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Abstract 
 

Later-life health is patterned by socioeconomic influences across the lifecourse. However, 

the pathways underlying the biological embedding of socioeconomic status (SES) and its 

consequences on downstream morbidity and mortality are not fully understood. Epigenetic 

markers like DNA methylation (DNAm) may be promising surrogates of underlying biological 

processes that can enhance our understanding of how SES shapes population health. Studies 

have shown that SES is associated with epigenetic aging measures, but few have examined 

relationships between early and later-life SES and DNAm sites across the epigenome. In this 

study, we trained and tested DNAm-based surrogates, or “biomarkers,” of childhood and adult 

SES in two large, multi-racial/ethnic samples of older adults—the Health and Retirement Study 

(HRS) (N=3,527) and the Multi-Ethnic Study of Atherosclerosis (MESA) (N=1,182). Both 

biomarkers were associated with downstream morbidity and mortality, and these associations 

persisted after controlling for measured SES, and in some cases, epigenetic aging clocks. Both 

childhood and adult SES biomarker CpG sites were enriched for genomic features that regulate 

gene expression (e.g., DNAse hypersensitivity sites and enhancers) and were implicated in prior 

epigenome-wide studies of inflammation, aging, and chronic disease. Distinct patterns also 

emerged between childhood CpGs and immune system dysregulation and adult CpGs and 

metabolic functioning, health behaviors, and cancer. Results suggest DNAm-based surrogate 

biomarkers of SES may be useful proxies for unmeasured social exposures that can augment our 

understanding of the biological mechanisms between social disadvantage and downstream 

health.  
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Significance Statement 
 

Information on DNA methylation (DNAm)—an epigenetic modification that plays a central 

role in regulating gene expression—is increasingly available in large epidemiological studies. 

Since DNAm is relatively stable but responsive to environmental influences, genome-wide 

signatures are promising surrogates or biomarkers of exposure that may both shed light on 

biological mechanisms between adverse environments and downstream health and/or act as 

proxies for unmeasured exposures. To better understand the biological embedding of social 

disadvantage, this study trained and tested DNAm-based surrogates of childhood and adult 

socioeconomic status (SES) in two US-based cohorts of older adults. Findings reveal distinct 

DNAm signatures of SES that connect social adversity across the lifecourse with dysregulated 

immune system responses, inflammatory pathways, poorer metabolic functioning, chronic 

diseases, and cancer.    
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Introduction 
 

Health outcomes in later life are patterned in part by socioeconomic influences across the 

lifecourse (1, 2). However, the mechanistic pathways underlying the biological embedding of 

socioeconomic disadvantage and its consequences on morbidity and mortality are not fully 

understood. One potential pathway may be through modification of epigenetic mechanisms, such 

as DNA methylation (DNAm), that regulate gene expression. Alternatively, DNAm could be a 

marker of underlying biological response to environmental or contextual exposures. Recent 

studies have shown that socioeconomic status (SES) is associated with epigenetic aging 

measures (3, 4), but few studies have examined relationships between indicators of early and 

later-life SES and DNAm sites across the epigenome (5).  

DNAm is the covalent addition of a methyl group to the 5th carbon on a cytosine DNA base. 

In humans, DNAm occurs at sites on the genome where a cytosine is followed by a guanine, 

separated by a phosphodiester bond (CpG site). DNAm is the most well-studied type of epigenetic 

modification, and it is increasingly being profiled in large epidemiological studies. DNAm patterns 

are tissue-specific, influenced by both genetics and environmental exposures, and are relatively 

stable compared to other cellular biomarkers such as gene expression (6, 7). However, patterning 

at some CpG sites is dynamic throughout the life course and can shift in response to 

environmental stimuli; thus, it has been proposed as a possible mechanism linking social 

exposures to adverse health outcomes. More recently, epigenome-wide differences in DNAm 

have been associated with current and/or past environmental exposures, suggesting global 

variation in DNAm could serve as a cumulative or time-specific biomarker of exposure, regardless 

of whether each specific CpG site is mechanistically involved in the disease process (8–10). Thus, 

epigenetic signatures may be useful proxies of exposure data in epidemiology studies, particularly 

when collection of these data are costly and/or subject to recall bias (11, 12).  
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DNAm-based surrogates or biomarkers are typically constructed by regressing the 

exposure or health outcome of interest on a set of CpG sites using a supervised machine learning 

method (i.e., penalized regression) in a training sample. Currently, the most well-cited DNAm 

biomarkers are epigenetic aging measures or epigenetic “clocks” that are highly predictive of 

chronological age  (13–20), biological age and mortality (21–23), and the rate of aging (24, 25).  

To date, over 30 epigenetic aging measures have been developed for adults and have been 

associated with numerous health, socioeconomic, and lifestyle factors (26–33). These methods 

have been extended to calculate surrogate DNAm biomarkers for hundreds of health outcomes 

and disease-associated plasma proteins, including cardiovascular disease, diabetes, C-reactive 

protein, HDL cholesterol, and interleukin-6 (34–37). In the case of health behaviors like smoking 

and alcohol consumption, DNAm surrogates are typically more accurate than self-reports, thereby 

reducing misclassification and improving disease prediction and risk stratification (38). For past 

exposures where retrospective data collection is difficult or even impossible to collect, DNAm-

based surrogates hold more promise as an exposure biomarker than other omics data because 

DNAm is more chemically stable than RNA or metabolites and does not degrade as easily with 

long-term storage (12, 39).  For example, DNAm biomarkers have been successful in reflecting 

past exposures to prenatal smoking, prenatal alcohol, maternal diet, exposure to lead, pesticides, 

and other toxins (40–42). Additionally, for some exposures like smoking, DNAm surrogates have 

shown more promise in accurately estimating exposure timing and dosage than prior gold 

standard smoking biomarkers like cotinine (12, 43).  

With respect to SES, a DNAm-based surrogate may also be useful as a ‘discovery 

biomarker’ that can indicate biological processes that arise from or are associated with social 

disadvantage and its consequences. Thus, as opposed to more clinical biomarkers where disease 

prediction or risk stratification is the central goal (44), DNAm-based surrogates of SES may also 

help elucidate “biological expressions of social inequality”, or molecular pathways that link 

adverse social or environmental experiences with downstream health outcomes (45).  To date, a 
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large body of literature suggests that low SES is strongly associated with morbidity and mortality, 

including health problems such as cardiovascular disease, diabetes, hypertension, respiratory 

infections, and cancer (46, 47). Evidence suggests that the biological mechanisms linking SES 

with disease in industrialized populations operate through stress-related inflammatory pathways 

that can dysregulate immune system responses or metabolic functioning (48–50). In addition, 

mechanisms between socioeconomic adversity and health may vary depending on whether the 

exposure occurs in childhood, adulthood, or cumulatively over the lifespan. For example, the 

relationship between childhood adversity and later-life health may arise due to latent independent 

effects that disrupt critical or sensitive periods of development in early life (i.e., ‘biological 

embedding’ or ‘programming’ of adult disease), and/or via the role of early environment on 

subsequent life trajectories that have cumulative or ‘weathering’ effects on health (49, 51–54).  

Epigenome wide association studies (EWAS) that independently test associations 

between individual CpG sites and SES-related outcomes generally corroborate these findings (5). 

However, more evidence is needed to understand the influence of timing and/or duration of 

socioeconomic disadvantage on DNAm in childhood and adulthood, as well as the degree of 

overlap in DNAm patterns across SES domains at both the individual and neighborhood levels 

(5). In addition, unlike penalized regression models that use shrinkage methods to construct 

DNAm biomarkers (e.g., lasso or elastic net), association weights from EWAS do not take the 

intercorrelation of CpG sites into account, which in turn may reduce the predictive accuracy of a 

biomarker or “methylation risk score” (MRS) that uses EWAS weights to calculate a weighted sum 

of DNAm levels (55).  

In this study, we trained DNAm-based surrogates or biomarkers of childhood and adult 

SES in the Health and Retirement Study (HRS)—a large, multi-racial/ethnic sample of older adults 

(N=3,527)—and then tested their performance in another diverse, US-based sample of older 

adults (the Multi-Ethnic Study of Atherosclerosis or MESA, N=1,182). To capture the 

multidimensional nature of SES, DNAm biomarkers were trained on composite indices of 
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childhood SES (cSES) and adult SES (aSES) that measure SES at both the individual and the 

sociological levels. We then examined whether these SES biomarkers (cSES-BIO and aSES-

BIO) were associated with downstream morbidity and mortality, before and after accounting for 

self-reported childhood and/or adult SES and epigenetic aging measures. Finally, we explored 

potential biological mechanisms by functionally characterizing the individual CpG sites that 

comprise the SES biomarkers. Results indicate that biomarkers of SES across the lifecourse 

reveal additional information not captured in self-reported SES or next-generation epigenetic 

aging measures, suggesting they may not only be useful proxies for unmeasured social 

exposures, but they may also augment current knowledge about the biological impact of 

socioeconomic disadvantage on downstream health and aging.  

 
 
Results 
 

Sample statistics. The HRS analytic sample (N=3,527) had a mean age of 69.8 (SD=9.7) 

in 2016 (at the time of DNA methylation measurement) and was 58.7% female (SI Appendix, 

Table S1). Approximately two thirds of the sample (67.9%) were non-Hispanic white, with 15.6% 

non-Hispanic Black, 13.6% Hispanic, and 2.9% other. Most of the sample had a high school 

degree (81.5%), but only 25.6% had a college degree. Mean parental education was 10.9 years 

(SD=3.9), and mean childhood financial strain was 0.9 (SD=1.2). A total of 3,120 participants 

were followed-up and provided health information in 2018, and the sample statistics were 

substantively similar to those in 2016. The MESA replication sample (N=1,182) had a nearly 

identical mean age to the HRS sample (69.6, SD=9.3), but was slightly more diverse 

(White=48.5%; Black=19.4%; Hispanic=32.2%) and 50.9% female.  

SES index biomarkers. The analytic pipeline for biomarker creation and downstream 

analysis is shown in Figure 1 and described in detail in Statistical Methods. Due to the large 

number of CpG sites on the EPIC chip, we first conducted EWAS of the aSES and cSES indices 
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separately in the training data (HRS) to reduce the number of CpGs evaluated by the elastic net 

procedure for biomarker construction. DNAm in HRS was profiled using the Illumina Infinium 

Methylation EPIC BeadChip. A total of 69,000 and 88,681 CpG sites on the EPIC chip were 

nominally associated (p<0.05) with aSES and cSES in the EWAS, respectively. Manhattan plots 

for these EWAS can be found in SI Appendix, Figures S1-S2.  

The elastic net procedure that minimized prediction error in the full sample selected a total 

of 25 CpG sites for aSES (lambda=0.138, cross validation (CV) R2=5.57%, Table 1) and 17 sites 

for cSES (lambda=0.128, CV R2=3.35%, Table 2). For both aSES and cSES, the selected CpG 

sites tended to have relatively high ranks in the original EWAS (ranks range from 1-15,540 for 

aSES and 1-43 for cSES, all with EWAS p-values < 4.6x10-3). EWAS of the individual components 

of the SES indices showed that education, household income, wealth, and neighborhood 

socioeconomic disadvantage had the strongest associations with many of the CpG sites that 

comprise aSES-BIO (SI Appendix, Table S2). Parental education had the strongest associations 

with many of the CpG sites that comprise cSES-BIO (SI Appendix, Table S3). 

For replication, we chose MESA because it is one of the few comparable aging studies in 

the US with DNAm data. However, in MESA, DNAm data were profiled on the Illumina Infinium 

Methylation450 BeadChip. Thus, we also constructed a 450k version of the aSES and cSES 

biomarkers (aSES-BIO450 and cSES-BIO450) that applied the same parameters and model 

specifications to CpG sites on the 450k array that overlap with the EPIC array. Elastic net selected 

29 of 34,095 sites for aSES (lambda=0.138, CV R2=5.34%, SI Appendix, Table S4) and 15 of 

46,548 sites for cSES (lambda=0.128, CV R2=3.28%, SI Appendix, Table S5). The aSES-BIO450 

included 14 of the same CpG sites as aSES-BIO, and the two biomarkers were highly correlated 

(r=0.89) (SI Appendix, Table S6).  The cSES-BIO450 was also highly correlated with cSES-BIO 

(r=0.99) and shared 13 CpG sites. 

Correlations between SES indices, SES biomarkers, and epigenetic aging 

measures. In HRS, the measured adult SES (aSES) and childhood SES (cSES) indices were 
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correlated (r=0.43) (SI Appendix, Table S6). The aSES index was correlated with aSES-BIO 

(r=0.24), the cSES index was correlated with cSES-BIO (r=0.19), and the two SES biomarkers 

were also correlated (r=0.28). aSES-BIO was correlated with both aging clocks (r=0.18 for 

GrimAge and r=0.50 for DunedinPACE), and cSES-BIO was weakly correlated with GrimAge 

(r=0.05) and DunedinPACE (r=0.16).  

Associations between SES biomarkers and downstream health outcomes.  Figure 2 

displays associations between both aSES-BIO and cSES-BIO and downstream health outcomes 

measured approximately two years after DNAm measurement in the HRS. Both aSES-BIO and 

cSES-BIO were associated with the number of chronic conditions, the cardiometabolic conditions 

index (CMCI), self-reported health status (SRHS), and mortality after adjusting for age, sex, race, 

and smoking (all p<0.0001, Model 1). Associations between aSES-BIO and these same health 

outcomes persisted in magnitude and statistical significance after adjusting for measured aSES 

(Model 2). SI Appendix, Table S7 shows that these aSES-BIO associations were slightly 

attenuated but continue to persist after adjusting for the epigenetic aging clocks (Models 3a and 

4a) and for both measured aSES and the clocks (Models 4a and 4b). Conversely, associations 

with cSES-BIO were statistically insignificant after adjusting for both cSES and DunedinPACE (SI 

Appendix, Table S7, Model 4b), and for CMCI, after adjustment for DunedinPACE (Model 3b) or 

both cSES and GrimAge (Model 4a). Associations between aSES-BIO and Langa-Weir dementia 

were fully attenuated after adjusting for measured aSES (Models 2, 4a-4b), but persisted after 

adjusting for the epigenetic aging clocks (Models 3a and 3b). There were no significant 

associations between cSES-BIO and Langa-Weir dementia. Associations between health 

outcomes and the aSES-BIO450 or cSES-BIO450 biomarkers were similar to EPIC chip 

biomarker associations (SI Appendix, Table S8).  

To assess the performance of the SES biomarkers relative to measured SES, we also 

estimated a version of Model 1 (Model 1*) that used the aSES or cSES indices instead of the SES 

biomarkers (SI Appendix, Table S7). In general, SES biomarker associations were not 
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significantly different from aSES or cSES associations in our training sample, except for SRHS 

and Langa-Weir dementia, where associations were significantly higher in magnitude. Finally, 

Model 1 associations were robust after adjusting for either measured cSES (in the case of aSES-

BIO) or measured aSES (in the case of cSES-BIO) (SI Appendix, Table S7, Model 5). 

Replication in MESA.  In the replication sample, the adult SES biomarker (aSES-BIO450) 

was correlated with aSES and explained approximately 4.4% of the variation in aSES (SI 

Appendix, Table S9). Variance explained was similar after accounting for age and sex (partial 

R2=3.88%, p<0.0001). aSES-BIO450 correlations with GrimAge (r=0.36) and DunedinPACE 

(r=0.60) were higher than correlations in HRS (SI Appendix, Table S9). The biomarker also had 

significant associations with downstream health outcomes that were similar in magnitude to HRS 

associations, including CMCI, SRHS, and mortality (p<0.05, Models 1, Figure 3), and these 

associations persisted after controlling for aSES (Model 2). Importantly, aSES-BIO450 appears 

to be a better predictor of downstream CMCI and mortality than aSES, whereas for SRHS, aSES 

outperforms the aSES biomarker (SI Appendix, Table S10, Model 1* and Model 1). Associations 

between aSES-BIO450 and SRHS were also fully attenuated after adjusting for GrimAge or 

DunedinPACE. For CMCI, associations persisted in models that controlled for GrimAge (Models 

3a and 4a) but were statistically insignificant after adjusting for DunedinPACE (Models 3b and 

4b). Mortality associations persisted across all models but were attenuated in magnitude and 

significance when adjusting for DunedinPACE. No associations were found between the 

biomarker and ICD-based all cause dementia.  

For childhood SES, we were limited to self-reports of parental education and therefore 

could not test the correlation between cSES-BIO450 and the complete cSES index in MESA. The 

cSES-BIO450 was marginally correlated with parental education (r=0.07), and the cSES 

biomarker was not correlated with GrimAge or DunedinPACE (SI Appendix, Table S9).  

Associations between cSES-BIO450 and downstream health outcomes were largely insignificant 

(SI Appendix, Table S10).  
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Functional characterization of biomarker CpGs. CpG sites selected for the aSES-BIO 

were enriched in DNAse hypersensitivity sites (DHS) and enhancer regions, while CpGs included 

in the cSES-BIO were enriched in promoter regions (SI Appendix, Table S11; all p<0.05). Further, 

compared to CpGs that were not included in the biomarker indices, CpGs selected for both EPIC 

and 450K SES biomarkers were enriched for eQTM expression (p<8.3E-04) (SI Appendix, Table 

S11). Taken together, these results suggest that the selected CpGs may be important for the 

regulation of gene expression.  

Based on Illumina annotation file mapping, CpGs selected for the aSES-BIO and cSES-

BIO mapped to 21 and 18 unique genes, respectively. After FDR correction, gene-set enrichment 

of GO Biological Processes (BP) terms and KEGG pathways were not observed for either set of 

CpGs when mapped to their proximal genes (FDR q<0.01).  When utilizing eQTM data from 

Keshawarz et al. (2023), CpGs selected for the aSES-BIO and cSES-BIO mapped to the 

expression of 230 and 66 genes, respectively, in cis or in trans. Additionally, CpGs selected for 

aSES-BIO were associated with the expression of genes enriched for 8 GO BP terms related to 

cell death, T cell differentiation and activation, cell migration, and cell-cell signaling (SI Appendix, 

Table S12 and Figure S3). CpGs selected for the cSES-BIO were associated with the expression 

of genes enriched for 13 GO BP terms and 1 KEGG pathway, including chemotaxis, T cell 

differentiation, immune system process, and cell adhesion molecules (SI Appendix, Tables S13 

and S14; Figure S4). Results from the GO enrichment analysis for the cSES-BIO450 were similar 

(SI Appendix, Table S15 and Figure S5). There was no observed enrichment of GO or KEGG 

pathways for genes associated with CpGs selected for the aSES-BIO450.  

Biomarker CpG overlap with published EWAS. Several CpGs selected for both the 

aSES and cSES biomarkers have been previously associated with diseases and traits identified 

in large-scale EWAS, including age, chronic diseases, and inflammation. In general, CpG sites in 

cSES-BIO overlapped more with prior EWAS of immune system processes, whereas aSES-BIO 
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CpGs overlapped with a broader range of traits or molecular processes related to metabolic 

functioning, health behaviors, or cancer (SI Appendix, Tables S16-S19).  

 
 
Discussion 
 

We constructed DNAm-based biomarkers of child and adult SES in a large, population-

representative sample of older adults (HRS) and tested their performance and association with 

downstream health outcomes in one of the few comparable samples with DNAm data in the US 

(MESA). The aSES-BIO explained approximately 4% of the variance in measured aSES in MESA. 

The explanatory power of cSES-BIO could not be fully ascertained because complete cSES index 

information used to train the biomarker in HRS were not available in MESA. In both HRS and 

MESA, aSES-BIO and cSES-BIO were associated with chronic disease, cardiometabolic 

conditions, and mortality two to six years after DNAm profiling, and these associations persisted 

after controlling for measured SES. Moreover, although the SES biomarkers were correlated with 

second-generation epigenetic aging measures, adjusting for GrimAge and DunedinPACE did not 

fully attenuate these associations. Notably, in our replication sample, the aSES biomarker was a 

better predictor of downstream cardiometabolic conditions and mortality than measured aSES. 

Taken together, these findings suggest that DNAm-based surrogates of SES may be useful 

proxies for unmeasured social exposures and may contain additional valuable information on the 

biological underpinnings of the SES-health gradient that are not fully captured by self-reported 

SES or epigenetic aging measures.  

Further analyses of the CpG sites that comprise the SES biomarkers revealed enrichment 

in enhancer and promoter regions, DNase hypersensitivity sites, and eQTMs, suggesting they 

may be critical for the regulation of gene expression. In gene-set enrichment analysis, selected 

CpGs were associated with the expression of genes enriched in pathways related to chemotaxis, 

T cell activation, immune system response, cell migration, and cell death. CpG sites in both 
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biomarkers were associated with prior EWAS of age, age-related chronic diseases, inflammation 

(e.g., chronic pain, COPD, and C-reactive protein), and clear cell renal carcinoma (56). However, 

unique patterns for each biomarker also emerged. CpG sites in aSES-BIO were identified in prior 

EWAS of Type 2 diabetes and health behaviors, including smoking, alcohol use, diet quality, and 

BMI. Additionally, CpGs were associated with pancreatic cancer (57) and circulating tumor 

necrosis factor receptor 2 (sTNFR2) (58), a known biomarker for several types of cancer, including 

colorectal cancer, non-Hodgkin's lymphoma, and hepatocarcinoma (59), that impacts tumor 

activation and progression (60). Of note, the top CpG selected for both aSES-BIO and aSESBIO-

450K (cg18181703) maps to the body of the suppressor of cytokine signaling 3 (SOCS3) gene, 

which has a role in regulating cytokine and hormone activity. Both inflammation and infection can 

stimulate the expression of SOCS3 in different cell populations (61). cg18181703 was also 

identified in prior EWAS of educational attainment and social disadvantage (62, 63). Finally, 

although associations between aSES-BIO and dementia were relatively weaker when compared 

to other downstream health outcomes, one of the CpG sites selected for aSES-BIO (cg06021088) 

maps to the Bridging Integrator 1 (BIN1) gene, which is considered the second most significant 

genetic risk factor for late-onset Alzheimer’s disease (64, 65).  

Conversely, CpGs in the cSES-BIO were found more in prior EWAS of immune and 

autoimmune diseases, including atopy, Sjorgren’s syndrome, and Rheumatoid arthritis, and a 

subset of CpGs were associated with the expression of genes enriched for immune system 

processes and T cell differentiation. These findings support prior research that has shown 

childhood disadvantage is a risk factor for immune dysregulation (66) and changes in T cell activity 

(67), which in turn can increase the risk of mental and physical health issues in adulthood, 

including depression, cardiovascular disease, Type 2 diabetes, and cancer (68, 69). This supports 

the hypothesis of biological embedding of adult disease in early life, potentially through adverse 

childhood circumstances that may have cumulative or interactive effects on adult health.  
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 This study has several limitations. First, although we include covariates in our models to 

mitigate any confounding from sex, race, smoking behavior, genetic ancestry, and technical noise, 

we cannot draw conclusions regarding the causal relationship between socioeconomic position 

in childhood or adulthood and DNAm signatures. In addition, self-reported measures of cSES in 

particular may be subject to recall bias. Thus, the CpG sites chosen by the machine-learning 

algorithm likely detect a mix of features that are not directly causal, and some may be 

uninformative correlates of SES.  Moreover, some features may be specific to the US context and 

may not be generalizable to other countries, particularly in other high-income countries where 

different welfare states or social programs affect the depth and distribution of social disadvantage, 

and/or in low- and middle-income countries where the biosocial determinants of health may vary 

due to vastly different socioeconomic and epidemiological contexts (70).  Additionally, technical 

noise from batch effects or unreliable probes may limit generalizability, and SES biomarkers that 

were trained in the HRS EPIC array data could not be validated in the MESA 450k array data. 

Further, DNAm was profiled in different tissue types in HRS (whole blood) and MESA 

(monocytes). Although our results do appear to replicate across these two tissue types, further 

replication in other cell/tissue samples and across different applications and contexts is needed.  

 Despite these limitations, this study provides a foundation for the rigorous creation of 

epigenetic markers for social exposures. A major strength of this study is the use of large, multi-

racial/ethnic population-representative samples with rich socioeconomic data from both childhood 

and adulthood. Within both the HRS and MESA samples, we were also able to test longitudinal 

associations between the aSES and cSES biomarkers and downstream health and mortality.  

Future analyses include evaluating the SES biomarkers in each racial/ethnic group separately 

and examining associations between the identified CpG sites and forthcoming RNA-seq data in 

HRS.  

 
Materials and Methods 
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Data 

Health and Retirement Study (HRS). The HRS is a nationally representative, longitudinal 

panel study of individuals over the age of 50 and their spouses that began in 1992 (71, 72). HRS 

participants are interviewed every two years about their income and wealth, health and use of 

health services, work and retirement, and family connections. New cohorts are introduced every 

six years to offset attrition and death and to maintain a sample size of approximately 20,000 per 

wave.  DNAm data was profiled in 4,103 racially and socioeconomically diverse HRS participants, 

and 4,018 samples passed quality control (73). Of these, 491 were missing genomic data. A total 

of 3,527 participants with DNA methylation, genetic, and socioeconomic data were included in 

the analyses. 

Demographic and socioeconomic data were taken from the RAND HRS Longitudinal File 

2020 (V1) (74). Race and ethnicity were self-reported. Neighborhood social disadvantage data 

were taken from the 2006-2016 Psychosocial and Lifestyle Questionnaire and merged to 

respondents at the Census tract level using restricted data on the location of primary residence 

from the 2006-2016 waves (75, 76). Neighborhood socioeconomic disadvantage measures were 

constructed using the restricted HRS Contextual Data Resource, which contains data from the 

2005-2018 American Community Survey linked to respondents at the Census tract level (77).  

Restricted three-digit Census occupation codes from the 1992-2016 (78) waves were used to 

merge occupational prestige measures from the General Social Survey (79).  

DNA methylation (DNAm). DNAm was measured from whole blood samples collected in 

the 2016 HRS Venous Blood Study (80). Methylation was measured using the Illumina Infinium 

Methylation EPIC BeadChip. The minfi package in R software was used for data preprocessing 

and quality control. Samples with mismatched sex or an average median intensity <8.5 were 

removed. A detection p-value <0.01 was used to remove probes or samples with >5% missing 

data. Cross-reactive probes were removed prior to elastic net analyses (81). After quality control, 

a total of 836,660 CpGs were available for analysis. DNA methylation at each CpG site was 
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quantified using beta values, which approximate the proportion of methylation. The Houseman 

method was used to estimate white blood cell (WBC) proportions(82). We also used two 

epigenetic aging measures, GrimAge (83) and Dunedin Pace of Aging (DunedinPACE) (25). 

GrimAge was calculated and released by HRS (73), and we calculated PACE using the 

DunedinPACE R package (25).  

Genotypes. We used genotype data to estimate genetic principal components (PCs) of 

ancestry and to obtain APOE 𝜀4 carrier status. Genotype data for over 18,000 HRS participants 

was measured using Illumina HumanOmni2.5 BeadChips (HumanOmni2.5-4v1, HumanOmni2.5-

8v1) (84). Individuals with call rates <98%, SNPs with call rates <98%, HWE p-value<0.0001, 

chromosomal anomalies, and first-degree relatives in the HRS were removed. Principal 

components were calculated using the SNPRelate package in R (85). APOE isoforms were 

inferred from SNP genotypes determined by TaqMan assays or imputed using the 

HumanOmni2.5 data (86). People with at least one copy of the 𝜀4 allele were considered 𝜀4 

carriers.	 

Socioeconomic status. As in our previous work (33), to capture the multi-dimensional 

nature of SES we used six measures to construct an aSES index: educational attainment, 

household income, wealth, occupational prestige, neighborhood socioeconomic disadvantage, 

and neighborhood social environment. Additional details on SES index construction are provided 

in SI Appendix, Section 1.  Briefly, we took the unweighted average of the non-missing quintiles 

for each indicator and reverse coded the indicators so that a higher quintile corresponds to worse 

SES. Educational attainment was measured in years and was coded as 1=>16 years, 2=16 years, 

3=13-15 years, 4=12 years, and 5=<12 years. Similarly, quintiles were constructed after 

averaging values across all HRS waves up to 2016 for household income (inflation adjusted to 

2016 dollars), wealth (total assets inflation adjusted to 2016 dollars), and occupational 

disadvantage (87) (attained by matching occupational prestige codes from the General Social 

Survey to respondent three-digit occupation codes). Quintiles for the neighborhood 
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socioeconomic disadvantage score (a summary of six census tract-level metrics reflecting 

education, occupation, income/wealth, poverty, employment, and housing) and neighborhood 

social disadvantage score (a summary of conditional Bayes’ estimates for aggregate-level 

responses on aesthetic quality, safety, and social cohesion) were averaged across 2012-2016 

waves and 2006-2016 waves, respectively, to reflect cumulative neighborhood exposures (88, 

89). Respondents were required to have non-missing values for at least three of the six measures 

to be assigned an aSES index. As a robustness check, we also used principal components (PC) 

analysis of these six variables to construct a PC-based SES measure, which was highly correlated 

with the SES index (r=0.97). We opted to use the method above to construct the SES index 

because the PC method required all score elements to be non-missing.  

We created a cSES index by taking the unweighted average of two measures: parental 

education and childhood financial strain (90). Parental education was the average of maternal 

and paternal education, coded as 0=16 years or more, or 1=13-15 years, 2=12 years, 3=8-11 

years, 4=<8 years. For missing values of maternal or paternal education, we first imputed 

continuous education years from demographic and SES variables using a multivariate, 

regression-based procedure in Imputation and Variance Estimation (IVEware) software 

(http://www.isr.umich.edu/src/smp/ive/) as described in Faul, et al. (90). For HRS participants from 

the earliest wave of the study, parental education was collected as a dichotomous variable; for 

these participants, we used parental education imputations from Vable, et al. (91) rounded to the 

nearest year. Childhood financial strain was the sum of whether the respondent has ever moved 

as a child, received financial help from relatives, had a period of paternal unemployment, or had 

poor/varied financial status.  

Health outcomes. To assess health and aging in HRS, we used data from the 2018 wave, 

which was collected two years after DNAm measurement. Number of chronic conditions (range 

0-8) was a count of the self-reported number of conditions that the respondent had ever 

experienced, including hypertension, diabetes, cancer, lung disease, heart problems, stroke, 
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psychiatric problems, and arthritis. The cardiometabolic conditions index (CMCI) was the mean 

standardized sum of four mean standardized doctor-diagnosed chronic diseases (diabetes, heart 

problems, stroke, and hypertension). Self-reported health status (SRHS, range 1-5) was the 

respondent rating of their overall health, ranging from 1=excellent to 5=poor. Mortality was an 

indicator (1=yes) of whether the respondent died between the 2016 and 2018 data collection 

waves. Dementia was evaluated using the Langa-Weir definition (92, 93), which sets dementia 

classification (1=yes) if an individual scores 0-6 points on a 27-point cognition scale.  

Replication sample: Multi-Ethnic Study of Atherosclerosis (MESA). We evaluated the 

performance of our SES biomarkers in MESA. DNAm was measured from monocytes at Exam 5 

(2010-2012) using the Illumina Infinium Methylation450 BeadChip. See Liu et al. (2013) for a 

description of data processing (94). Briefly, probes were excluded if they had ‘detected’ 

methylation levels in <90% of MESA samples (detection p-value threshold=0.05), overlapped with 

a non-unique genomic region, or were designed to assay polymorphic single nucleotide 

polymorphisms (SNPs) rather than methylation (95). Genomic principal components were 

estimated with the EIGENSTRAT program using genotype data from the Affymetrix 6.0 SNP array 

(96). APOE genotypes were estimated from imputed genotype data and individuals with at least 

one copy of the 𝜀4 allele were considered 𝜀4 carriers.		Race and ethnicity were self-reported. 

The same six SES measures (educational attainment, household income, wealth, 

occupational disadvantage, neighborhood socioeconomic disadvantage, and neighborhood 

social environment) were used to construct the adult SES index in MESA. These were coded 

similarly to HRS except for income and wealth, both of which were not measured continuously 

(see SI Appendix, Section 1 for additional details). For income, respondents selected their 

household’s income bracket from a series of unfolding brackets rather than reporting a continuous 

value. For wealth, a combination of home and land ownership, car ownership, and investments 

were used to construct a 5-level categorical variable to take the place of the quintiles in the aSES 

index (1=home or land + car + investments; 2=home or land + car or investments; 3=home or 
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land only; 4=car or investments; 5=none). In MESA, measures of childhood SES were limited to 

parental education. Here, we took the average of maternal and paternal education, which was 

coded as a categorical variable (4=no schooling; 3=some schooling but did not complete HS; 

2=HS degree, 1=some college, 0=college/graduate professional degree).  

Health outcomes were constructed in the same manner as HRS, except for the number of 

chronic diseases, which was not available in MESA, and dementia, which was assessed using 

ICD-based all cause dementia diagnoses through 2018 from the MESA dementia events file. 

Apart from dementia, all health outcomes were measured at Exam 6, which occurred 

approximately six years after DNAm data collection (2016-2019).  

 

Statistical Methods 

Epigenome-wide association studies (EWAS). Due to the large number of CpG sites 

present on the EPIC chip, we used a prescreening procedure to reduce the number of CpGs 

evaluated when constructing the SES biomarkers by first conducting EWAS for aSES and cSES, 

separately, in the training data (HRS). EWAS CpGs with p<0.05 were then carried forward into 

the biomarker construction stage (Figure 1). Our EWAS model was as follows:  

 
𝐶𝑝𝐺!"#$ = 𝛼 + 𝛽𝑆𝐸𝑆! + 𝑋!%𝛿 +𝑊𝐵𝐶!%𝜃 + 𝑃𝐶!%𝛾 + 𝑢" + 𝑧# + 𝑛$ + 𝜀!"#$     (1) 

  
where 𝑆𝐸𝑆! is either the aSES or cSES index for individual 𝑖. The matrix 𝑋! contains individual 

characteristics including age, sex, and race; due to the strong effects of smoking on the 

methylome and the well-established socioeconomic gradient in smoking, we also include 

dichotomous indicators for current and/or former smoking (omitted category=never smoker).  

Because DNAm was profiled in whole blood and methylation patterns differ by blood cell type, we 

accounted for differences in white blood cell (𝑊𝐵𝐶!) composition across samples, or the 

proportion of monocytes, natural killer cells, B-cells, CD4 T-cells, and CD8 T-cells (omitted 
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category=proportion granulocytes). The first four genetic ancestry PCs were included to account 

for potential confounding due to ancestry (𝑃𝐶!). Technical covariates for plate (𝑝), plate row (𝑟), 

and plate column (𝑐) were included as random effects to account for potential batch effects, or 

𝑢", 𝑧#, and 𝑛$, respectively. Manhattan plots for these EWAS can be found in (SI Appendix, 

Figures S1-S2).  

To examine which of the SES index components had the strongest associations with the 

CpG sites selected into the SES index biomarkers, we also conducted separate EWAS for each 

of the components of the aSES and cSES indices (Figure 1). We used the same model as above 

except that education years was included as a covariate when neighborhood socioeconomic 

disadvantage or neighborhood social environment was the SES measure of interest.  

SES index biomarker construction. To minimize overfitting and select the CpG sites 

that are most predictive of the SES indices, we used elastic net, a regression method that 

performs variable selection and regularization (shrinkage) simultaneously (97). For aSES and 

cSES separately, we first selected all CpG sites with p<0.05 from the corresponding EWAS, and 

then adjusted these CpGs for all covariates in the EWAS model. Next, we used the residual CpGs 

as input for elastic net, using the following parameters in the glmnet package in R: alpha=0.5 

(equally balancing ridge regression and lasso) and 5-fold cross validation to find the optimal value 

of lambda (penalty strength parameter) for minimizing prediction error (98). To construct the SES 

biomarker for adult SES (aSES-BIO) and childhood SES (cSES-BIO), we summed the 

methylation value at each CpG site selected by elastic net at the optimal value of lambda, 

weighted by its corresponding beta coefficient, and then standardized the sums. We then 

calculated the correlation between the methylation-based biomarkers (aSES-BIO and cSES-BIO), 

measured markers of SES (aSES and cSES), and the epigenetic aging measures (GrimAge and 

DunedinPACE). 

We recognize that many studies, including our replication sample (MESA), have DNAm 

measured using the Illumina 450K chip rather than the EPIC chip. Therefore, we also constructed 
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a version of the aSES and cSES biomarkers by first restricting to only those EPIC CpG sites that 

were also included on the 450K chip and then used the same parameters and model 

specifications for elastic net. We assessed the level of CpG overlap and correlation between these 

450K SES biomarkers (aSES-BIO450 and cSES-BIO450) and the EPIC chip biomarkers (aSES-

BIO and cSES-BIO). 

 Associations between SES biomarkers and downstream health outcomes. We used 

Poisson regression (number of chronic conditions), linear regression (CMCI, SRHS), or logistic 

regression (mortality, dementia) to assess the relationship between the SES biomarkers (aSES-

BIO, cSES-BIO) and downstream health and mortality in 2018, or two years after DNAm was 

profiled in the HRS, using the following model (Model 1): 

 
𝐻𝑒𝑎𝑙𝑡ℎ! = 𝛼 + 𝜌𝑆𝐸𝑆&'(! + 𝑋!

%𝜃 + 𝜀!     (2) 

 
Where 𝑆𝐸𝑆%&' is the aSES-BIO or cSES-BIO biomarker for individual 𝑖 and the matrix 𝑋! includes 

controls for age, sex, race, and smoking status as in Equation 1.  The aSES, cSES, aSES-BIO, 

and cSES-BIO measures were standardized to have a mean of 0 and standard deviation (SD) of 

1 for analysis. For dementia models, we also included an indicator for APOE e4 status. We then 

examined associations between the SES biomarkers and health outcomes after accounting for 

the measured SES index (aSES or cSES; Model 2), GrimAge or DunedinPACE (Models 3a and 

3b), both measured SES and GrimAge or DunedinPACE (Models 4a and 4b), and either 

measured cSES (for aSES-BIO) or aSES (for cSES-BIO) to examine SES-BIO associations after 

accounting for SES in childhood or adulthood (Model 5). To assess the performance of the SES 

biomarkers relative to measured SES, we also estimated a version of Model 1 (Model 1*) that 

used the aSES or cSES indices instead of the SES biomarkers. Coefficient p-values<0.05 were 

considered statistically significant. 

Replication in MESA. For each MESA participant, aSES-BIO450 or cSES-BIO450 was 

constructed by multiplying the elastic net beta coefficients by the methylation beta values at the 
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corresponding CpG sites (measured in Exam 5) and taking the standardized sum. We then tested 

the association of aSES-BIO450 or cSES-BIO450 with measured aSES or cSES and with health 

outcomes (CMCI, SRHS, mortality, and dementia) collected at MESA Exam 6, which was 

conducted approximately 6 years after DNAm measurement, or between 2016 and 2019. Number 

of chronic conditions was not analyzed in MESA, as the data available in MESA did not allow us 

to create this variable in a comparable way to HRS.  

Functional characterization of biomarker CpGs. 

Genomic feature enrichment analysis. We performed genomic feature enrichment 

analysis on the sets of CpG sites selected for each of the SES biomarkers separately. For each 

set of CpGs, we examined whether their genomic locations were enriched for features including 

gene promoters, enhancers, DNase I hypersensitivity sites (DHS), CpG islands (CGI), and CpG 

island flanking shores or shelves (<4 kb from CGI). We used annotation files from Illumina and 

the UCSC genome browser to identify target genes and genomic features associated with each 

CpG (99, 100). A CpG site was in the promoter region if it was located 0-1500 bases upstream of 

a transcription start site. To identify CpGs associated with gene expression, we used results from 

expression quantitative trait methylation (eQTM) analysis performed using the 450k chip (101) 

and the EPIC (102) in the Framingham Heart Study (FHS). For each set of CpGs selected for a 

given biomarker, we compared whether the set of CpGs were more likely to be eQTMs than CpGs 

that were not selected by comparing the proportion of eQTMs in the two groups. All enrichment 

analyses were conducted using a two-sided Fisher’s exact test with a significance threshold of p-

value<0.05. 

Gene-set analysis. To better understand the functional pathways of the CpGs selected for 

each SES biomarker, we conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway analyses using two distinct methods. First, we performed a gene-set 

analysis using GOmeth from the missMethyl package in R (103). This method accounts for 

potential sources of bias, including the uneven distribution of probes across the epigenome and 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 22, 2024. ; https://doi.org/10.1101/2024.05.21.24307701doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.21.24307701
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 
 

the lack of independence between CpGs and their associated genes. However, a major limitation 

of this method is that it uses the chromosomal position of the CpGs to map them to proximal 

genes. This may not be optimal because CpG sites do not always act on the nearest gene, but 

instead may influence expression of distal genes. As a second method, we performed GO and 

KEGG enrichment analysis using the clusterProfiler package in R to identify enrichment of 

biological processes (104). This method allows us to utilize methylation-gene expression pairs 

(eQTMs) to define the gene list, which places emphasis on the potential functional role of the 

CpG. For each SES biomarker, our gene signal list was comprised of all genes from an FHS-

identified eQTM that mapped to any of the CpGs included in the biomarker. The background gene 

list included all genes that were part of an eQTM that overlapped with CpGs that were present in 

our study. FDR-q<0.05 was considered significant for all GO and KEGG pathway analyses.  

CpG associations in published EWAS. We examined whether each biomarker CpG had 

been previously associated with any diseases or traits using The EWAS Catalog (105). For each 

CpG, all traits with p<0.0001 are reported. 

 
 

Data, Materials, and Software Availability 

This study used restricted individual level information from the HRS, and our contractual 

agreement does not permit public dissemination of the data. Details on how to access restricted 

data for the HRS can be found at https://hrs.isr.umich.edu/data-products/restricted-data. Data 

used in this analysis from MESA can be obtained through the MESA Data Coordinating Center 

(https://www.mesanhlbi.org/) and through the database of Genotypes and Phenotypes (dbGaP; 

phs000209).  Analysis code is posted on github: https://github.com/laurenschmitz/epigenetic-

SES-biomarker. 
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Figures and Tables 
 
 
 

Figure 1. Analytic Pipeline in HRS and MESA 
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Figure 2. Associations between SES biomarkers and health outcomes in HRS 

 

 
 
Notes: Figure displays estimates from separate regressions of health or mortality on aSES-BIO (adult SES 
biomarker constructed from EPIC chip methylation sites) or cSES-BIO (childhood SES biomarker 
constructed from EPIC chip methylation sites). The aSES-BIO and cSES-BIO measures were standardized 
for analysis. Model 1 controls for age, sex, race, current smoking, former smoking, and APOE e4 carrier 
status (dementia models only). Model 2 adds controls for measured aSES (in aSES-BIO regressions) or 
cSES (in cSES-BIO regressions). For chronic conditions, a Poisson model was used; for the 
cardiometabolic conditions index (CMCI) and self-reported health status (SRHS) linear models were used; 
for mortality and dementia logistic models were used. 95% confidence intervals. IRR, incidence rate ratio; 
OR, odds ratio. Sample sizes: number of chronic conditions=3120; CMCI=3120; SRHS=3118; 
mortality=3527; dementia=3120.  
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Figure 3. Associations between SES biomarkers and health outcomes in MESA 

 

 
 

Notes: Figure displays estimates from separate regressions of health or mortality on aSES-BIO450 (adult 
SES biomarker constructed from 450K chip methylation sites) or cSES-BIO450 (childhood SES biomarker 
constructed from 450k chip methylation sites). The aSES-BIO450 and cSES-BIO450 measures were 
standardized for analysis. Model 1 controls for age, sex, race, current smoking, former smoking, and APOE 
e4 carrier status (dementia models only). Model 2 adds controls for measured aSES (in aSES-BIO450 
regressions) or cSES (in cSES-BIO450 regressions). For the cardiometabolic conditions index (CMCI) and 
self-reported health status (SRHS) linear models were used; for mortality and dementia logistic models 
were used. 95% confidence intervals. OR, odds ratio. Sample sizes: CMCI=827; SRHS=848; 
Mortality=1180; Dementia=1180. 
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Table 1. CpG sites selected for adult SES index biomarker (aSES-BIO) by elastic net in HRS 

CpG E-Net 
Weight Chr. Position N EWAS            

p-value 
EWAS      
rank  

UCSC 
RefGene 

Name  

UCSC 
RefGene 
Group  

Relation 
to UCSC 

CpG 
Island 

Regulatory 
Feature 
Group 

Phantom5 
Enhancer DHS eQTM  

cg18181703 -0.7348 17 76354621 3522 9.80E-22 1 SOCS3 Body N_Shore Promoter 
associated 0 0 1 

cg11047325 -0.1265 17 76354934 3518 1.40E-19 2 SOCS3 Body Island  0 1 0 

cg21327712 0.6412 1 111744503 3522 6.90E-19 3 DENND2D TSS1500; 
Body N_Shore  0 1 0 

cg01894508 0.0838 2 70189111 3517 5.30E-12 7 ASPRV1 5'UTR; 
1stExon S_Shore  0 0 0 

cg18062721 0.1265 3 11643427 3518 1.30E-11 9 VGLL4 Body   0 1 0 

cg03362418 -0.0698 22 50965563 3521 1.50E-11 11 TYMP; 
SCO2 

Body; 
TSS1500 Island Promoter 

associated 0 1 0 

cg25008217 0.299 19 41882654 3499 2.30E-11 12 TMEM91 
TSS1500; 
1stExon; 
5'UTR 

Island  0 1 0 

cg17461390 -0.1565 19 17428411 3524 1.60E-10 19 DDA1 Body  
Unclassified 

cell type 
specific 

0 1 0 

cg02767093 -0.1932 13 99130655 3480 2.00E-10 21 STK24 Body S_Shelf  1 1 1 

cg25145728 -0.0126 16 89628775 3433 4.50E-10 28 RPL13 Body S_Shore  0 1 0 

cg02017926 0.0072 12 123754328 3517 4.90E-10 29 CDK2AP1 Body Island Promoter 
associated 0 1 1 

cg10922280 0.0408 16 68034227 3517 7.80E-10 33 DPEP2 TSS1500   0 1 1 

cg10206344 0.1281 16 31483277 3525 9.90E-10 39 TGFB1I1 TSS1500; 
TSS200 Island Unclassified 0 1 0 

cg11454468 -0.0387 3 142569221 3475 1.20E-09 44 PCOLCE2 Body   0 1 0 

cg11183072 0.0696 17 37894397 3522 2.00E-09 48 GRB7 TSS200; 
5'UTR 

  0 1 0 

cg10842530 0.0079 14 69438358 3513 2.70E-09 52 ACTN1 Body   0 0 0 

cg03031609 0.0759 10 7453871 3521 2.30E-08 82 SFMBT2 TSS1500 Island  0 1 0 

cg24445316 0.0244 1 23889092 3525 3.40E-08 95   S_Shelf Unclassified 1 1 1 

cg06864083 0.2008 17 40832319 3520 9.00E-08 142 CCR10 Body Island  0 1 0 

cg03090734 0.0237 10 44525757 3519 3.00E-07 205    Unclassified 0 1 0 

cg10946295 0.019 2 119913307 3505 1.30E-06 373   N_Shore  0 1 0 

cg27637521 -0.331 17 76355202 3519 4.20E-06 576 SOCS3 5'UTR Island  0 1 1 

cg06021088 -0.0156 2 127822551 3515 6.70E-06 687 BIN1 Body  Unclassified 0 1 1 
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cg19574915 0.1381 15 89195555 3526 1.40E-04 2698 ISG20 Body  
Promoter 

associated 
cell type 
specific 

0 1 1 

cg08852765 0.0296 6 33396407 3513 4.60E-03 15540 SYNGAP1 Body S_Shore Promoter 
associated 1 1 0 

Notes: Chr., chromosome; EWAS, epigenome-wide association study; N_Shore, north shore; S_Shore, south shore, UCSC, University of California Santa Cruz Genome 
Browser; DHS, DNAse hypersensitive site; eQTM, expression quantitative trait methylation. 
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Table 2. CpG sites selected for childhood SES index biomarker (cSES-BIO) by elastic net in HRS 

CpG E-Net 
Weight Chr. Position N EWAS        

p-value 
EWAS       
rank 

UCSC 
RefGene 

Name 

UCSC 
RefGene 
Group 

Relation 
to UCSC 

CpG 
Island 

Regulatory 
Feature 
Group 

Phantom5 
Enhancer DHS eQTM 

cg04887278 0.6037 6 83903927 3505 2.40E-11 1 PGM3; 
RWDD2A 

TSS1500; 
5'UTR S_Shore  0 1 0 

cg03519157 0.4604 11 46367033 3526 4.90E-11 2 DGKZ 
5'UTR; 

1stExon; 
Body 

Island  0 1 1 

cg08469255 0.232 6 30851069 3451 6.70E-10 3 DDR1 TSS1500 N_Shore Unclassified 0 1 1 

cg17810176 0.1021 19 36035831 3523 1.70E-09 4 GAPDHS; 
TMEM147 

Body; 
TSS1500 N_Shore  0 1 0 

cg22505924 0.0791 2 64488157 3527 4.10E-09 6    Unclassified 1 1 0 

cg27496526 0.4744 15 41805530 3526 6.90E-09 7 LTK Body Island  0 1 0 

cg25563256 0.0349 17 7341641 3524 7.60E-09 8 FGF11 TSS1500 N_Shore Unclassified 0 1 0 

cg16329896 0.1303 7 47515060 3517 1.30E-08 10 TNS3 5'UTR  
Unclassified 

cell type 
specific 

1 1 0 

cg10394832 0.0612 1 111889533 3525 2.50E-08 13 C1orf88 Body Island Promoter 
associated 0 0 0 

cg17496659 0.0165 1 3568245 3520 3.60E-08 16 TP73 TSS1500 Island  0 1 0 

cg21159993 0.019 5 139554405 3523 3.70E-08 17 C5orf32 TSS1500 Island Promoter 
associated 0 1 1 

cg19989295 0.003 14 24641077 3483 5.10E-08 19 REC8 TSS200 Island Promoter 
associated 0 1 1 

cg1382554 0.0131 9 140117257 3514 6.50E-08 21 RNF208 TSS1500 Island  0 1 0 

cg05302489 0.0382 6 31760426 3499 1.00E-07 28 VARS Body N_Shelf  0 0 1 

cg02170695 -0.0968 21 38909809 3525 1.40E-07 34     0 0 0 

cg13067434 0.0325 15 63836865 3522 1.80E-07 37 USP3 Body   0 0 0 

cg04382191 0.026 3 9437901 3525 2.20E-07 43 
SETD5; 

THUMPD3-
AS1 

TSS1500; 
Body N_Shore 

Promoter 
associated 
cell type 
specific 

0 1 0 

Notes: Chr., chromosome; EWAS, epigenome-wide association study; N_Shore, north shore; S_Shore, south shore, UCSC, University of California Santa Cruz Genome 
Browser; DHS, DNAse hypersensitive site; eQTM, expression quantitative trait methylation. 
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