Supplementary

Supplementary Figure A: (a) Positional coverage of the SARS-Cov-2 (NC_045512.2) by sequencing technology. **(b)** Schematic representation of the distribution of the amplicons resulting from the v4.1 ARTIC primers over the SARS-Cov-2 genome (NC 045512.2).

Supplementary Figure B: Per position error rate by Log(Coverage). Error rates were estimated from the non-diluted samples of the spike-in experiments, where the expected relative abundance of BA.1 is 1.0. Only positions corresponding to BA.1 signature mutations were considered. For more details see Methods.

Supplementary Figure C: Mutation frequencies of variant defining mutations compared between Illumina and Aviti by variant and coverage depth. Each dot represents a unique mutation for the respective variant for one wastewater sample. Dots are coloured by (a) Aviti coverage depth or (b) Illumina coverage depth at the respective mutation position.

Supplementary Figure D: Mutation frequencies of variant defining mutations compared between Illumina and MinION by variant and coverage depth. Each dot represents a unique mutation for the respective variant for one wastewater sample. Dots are coloured by (a) MinION coverage depth or (b) Illumina coverage depth at the respective mutation position.

Supplementary Figure E: Correlation of variant abundance estimations of the sequencing technologies of interest to Illumina-based variant abundance estimations by variant. Each dot represents the estimated abundance of a given variant for one wastewater sample. The abundances were estimated using LolliPop. The r-squared values represent the R²-statistic, deduced by squaring the respective Pearson correlation coefficient. The line through the points represents the estimated linear regression on the points and the shaded area the corresponding 95% confidence interval. Mutations that cannot be classified to a defined variant, are categorized as "undetermined" by LolliPop.

Supplementary Figure F: Correlation of variant abundance estimations of the sequencing technologies of interest to Illumina-based variant abundance estimations by variant and mean sample coverage. Each dot represents the estimated abundance of a given variant for one wastewater sample. Dots are coloured by the log(mean coverage) of the respective sample. Dark purple corresponds to a high coverage, light yellow to a low coverage. The abundances were estimated using LolliPop. Mutations that cannot be classified to a defined variant, are categorized as "undetermined" by LolliPop.

Supplementary Figure G: (a) Comparison of variant abundance estimations by sequencing technologies of interest vs. Illumina. Each dot represents the estimated abundance of a given variant for one wastewater sample. The abundances were estimated using LolliPop. The r-squared values represent the R²-statistic, deduced by squaring the respective Pearson correlation coefficient. The line through the points represents the estimated linear regression on the points and the shaded area the corresponding 95% confidence interval. **(b) Mean amplicon coverage distribution for the sequencing technologies of interest.** The amplicons for all sequencing technologies were generated using v4.1 ARTIC primers. For each amplicon the mean coverage of the different sequencing technologies is represented by a large dot. The smaller dots represent the individual coverage depth of each nucleotide position of the amplicon. The vertical line at each amplicon represents the inter-quartile range of the coverage values (pi = 50).

Supplementary Figure H: Mutation frequency of BA.1 (Om1) defining mutations compared to expected BA.1 abundance. For each sequencing technology, three technical replicates were provided. The bold line represents the mean abundance estimation of a given variant; the shaded area gives the 95% CI of the mean-values. The dotted green line shows the expected BA.1 concentration. Om2 = BA.2, delta = B.1.617.2.

Supplementary Figure I: Comparison of expected and estimated BA.1 abundance for renormalized data on arcsine-square root scale. The green line represents the derived linear model, for more information see Methods.

	Coefficient	Estimate	Std. Error	t-value	p-value
MinION (reference)	intercept	-0.127254	0.026004	-4.8936	2.758e-06
	slope	0.772821	0.045681	16.9177	< 2.2e-16
Illumina	intercept	-0.031979	0.040441	-0.7908	0.43046
	slope	0.153231	0.066049	2.3200	0.02183
Flongle	intercept	0.018164	0.034230	0.5306	0.59654
	slope	-0.069811	0.058266	-1.1981	0.23294
Aviti	intercept	-0.033830	0.040613	-0.8330	0.40632
	slope	0.154726	0.066051	2.3425	0.02060

Supplementary Table A: Table stating linear model parameters with MinION as reference factor level determined from spike-in samples. These parameters are used to display the response curves in Figure 5B. Significant levels were determined using a two-sided t-test.

	Coefficient	Estimate	Std. Error	t-value	p-value
Flongle (reference)	intercept	-0.109091	0.022259	-4.9009	2.672e-06
	slope	0.703010	0.036169	19.4370	< 2.2e-16
Illumina	intercept	-0.050143	0.038141	-1.3147	0.1908381
	slope	0.223043	0.059865	3.7257	0.0002846
MinION	intercept	-0.018164	0.034230	-0.5306	0.5965397
	slope	0.069811	0.058266	1.1981	0.2329437
Aviti	intercept	-0.051993	0.038323	-1.3567	0.1771243
	slope	0.224537	0.059868	3.7506	0.0002602

Supplementary Table B: Table stating linear model parameters with Flongle as reference factor level determined from spike-in samples. Significant levels were determined using a two-sided t-test.

	Coefficient	Estimate	Std. Error	t-value	p-value
MinION (reference)	intercept	-0.1576217	0.0329275	-4.7869	4.359e-06
	slope	0.8851541	0.0610747	14.4930	< 2.2e-16
Illumina	intercept	-0.0128718	0.0473792	-0.2717	0.7863
	slope	0.0821092	0.0826288	0.9937	0.3221
Flongle	intercept	0.0035631	0.0465183	0.0766	0.9391
	slope	-0.0103122	0.0854885	-0.1206	0.9042
Aviti	Aviti intercept -		0.0475985	-0.3215	0.7483
	slope	0.0850477	0.0827049	1.0283	0.3056

Supplementary Table C: Table stating linear model parameters with MinION as reference factor level determined from re-normalised spike-in samples. These parameters are used to display the response curves in Supplementary Figure E. Significant levels were determined using a two-sided t-test.

	Coefficient	Estimate	Std. Error	t-value	p-value
Flongle (reference)	intercept	-0.1540585	0.0328593	-4.6884	6.613e-06
	slope	0.8748419	0.0598178	14.6251	< 2.2e-16
Illumina	intercept	-0.0164350	0.0473319	-0.3472	0.7290
	slope	0.0924214	0.0817042	1.1312	0.2600
MinION	intercept	-0.0035631	0.0465183	-0.0766	0.9391
	slope	0.0103122	0.0854885	0.1206	0.9042
Aviti	intercept	-0.0188652	0.0475514	-0.3967	0.6922
	slope	0.0953599	0.0817811	1.1660	0.2456

Supplementary Table D: Table stating linear model parameters with Flongle as reference factor level determined from re-normalised spike-in samples. Significant levels were determined using a two-sided t-test.

MinION	Coefficient	Estimate	Std. Error	t-value	p-value	Number of 'passed' reads
5 h (reference)	intercept	-0.130156	0.031772	-4.2586	4.027e-05	3747044
	slope	0.7770553	0.0500585	15.5230	<2.2e-16	
10 h	intercept	0.0050643	0.0421691	0.1201	0.9046	2631387
	slope	-0.0023326	0.0698824	-0.0334	0.9734	
15 h	intercept	0.0066611	0.0418917	0.1590	0.8739	1819991
	slope	-0.0041478	0.0697517	-0.0595	0.9527	
max h	intercept	0.0029020	0.0401504	0.0723	0.9425	7051031
	slope	-0.0042343	0.0678083	-0.0624	0.9503	

Supplementary Table E: Table stating linear model parameters with 5 h run-time as reference factor level determined from MinION time subsampled spike-in samples. Significant levels were determined using a two-sided t-test.

Flongle	Coefficient	Estimate	Std. Error	t-value	p-value	Number of 'passed' reads
5 h (reference)	intercept	-0.1106250	0.0305631	-3.6196	0.0004152	215592
	slope	0.7059255	0.0500585	14.1020	< 2.2e-1	
10 h	intercept	0.0028492	0.0421691	0.0676	0.9462311	99593
	slope	-0.0026447	0.0698824	-0.0378	0.9698670	
15 h	intercept	0.0015978	0.0418917	0.0381	0.9696303	69256
	slope	-0.0012549	0.0697517	-0.0180	0.9856723	
max h	intercept	0.0015343	0.0401504	0.0382	0.9695737	38752
	slope	-0.0029159	0.0678083	-0.0430	0.9657630	

Supplementary Table F: Table stating linear model parameters with 5 h run-time as reference factor level determined from Flongle time subsampled spike-in samples. Significant levels were determined using a two-sided t-test.