulate gyrus (n.b., the suprasellar 

cisterna negatively contributed to poor prognosis).   

Discussion 

This study provides a novel, interpretable, streamlined, comprehensive framework for 

etiologic classification and prognostic prediction of sICH patients after NCCT examination. 

In particular, we found that the hematoma location features in our models accurately 
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described the relationship between spatial hematoma distribution and etiology or prognosis, 

with these relationships consistent with a priori clinical knowledge. This consistency 

suggested that imaging biomarkers constructed using hematoma location features are highly 

interpretable. As our imaging markers were not affected by different centers or different 

NCCT scanners, they appeared robust, exhibiting a high degree of generalizability. Lastly, 

our data showed our imaging biomarkers provided predictive above and beyond standard 

clinical characteristics. Accordingly, our data not only enhances our understanding of the 

condition, but showed the potential to improve clinical decision-making that would be 

broadly applicable.  

Clinical features have always been important information for clinicians to judge the cause of 

intracerebral hemorrhage and clinical treatment18. In our clinical model, as expected, 

hypertension was crucial for hypertensive sICH, as hemorrhage often occurs in the setting of 

poor blood pressure control19
. For aneurysm patients, female showed higher risk than male, it 

is consistent with previous studies, noting that additional hemorrhage from a ruptured 

aneurysm is more common in females20, 21. Our results also showed age of vascular 

malformations patients is younger than hypertension and aneurysm patients. This is due to the 

fact that brain hemorrhages caused by congenital dysplasia usually precede those caused by 

structural degeneration of vessels22
.  

On the basis of our clinical model, we utilized lesion-symptom mapping for quantitative and 

precise specification of hematoma location, confirming that location features have a 

significant additive effect relative to standard clinical information for the prediction and 

classification of etiology. Our data showed that hypertensive hemorrhage manifested 

primarily in deep brain regions, specifically the lentiform nucleus, striae terminalis, and 
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hippocampus. This is consistent with the previous clinical knowledge, which contends that 

hypertensive hemorrhage is primarily located in the basal ganglia region23. Due to 

hemodynamic sensitivity, the cerebral arterial circle or deep penetrating arteries may exhibit 

heightened responsiveness to systemic blood pressure changes compared to cortical arteries3, 

24, thereby increasing the likelihood of bleeding25, 26. Subarachnoid hemorrhage often results 

from rupture with sICH occurring in approximately 20-30% of aneurysm patients27. The 

cistern in which the hemorrhage is likely to be located is an important clue to finding the 

responsible aneurysm 28, 29
. In this light, it is important to note that our etiologic classification 

model found evidence that involvement of the lateral fissure cistern and the anterior 

longitudinal fissure cistern were key in predicting aneurysm rupture. Our evidence also 

suggesting that the corpus callosum and lenticular fasciculus are also important in terms of 

location for regions outside the subarachnoid space. Vascular malformations are congenital 

vascular abnormalities30. Hemorrhages associated with vascular malformations can be 

distributed across the white matter, cortex, subcortex, subarachnoid space, and other regions, 

indicating that a broad range of potential bleeding sites. Our data demonstrate the unique 

exist in the posterior cingulate gyrus and superior frontal gyrus.  

Numerous predictors associated with an elevated risk of adverse prognosis following sICH 

have been identified, encompassing clinical factors such as age, elevated blood pressure and 

blood glucose levels, as well as hematoma location, 31, 32. Our clinical model broadly align 

with these established associations. Compared with the young, older patients have vascular 

distortion, accompanied with atherosclerosis33
，and this can co-exist with other diseases, all 

factors that can indirectly increase disability and mortality. Previous studies have found that 

uncontrolled blood pressure will increase the risk of stroke recurrence, and controlling the 

stability of blood pressure is crucial to preventing such events. Our data showed that GCS 
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score  is the strongest prognostic predictor 34 of sICH, with alow GCS score indicating 

severe disturbance of consciousness and a poor prognosis35, .  

When including location and radiomic features in our prognostic models, we found they 

provided predictive value significantly above what was provided by these more standard 

clinical features. In our prognostic models, brain regions located in areas of the cortex 

contributed more to the prognostic model, whereas subcortical regions contributed less to the 

prognostic prediction, which is consistent with previous studies that have concluded that 

lobar hemorrhages have a poor prognosis relative to nonlobar hemorrhages32, 36. The regions 

most associated with poor outcomes predominantly involve the inferior frontal gyrus, 

pontine, and insula. Damage to the inferior frontal gyrus has been shown to lead to language 

deficits37., may further hinder the recovery of physical function38. Pontine hemorrhage is 

particularly grave in terms of prognosis. After pontine hemorrhage, various oculomotor 

abnormalities (such as pupil apex, medial longitudinal tract syndrome, ocular deviation and 

nystagmus) may be observed39. The insula is a key node within the supratentorial swallowing 

network. Previous studies have shown a strong association between lesions of the right 

insular cortex and a severe symptom of dysphagia40, 41. At the same time, injuries involving 

the insula have also been found to increase cardiogenic mortality42.  

Among the radiomic features, the shape mesh volume of the hemorrhage is positively 

correlated with prognosis, and this metric allows for a more precise characterization of the 

volume of irregular hemorrhage43. This is consistent with the common knowledge that the 

larger the hematoma, the worse the prognosis44, 45,  and is also in line with our 

location-based analysis. The NGTDM features represent the contrast between voxels and 

neighboring voxels46, is used to quantify the intensity difference between neighboring voxels. 

The contrast which negatively contributes to prognosis in our data. This suggests that if the 
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density is uneven due to the large volume of the hematoma, slow absorption or secondary 

bleeding, the contrast will be relatively low, which indicating a poor prognosis47. 

At the level of feature construction, this study incorporates both and location features and 

radiomics features. Since location features are determined to describe the entire hemorrhagic 

region, they are not affected by NCCT scanning machines and parameters and are naturally 

compatible with the analysis of multiple hemorrhagic foci. In contrast, radiomics affected by 

the NCCT scanning machine and parameters48 and are difficult to deal with the combined 

analysis of multiple hemorrhagic regions. To address this issue, our approach incorporates 

innovative techniques for radiomics feature extraction.  Through multiple instance learning, 

we assign weights to the cross-focus of each patient, ensuring the preservation of both global 

information pertaining to the patient's lesions and the local information associated with each 

hemorrhagic location49. Even so, we believe that location features are intrinsically robust and 

generalizable relative to the complex modeling of radiomics, especially the high degree of 

interpretability that coincides with a priori knowledge.  

Our study has several limitations. First, the study is a retrospective study, and the possibility 

of sample bias cannot be ruled out, e.g., the etiologic and prognostic distributions of the 

included samples may differ from the real situation. Second, we categorize the etiology of 

hemorrhage in general terms, which may reduce the applicability of our results in some cases 

affects the integrity of the etiological classification results. For example, sICH caused by 

amyloidosis is difficult to diagnose clinically, and there was no clear etiologic classification 

in our study. 

In conclusion, our results show that the location features of hematoma are stable and reliable 

indicators in sICH etiology and prognosis prediction, and the combination of the radiomics 

features can effectively improve the prediction efficiency and overcome the defects of the 
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instability of the radiomics features. Provide an interpretable, comprehensive etiologic 

classification and prognostic prediction framework for sICH in a streamlined manner. 
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Figures and Table Legends 

Figure 1. The workflow of constructing clinical-, location-, radiomics- and fusion 

models for prediction diagnosis of sICH. (A) Lesion-symptom mapping and location 

features. (B) Clinical, imaging and location feature extraction. (C) Construction and fusion of 

etiologic model and prognostic model. (D) Model validation and evaluation. 

ROC= Receiver operating characteristic. 

 

Figure 2. Association between hematoma location and etiology (n = 1109). (A) 

Probability maps depicting the distribution of hematoma location in patients. The location 

patterns associated with hypertension, aneurysm, and vascular malformation are illustrated, 

with the frequency of hemorrhage location graded according to color. The gradient scale 

ranged from 5% to 40%. (B) Paired sample ANOVA was used to compare the involvement 

rate of each region in each intracranial structure. *: p < 0.05, **: p < 0.01, ***: p < 0.001, ns: 

p > 0.05.   

 

Figure 3. Association between hematoma location and prognosis (n = 1162). (A) 

Probability maps depicting the distribution of hematoma location in different prognosis. The 

location patterns associated with subarachnoid space, parenchyma and ventricle are 

illustrated, with the frequency of hematoma location graded according to color. The gradient 

scale ranged from 5% to 40%.  (B) Frequency plots of the top five cisterns, ten parenchyma 

and three ventricles showing a group difference are ranked according to chi-square values. *: 

p < 0.05, **: p < 0.01, ***: p < 0.001, ns: p > 0.05.  Abbreviations of intracranial region see 

Supplementary Table 1. 
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Figure 4. Etiology classification. (A) The confusion matrix demonstrated the classification 

capability of the location model for predicting etiology in all datasets. Columns represent 

predicted classes, with rows representing ground truth. (B) The top ten location features 

associated with hypertension, aneurysm, and vascular malformation prediction models are 

shown.  The horizontal axis represents the relative feature weights, with red coding the three 

features making the strongest contributions to the model.  Positive values indicate a positive 

contribution, negative values a negative contribution. Abbreviations of intracranial region see 

Supplementary Table 1. 

 

Figure 5. Prognosis prediction. (A-C) Receiver Operating Characteristic (ROC) curves of 

sICH predicted by the clinical, location, radiomicsand multidimensional fusion models of 

dataset1, 2 and 3. (D) displays the top ten location features of in the location model of 

prognosis prediction task. The horizontal axis represents the model weight value, red codes 

the three features making the strongest contribution.  Abbreviations of intracranial region 

see Supplementary Table 1.  
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Table 1. Demographic and clinical characteristics in sICH patients.  

Variables Subjects (n = 1162) 

Age, years, mean ± 57.65 ± 13.19 

GCS, median (IQR) 12 (10-14) 

Sex, n (%)  

Male 655 (56.4%) 

Female 507 (43.6%) 

Hypertension, n (%) 791 68.1%) 

Diabetes mellitus, n 110 (9.5%) 

Hyperlipidemia, n (%) 27 (2.3%) 

Smoking, n (%) 220 (18.9%) 

Drinking, n (%) 219 (18.9%) 

Onset-to-CT time, n  

<=24h 583 (50.2%)  

24h-3d 428 (36.8%) 

3-14d 128 (11.0%) 

>14d 23 (2.0%) 

History of stroke, n 93 (8.0%) 

Etiology, n (%)  

Hypertension 563 (48.5%)  

Aneurysm 435 (37.4%) 

Vascular malformation 111 (10.0%) 

Unknown 53 (4.6%) 

Prognosis, n (%)  

mRS<=2 721(62.1%) 

mRS>2 441(37.9) 
GCS= Glasgow Coma Scale; mRS= the modified Rankin Scale 
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