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ABSTRACT
Seasonal influenza hospitalizations pose a considerable burden in the United States, with
BIPOC (Black, Indigenous, and other People of Color) communities being disproportionately
affected. To study these disparities, we fit an age- and race-stratified agent-based model of
influenza transmission to demographic and hospitalization data. We tested 5 equity-promoting
strategies targeting different aspects of inequity: equalizing (i) vaccination rates, (ii) comor-
bidities, or (iii) work-risk distributions, (iv) reducing work contacts, or (v) a combination of
equalizing both vaccination rates and comorbidities and reducing work contacts. Our analysis
suggests that strategies reducing work contacts or equalizing vaccination rates would result
in a more equitable distribution of symptomatic infections, with a substantial reduction in the
number of symptomatic infections, with up to 17%fewer symptomatic infections in marginalized
adults aged 18-49. Reducing comorbidities resulted in significant decreases in hospitalizations,
with a reduction of over 40% in hospitalizations in marginalized groups. Notably, these inter-
ventions resulted in better outcomes across all age and race groups, not only those prioritized
by the interventions.

1. Introduction

According to the Centers for Disease Control and Prevention (CDC), approximately 8% of
Americans are infected with seasonal influenza each year [1]. The burden of seasonal influenza
in the United States (US) varies widely yearly, with 360,000 hospitalizations and 21,000 deaths
estimated for the 2022-23 season, which was fairly typical [2]. Not all Americans, however, face
the same risk of infection or severe outcomes. Age is known to play a large role in determining
susceptibility to infection and symptomatic infection. Children (aged 0-17) are about twice as
likely to experience symptomatic influenza each season when compared to older adults (aged 65
and older) [1]. Also, young children (aged 0-4) and older adults (aged 65 and older) are more
likely to experience severe outcomes than any other age group [3]. Age, however, is not the only
factor that leads to differences in influenza outcomes. Significant racial and ethnic inequities
also exist in seasonal influenza outcomes in the US, where the BIPOC (Black, Indigenous, and
other People of Color) population faces a greater burden of exposure to infection and less access
to prevention and treatment, resulting in higher age-adjusted rates of hospitalization and ICU
admission [3–6].

Disparities in disease outcomes between racial and ethnic groups are due to a variety of
complex factors. Social determinants of health (SDOH), defined as “the conditions in the envi-
ronments where people are born, live, learn, work, play, worship, and age that affect a wide range
of health, functioning, and quality-of-life outcomes and risks” contribute to observed disparities
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[7]. SDOH that affect influenza outcomes include socioeconomic status, household structure,
access to healthcare, education, and occupation [8, 9]. Systemic inequities also lead to higher
rates of underlying medical conditions [10] which may contribute to worse influenza outcomes.
Furthermore, existing racial and ethnic disparities in vaccine uptake exacerbate differences in
the rates of severe influenza outcomes. Differences in vaccine uptake across populations might be
due to a complex mix of factors, including mistrust in the healthcare system, lack of transporta-
tion or childcare, inability to take time off or to pay for the vaccine or the copay [11–14]. BIPOC
populations are therefore more frequently exposed to influenza, more susceptible to infection,
more likely to develop symptomatic disease, and more likely to progress to hospitalization or
death [15, 16].

In this paper, we constructed an agent-based mathematical model of influenza transmission
that is structured to investigate the racial and ethnic inequities in influenza outcomes. We use
this model to understand and quantify the contribution of different social and structural factors
in observed inequities in influenza hospitalizations. Our results can help craft optimal mitiga-
tion strategies by prioritizing populations with higher rates of comorbidities or by modifying
contact structure. Further, we test five equity-promoting interventions aimed at reducing either
structural inequities (represented by different levels of exposure based on race and ethnicity
at the work place) or health-related inequities (represented by different levels of comorbidities
and/or susceptibility to infection). Projecting the effects of equity-promoting interventions into
realistic synthetic populations may help inform policy decisions aimed at increasing equity and
while increasing the social and economic and benefit. Our analysis may be useful in guiding
equity-promoting policies for influenza and other respiratory infectious diseases.

2. Methods

To study racial inequities in influenza outcomes, we constructed an agent-based model of in-
fluenza transmission adapted from COVASIM (COVID-19 Agent-based Simulator) [17, 18].

Individuals in the population are represented in our model by agents who interact with each
other through a contact network. Influenza transmission occurs when agents in the network
contact each other. At the beginning of a simulation (representing the beginning of an influenza
season), most agents in the network are susceptible. Upon exposure, susceptible individuals can
become infected, but are not immediately infectious. Once infectious, individuals are considered
either asymptomatic (they can infect others but they have no symptoms) or presymptomatic.
Presymptomatic individuals develop mild symptoms and can either recover or progress to severe
or critical disease. In our model, children are assumed to be more likely to develop symptoms
[19, 20]. Severe cases are those individuals who require hospitalization, and critical cases are
those who are admitted to the ICU. Critical cases can either recover or die. In our model,
children are assumed to be more likely to develop symptoms [19, 20]. The probability that an
individual becomes symptomatic, and has mild, severe, or critical symptoms depends on both
age and race/ethnicity. Transition times between these states are sampled from a log-normal
distribution with mean times given in Table 1 in the Supplementary Information. A full list of
disease parameters used in the model is given in Table 1 in the Supplementary Information.

Our contact network was adapted from a previously developed network model, SynthPops
[21], to include both age-specific and race-and-ethnicity specific contact patterns in household,
school, workplace, and community settings. SynthPops constructs synthetic networks that are
calibrated to data such as age distributions, household sizes, employment rates, workplace sizes,
school enrollment rates, school sizes, etc. In addition, we calibrated our network to US-based
data to incorporate differences by race and ethnicity as described in the following sections.

A more detailed description of the base models, COVASIM and SynthPops, is given by Kerr
et al. [17] and Mistry et al. [21].
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Figure 1.: Racial and ethnic distributions of households. Figure (A) shows the racial distribution of households of each

size from the model output. Figures (B) and (C) compare the model output with US Census data for the racial distribution

of households by size and overall, respectively.

2.1. Incorporating racial and ethnic differences in the model

Using the CDC race and ethnicity definitions [22], we included five categories defining racial and
ethnic groups (referred below as race groups) in our model: non-Hispanic white persons, non-
Hispanic Black persons, non-Hispanic Asian persons, non-Hispanic American Indian or Alaska
Native (AI/AN) persons, and Hispanic or Latino persons.

Household stratification by race group:

Individuals were assigned to a given race group during household creation as follows: After
generating households based on given household-size and age distributions mimicking the US
household distribution [23, 24], we assigned a race group to each household using a probability
distribution based on US Census data on household size by race and ethnicity [23] (Figure 1). It
is important to note that this method does not capture interracial households. The age and race
distributions of households calibrated in the model are in agreement with Census data (Figure
1).

Work stratification by race group:

We used US-based workplace data [25, 26] to stratify workplaces and work distribution by
race group. To do this, we first create each workplace with a size determined according to
a distribution of workplaces sizes from US Census data [27]. We used the workplace size as a
proxy to determine the level of infection risk at the workplace, divided into three categories: low-
, medium-, or high- risk environment. We considered low-risk occupations to be non-frontline
work and assumed that those in low-risk occupations have the fewest work contacts. Medium-
risk and high-risk occupations were considered to be higher-income and lower-income frontline
work, respectively. Those in medium-risk occupations have more work contacts than those in
low-risk occupations, but fewer than those in high-risk occupations. Workplaces with at most
50 workers are deemed to be low risk, those with between 50 and 100 workers to be medium
risk, and those with more than 100 workers to be high risk. We assigned working individuals
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Figure 2.: Racial and ethnic distributions of workplaces. Figure 2(A) shows the workplace composition for the synthetic

population. Figure 2(B) shows the fit of our model workplace distribution to the data for each of the three risk categories.

(determined from age-stratified employment rates) to workplaces based on racial and ethnic
distributions for both the total workforce [25] and low-income, high-income, and non-frontline
work [26]. Figure 2(A) shows the workplace composition for the synthetic population. Figure
2(B) shows the fit of our model workplace distribution to the data.

School stratification by race group:

We assign students to schools, which include pre-schools through university, based on school
racial-composition data [28–30]. Because schools composition varies greatly by region, we con-
sider two types of schools: majority-white schools and schools that are racially diverse. We adapt
examples of these two types of schools from [28] to reflect the general US population using US
Census data [29, 30] and use them as probability distributions for assigning students to schools.
To create a new school, we first draw an age and race from probability distributions gathered
from Census data. The age determines the school type (pre-school, elementary school, middle
school, high school, or university), and the race determines the racial distribution of the school
(majority-white if white, and racially diverse, otherwise). We use school size distributions to
determine the size of the school, and we assign students based on the race-stratified probability
distributions. Figure 3 shows the average school compositions for our simulated population.

Influenza outcomes stratification by race group:

To capture differences between racial groups in influenza outcomes, we informed transition
probabilities from developing symptomatic infection through hospitalization, ICU admission to
recovery or death from available clinical data[3]. Since we do not have age and race stratified
data on the rates of symptomatic infection, we run the model with the parameters given in
Table 1 to estimate these rates. Influenza vaccination has been shown to reduce the risk of
symptomatic infection [31, 32], but influenza vaccination rates vary by race and age, with
decreased vaccination coverage in marginalized populations [15, 33]. While our model does not
incorporate vaccination explicitly, we included vaccination by assuming that people who got
vaccinated in the current influenza season will have a lower probability of symptomatic infection
than those who are unvaccinated. We determined the proportion of vaccinated people in each
age and racial-ethnic group based on race-stratified historic vaccination rates from [15]. We
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Figure 3.: Racial and ethnic distributions of schools. Figure 3(A) shows the school composition for the two types of schools
in our synthetic population. Figures 3(B) and (C) compare our model distribution to the example school distributions from

data for each of the two school types.

assumed a vaccine efficacy against symptomatic infection of 50%, in agreement with estimates
from typical influenza seasons [34].

2.2. Equity-promoting interventions under study

We explored scenarios representing a typical influenza season and various equity-promoting in-
terventions. For each scenario, we model a population of five million people and run the model
100 times. We report results showing median disease outcomes together with corresponding
interquartile ranges. We tested five equity promoting interventions are explored as follows: 1)
a scenario where the age-stratified vaccination rates are equalized for all race groups, choos-
ing the highest vaccination rate as the reference (denoted “Equal vaccination”), 2) a scenario
where the age-stratified risks of hospitalization, ICU admission, and death after infection are
equalized for all race groups (denoted “Equal Comorbidities”), 3) a scenario where the race dis-
tribution of workers is proportional to that of the population regardless of workplace size race
(denoted “Equal Work-Risk”), 4) a scenario where all workplaces, are transformed into low-risk
workplaces by imposing risk-reducing measures resulting in less contacts (denoted “Low-RISK
Workplaces”), and 5) a scenario where the probabilities of severe outcomes are equal and work-
places are low-risk (denoted “Equal comorbiditites and low-risk workplaces”). Each of these
scenarios targets different challenges faced by marginalized populations. The first two scenarios
target underlying health inequities that affect the outcomes of an influenza infection, resulting
in a higher probability of developing symptoms due for example, to reduced vaccination rates
in the BIPOC populations, (targeted in scenario 1) or a higher rate of severe outcomes due for
example, to more prevalent comorbidities in marginalized populations, (targeted in scenario 2).
Scenarios 3 and 4 aim at addressing structural inequities that stem from the overall societal
structure in which a substantially higher proportion of BIPOC populations are employed in
lower-income frontline occupations. Scenario 5 is a combination of scenarios 2 and 4. In Figure
4, we provide a graphical description of the changes made to the model to implement each
scenario.

Obviously, we do not pretend to solve the complex problem of systemic inequity with these
simple scenarios. Rather, the goal of this project is to characterize the potential impact of five
equity-promoting interventions to the inequities in hospitalization rates for seasonal influenza.
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Figure 4.: Graphical description of equity-promoting interventions

3. Results

3.1. Results from Baseline Model

The model was adjusted to match the number of hospitalizations and the age- and race-stratified
hospitalization rate ratios (HRRs) from a typical influenza season, using the data provided by
O’Halloran et al. in [3]. The hospitalization rate ratio was computed as the ratio between
the number of hospitalizations per 100,000 in a given age and race group and the number
of hospitalizations per 100,000 in the corresponding white age group. An HRR of one means
that the hospitalization rate in a given age and race group is close to that observed in the
corresponding white population. If all race groups have equitable outcomes, the HRRs would
be all equal to one.

Figures 5 and 6 show the age- and-race-stratified hospitalizations per 100,000 and the age-
and race-stratified HRRs, respectively, from the model together with the data reported by [3].
Our model closely matches the reported average hospitalizations and the HRRs for all age and

Figure 5.: The distribution of the age-and-race-stratified hospitalizations compared to data. The box plots in Figures

(A)-(F) show the distribution of the average hospitalizations over 100 simulations using a population size of five million.
The white triangles correspond to the values reported by [3]. We see that we achieve reasonable agreement between the

model outputs and the data.
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Figure 6.: The distribution of the HRRs compared to data. The box plots in Figures (A)-(D) show the distribution of the

HRRs over 100 simulations using a population size of five million. The white triangles correspond to the values reported
by [3]. We see that we achieve reasonable agreement between the model outputs and the data.

Figure 7.: The distribution of the SRRs. The box plots in Figures (A)-(D) show the distribution of the SRRs over 100
simulations using a population size of five million. We see that the Black, AI\AN, and Hispanic populations all experience

higher rates of symptomatic infection in our model than the white population. The Asian population, however, experiences

rates very similar to the white population, except in the 18-49 age-group, which is smaller.

race subgroups. Because of the relatively small size of the AI/AN population, there was more
variability observed for all ages in this race group.

Mild symptomatic influenza infections are not usually reported [35, 36], and marginalized
race groups, who are likely to have less access to health care [10, 37, 38] and less ability to take
time off when sick, are less likely to report their mild infections [35]. As a result, the rates of
symptomatic influenza infection are difficult to determine from data and are likely to be biased.
We, therefore, use our model to estimate inequities in the number of symptomatic infections
between different race groups.

Figure 7 shows the symptomatic-infection rate ratios (SRRs), which are calculated similarly
to the HRRs and describe differences between symptomatic infection rates among the Black,
Hispanic, Asian and AI/AN populations compared to their white counterparts. In our model,
the Black, AI/AN, and Hispanic populations experience higher rates of symptomatic infection
than those of the white population. This is especially true for the adult age-groups, for which
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the rates of symptomatic infection were between about 1.2 to 1.4 times higher (Figure 7A, B
and D). The Asian population, however, experiences rates of symptomatic infection that are
close to those of the white population for all age-groups(Figure 7C).

3.2. Results from Equity-Promoting Interventions

Using the results in Figures 6 and 7 as a baseline, we can compare changes in the inequities in
both symptomatic infections and hospitalizations that result from the equity-promoting inter-
ventions described in Section 2.2.

3.2.1. Effects on Symptomatic Infection

Figure 8 shows the impact of our five scenarios on the SRRs. For the populations facing the most
inequities, scenarios impacting work contacts improved inequities relative to the baseline the
most. Scenario 4 (low-risk workplaces), assuming low-risk workplaces for all workplaces, reduced
the SRR the most for all groups and races, with SSR closest to equity (SRR = 1) for all race
groups and most of the adult age groups (Figure 8, magenta boxplots). This intervention would
also reduce symptomatic infections the most, maximum reduction of 17% , 12%, and 18% in

Figure 8.: Comparison of the SRRs from different scenarios to the baseline. The box plots in Figures (A)-(D) show the
distribution of the SRRs over 100 simulations using a population size of five million. Figure (A) shows the SRRs for the Black

population, Figure (B) shows the SRRs for the AI/AN population, Figure (C) shows the SRRs for the Asian population,
and Figure (D) shows the SRRs for the Hispanic population. In each figure, the vertical gray lines separate the box plots for
different age groups. The horizontal gray lines are at one and indicate where the symptomatic-infection rates are equivalent
to those of the white population. For each group, the box plots from left to right are for the baseline scenario, the equal
vaccine scenario, the equal disease progression scenario, the equal work-risk scenario, the small-workplaces scenario, and

the equal disease progression and small-workplaces scenario.

8

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 21, 2024. ; https://doi.org/10.1101/2024.05.20.24307635doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.20.24307635
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 9.: Percent difference in the number of symptomatic infections from scenarios compared to baseline.

the 50-64 year-old Black, Hispanic, and AI/AN groups, respectively (Figure 9, fourth column).
An intervention aiming at achieving workplace distribution similar to the one observed in the
population (denoted Equal Work-Risk) would also reduce the inequities observed in the SRR
Figure 8, orange boxplots), but it would do so with little impact in the overall number of symp-
tomatic infections averted, resulting in a small negative impact for adults in the white group
and for all ages in the Asian group (Figure 9, third column). Achieving equity in vaccination
rates (scenario 1, equal vaccination) resulted in significant gains in the number of symptomatic
infections averted, with a maximum reduction of 17% infections averted in the Black young
adult age group (18-49 years old, Figure 9, first column), but had a more modest reduction the
SRR Figure 8, green boxplots). As expected, removing inequities in severe outcomes, did not
improve inequities in symptomatic infection.

Finally, the combination scenario with both equal disease progression and low-risk workplaces
(scenario 5, equal disease progression and low-risk workplaces) reduced the SRRs the most across
all age-groups for the three most marginalized populations (the Black, Hispanic and AI/AN
adults, Figure 8, brown bars), and it averted the most symptomatic infections (maximum of
21% in the 50-64 year-old Hispanic population,Figure 9, fifth column). This is expected, as this
scenario is a combination of the best two single intervention scenarios.

Importantly, scenarios 1 (equal vaccination), 4 (low-risk workplaces), and 5 (equal disease
progression and low-risk workplaces) resulted in significantly less symptomatic infections overall,
with gains for all ages and race groups, with a maximum of approximately 40% less symptomatic
infections in marginalized populations (for scenario 5 in the Black population aged 18-49), and
up to 26% and 23% less infections in the white and Asian populations respectively (whites aged
18-49 and Asian aged 50-64, scenario 5, equal disease progression and low-risk workplaces),
Figure 9, Table 2.

3.2.2. Effects on Hospitalizations

Figure 10 shows the effects of the five intervention scenarios on the inequities in HRRs. For
most age and race groups, these interventions improved the observed inequities when compared
to the baseline. Consistent with the results for the SRRs, the combined scenario 5 (equal disease
progression and small-workplaces scenario) achieved the most equitable results for most groups.
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Figure 10.: Comparison of the HRRs from different scenarios to baseline. The box plots in Figures (A)-(D) show the

distribution of the HRRs over 100 simulations using a population size of five million for (A) the Black population, (B)

the AI/AN population, (C) the Asian population, and (D) the Hispanic population. In each figure, the vertical gray lines
separate the box plots for different age groups. The horizontal gray lines are at one. An HRR of one indicates that the

rate of hospitalization is the same as that for the white population. For each group, the box plots from left to right are for

the baseline scenario, the equal vaccine scenario, the equal disease progression scenario, the equal work-risk scenario, the
small-workplaces scenario, and the equal disease progression and small-workplaces scenario.

This scenario was closest to equity for most age groups for the Black, AI/AN and Hispanic
populations. Furthermore, this scenario resulted in the biggest decrease in hospitalizations for
all races and all age groups, including the white population, with over 40% fewer influenza
hospitalizations compared to baseline for all white adult groups (Table 3 and 11, last column).

When considering single interventions alone, the intervention achieving the most equity varied
by age and race. For children in every race group, the equal comorbidities scenario performed
the best in terms of reductions in both inequity and hospitalizations. Additionally, the equal
comorbidities scenario also performed the best for adults under 75 in the Black population. For
adults in the Hispanic population, however, the low-risk workplaces scenario outperformed the
equal comorbidities scenario for adults 50 and older. These results suggest that the inequities
in severe outcomes in the Hispanic population are primarily due to inequities in occupational
risk, while those in the Black population are primarily due to differences in comorbidity rates.
Therefore, our results emphasize that different types of interventions are needed to decrease
inequity in different groups.

We then compared the effect of each scenario on the total number of hospitalizations to
the baseline scenario (Figure 11 and Table 3). The largest gain for a single intervention was
observed with the equal comorbidities scenario, with most marginalized groups seeing over 40%
reduction in hospitalizations. For example, if the Black adults aged 18-64 had similar disease
progression as their white counterparts, they would experience over 70% fewer hospitalizations
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Figure 11.: Percent difference in the number of hospitalizations infections from scenarios compared to baseline.

when compared to baseline. Under this scenario, the AI/AN and Hispanic groups saw over 50%
and 37% reduction in influenza hospitalizations, respectively, in age groups younger than 65
years old. Interestingly, under this scenario, young children (0-4 years old) in the Asian group
experienced 37.5% fewer influenza hospitalizations. Reducing contacts in the workplace (scenario
4) led to a modest decrease in hospitalizations, with the maximum reduction observed in the
AI/AN group (50% reduction in the 50-65 age group). Equalizing the vaccination rates across
ages and race groups led to a small decrease in total hospitalizations for all groups but those
aged 5-17 and those over 75 years old in the AI/AN group (33% and 50% less hospitalizations,
respectively). As before, combining two interventions resulted in important reductions in the
total number of hospitalizations in all groups (maximum reduction: 75% in young children
and adults aged 50-64 in the AI/AN group). As with the symptomatic infections, it is key to
note that equity promoting interventions did not result in less hospitalizations for those in the
BIPOC communities exclusively. All the interventions but one (equal work risk) resulted in
fewer influenza hospitalizations in all groups. For example, equalizing vaccination rates resulted
in at least 10% less infections in all white age-groups.

4. Discussion

As the recent COVID-19 pandemic has highlighted, the burden of infectious diseases dispro-
portionately falls on marginalized populations [5, 39–41]. There is currently new momentum
to close these disparity gaps with interventions aimed to increase prevention, vaccination, ac-
cess to healthcare, and treatment [42–46]. To better support those in marginalized communities
facing current outbreaks and to prepare for future pandemics, it is important to quantify the
potential impact of interventions aimed to reduce inequities[47]. In this project, we constructed
an agent-based mathematical model of influenza transmission that captures both structural dif-
ferences between racial and ethnic groups in the US (household composition, work-related risk,
and school contacts) and differences in health outcomes (rates of disease progression) deriving
from long-held inequities and systemic racism. Our goal is to provide a framework for studying
racial inequities in disease outcomes and to evaluate the effects of potential interventions.

We explored the effects of five equity-promoting interventions aimed to reduce different social
determinants of health that affect influenza outcomes. These determinants can be structural in-
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equities leading to differences in exposure (represented by work contacts and type of occupation),
health inequities (represented by differences in disease progression rates), or both. Strategies for
reducing inequities in disease outcomes could include vaccination campaigns that are tailored
to reach marginalized groups, interventions intended to reduce comorbidities in these groups, or
more systemic approaches aimed at reducing inequities in health outcomes (e.g. improve health
care coverage and access in marginalized populations). Strategies for reducing inequities in work
contacts could include social-distancing measures in workplaces that reduce the probability of
transmission and exposure, incorporating better air filtration systems or more systemic cultural
and workplace changes. Evidently, systemic changes are more difficult to attain and will require
major commitment from all sectors of society [48]. Nevertheless, we considered it important
to consider them and to quantify the potential impact such strategies could have on influenza
hospitalizations.

Our results assuming equal vaccination rates indicate that tailored vaccination campaigns to
increase rates among marginalized communities may have an equalizing effect in symptomatic
infection rates, especially for those populations facing the most inequities. Our results sug-
gest that younger adults (aged 18-49 years) in Black, AI/AN and Hispanic communities would
benefit the most from this intervention, preventing up to 17% of symptomatic infections from
the baseline scenario. This is important because these populations have generally less access
to medical care [8, 10], are more likely to be employed in frontline occupations [25, 26] and
have less work benefits (e.g. working from home [25] or paid sick leave [49]). Interestingly, their
corresponding white counterparts would also experience fewer symptomatic infections, with up
to 15% less compared to baseline. In addition, this strategy would lessen the significant eco-
nomic burden [50] posed by symptomatic influenza every year. Moreover, the results of the
equal comorbidities scenario suggest that policies that reduce race-based comorbidities would
have a large impact on the inequities in influenza hospitalizations. In addition, the scenario
implementing fewer contacts in the workplace (called low-risk workplaces) had a much larger
effect, and benefited more groups, than the one where contacts were maintained at the same
rates but the distribution of contacts was proportional to that of the population. This sug-
gests that implementing (relatively) small changes in workplaces (such as better air filtration
systems, social distancing measures) can have a large impact in influenza outcomes. Finally,
it is important to note that our results suggest that improving equity and fairness in health
outcomes and reducing contacts in workplaces resulted in significant reductions in the number
of symptomatic influenza infections and hospitalizations for all racial-groups, not only those in
marginalized groups targeted by these interventions.

This study, like any mathematical modeling analysis, has some limitations. Our model is a
simplification of a very complex problem: health inequities are the result of a multi-factorial
problem rooted in a long history of systemic racism and socioeconomic deprivation as well as a
fragmented healthcare system that makes it difficult to align data, resources, and interventions,
optimally [51]. As such, we included in this model SDOH for which data was readily available
while maintaining the tractability of the model. We considered race-stratified household size,
school composition, and disease progression. We stratified workplaces by age, race/ethnicity
and infection risk. Additional SDOH could, however, be included. For example, a next step
could be to incorporate specific influenza comorbidities by age and racial/ethnic group, such
as heart disease, diabetes, and asthma [52, 53] into the model. We did not include interracial
households, which account for 10% of households in the United States. This could result in
epidemics that have more assortative mixing. However, agents in our model contact people
from other racial-ethnic groups in other locations, minimizing this effect.

We use racial identity as a proxy for exposure to racism and to study inequities in influenza
cases and hospitalizations, but racial identity is known to be a poor proxy for this analysis, and
for studying health inequities in general [54]. However, other SDOH (e.g. occupation, access to
health care, socioeconomic status) are usually not collected along with case information. This
highlights the pressing need to collect more informative social determinants of health data, so
that inequities can be better understood and analyzed.

Researchers and decision makers are increasingly recognizing the need to incorporate equity
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or fairness considerations into analyses aiming to evaluate public health interventions [55–59],
including analysis using mathematical models of infectious diseases. Previous work has focused
on reducing racial and ethnic inequities in COVID-19 outcomes [60–62] assessing the impact
of COVID-19 mitigation strategies on different racial and ethnic groups [63, 64], optimizing
equitable vaccine distribution for COVID-19 and influenza [60, 65, 66] studying inequity between
subgroups for influenza and other diseases [67, 68], and promoting equity in resource allocation
between geographic regions for Ebola [69]. We hope that the present work will be a helpful
addition to the existing literature and will promote further discussion and use of quantitative
methods to evaluate equity-promoting interventions in public health.
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5. Supplementary Information

Parameter Value Sources
Mean latent period 1.9 Days [70, 71]
Mean time from becoming infectious to developing mild symptoms 2 days [72]
Mean time for mild symptoms to become severe 5.4 Days [73]
Mean time for severe symptoms to become critical 1.5 Days default COVASIM
Mean time to recovery from no or mild symptoms 4.1 Days [70, 71]
Mean time to recovery from severe symptoms 13.0 Days [73]
Mean time to recovery or death from critical symptoms 10.8 Days [73]
Relative infectivity of asymptomatic infections 0.5 [70]
Transmission coefficient 0.014 calibrated
transmissibility factor for asymptomatic cases 0.5 [74]
Initial number infected 10 individuals chosen
Population size 5,000,000 individuals chosen
Relative susceptibility by age [1.77,1.77,1,1,1,1] [20]
Probability of developing symptoms by age and race (1− V E ∗ ν) ∗ σ
Vaccine efficacy (VE) by age [0.56,0.34,0.41,0.41,0.41,0.41] [75, 76]

Vaccination rate (ν) by age and race

W:[0.61,0.61,0.396, 0.542, 0.757, 0.757]

[15, 33]
B:[0.60,0.60,0.294, 0.505, 0.678, 0.678]

AI/AN:[0.59,0.59,0.325, 0.405, 0.764, 0.764]
A:[0.71,0.71,0.521, 0.555, 0.794, 0.794]
H:[0.66,0.66,0.320, 0.470, 0.652, 0.652]

Proportion of infections that become symptomatic (σ) 2/3 [77]

Probability of hospitalization after developing symptoms by age and race

W:[0.00204957, 0.00033694, 0.00077772, 0.00296663, 0.01130849, 0.03778833]

calibrated with [3]
B:[0.00422417, 0.00064492, 0.00165073, 0.0062825 , 0.0170014 , 0.03564729]

AI/AN:[0.00534074, 0.00046921, 0.00108957, 0.00330644, 0.00869 , 0.02671089]
A:[0.00280983, 0.00028594, 0.00050416, 0.00180137, 0.00881692, 0.03608224]
H:[0.00365569, 0.00042208, 0.00085414, 0.00298201, 0.01026394, 0.0283762]

Probability of ICU admission after hospitalization by age and race

W:[0.17261905, 0.22522523, 0.20588235, 0.21105528, 0.1878453 ,0.1251944]

calibrated with [3]
B:[0.21370968, 0.22171946, 0.15204678, 0.17806841, 0.16159696,0.14935305]

AI/AN:[0.2011893 , 0.27878788, 0.22222222, 0.16202946, 0.26237054,0.11384919]
A:[0.17924528, 0.26666667, 0.19277108, 0.20481928, 0.19418758,0.14875717]
H:[0.17993631, 0.20422535, 0.18285714, 0.17670683, 0.17630597,0.11730449]

Probability of death after ICU admission by age and race

W:[0.01724138, 0.04 , 0.10714286, 0.16666667, 0.17058824,0.35403727]

calibrated with [3]
B:[0.01886792, 0.02040816, 0.07692308, 0.11864407, 0.1372549 ,0.26237624]

AI/AN:[0.03448276, 0.10869565, 0.13461538, 0.17171717, 0.07894737,0.21645022]
A:[0.05263158, 0.08333333, 0.125 , 0.11764706, 0.19727891,0.35475578]

H:[0.02654867, 0.03448276, 0.09375 , 0.17045455, 0.16402116, 0.28723404]

Table 1.: Disease parameters used in the agent-based model

Median Percent Difference of Symptomatic Infections from Baseline (IQR) %

Race/Ethnicity Ages Equal Vaccination Equal Comorbidities Equal Work-Risk Low-Risk Workplaces
Equal Disease Progression

and
Low-Risk Workplaces

White

0-4 -14.6 (-16.5 to -13.1) -0.3 (-1.5 to 1.4) -0.6 (-2.3 to 1.7) -10.4 (-14.4 to -9.0) -24.5 (-27.2 to -23.5)
5-17 -8.3 (-9.8 to -7.6) -0.2 (-0.8 to 0.9) -0.7 (-2.1 to 0.5) -7.3 (-9.6 to -6.4) -16.4 (-18.7 to -15.1)

18-49 -12.7 (-15.2 to -11.8) -0.1 (-1.3 to 1.5) 2.5 (0.4 to 4.2) -13.1 (-16.5 to -11.3) -26.0 (-28.9 to -24.8)
50-64 -8.1 (-10.4 to -6.2) -0.2 (-1.6 to 1.7) 3.1 (0.5 to 5.7) -14.1 (-17.7 to -12.1) -22.6 (-25.2 to -20.7)
65-74 -9.5 (-11.8 to -8.2) 0.6 (-0.8 to 2.4) 1.2 (-1.7 to 3.3) -13.7 (-19.0 to -12.0) -24.0 (-26.8 to -22.1)
75+ -9.4 (-12.4 to -6.7) 0.1 (-1.1 to 2.8) 1.0 (-2.4 to 3.6) -12.9 (-17.1 to -10.6) -23.0 (-26.0 to -21.6)

Black

0-4 -15.4 (-17.3 to -13.9) -0.0 (-1.4 to 1.8) -3.4 (-5.4 to -0.8) -15.3 (-17.5 to -12.9) -28.6 (-31.0 to -27.0)
5-17 -8.5 (-10.2 to -7.3) -0.3 (-1.3 to 1.6) -2.3 (-3.5 to -0.1) -9.9 (-12.3 to -8.4) -18.7 (-20.9 to -17.5)

18-49 -17.3 (-18.9 to -15.9) -0.3 (-1.2 to 1.6) -3.7 (-5.7 to -1.6) -25.8 (-29.0 to -24.2) -39.8 (-42.5 to -38.9)
50-64 -9.5 (-11.8 to -7.9) 0.5 (-0.9 to 2.4) -2.4 (-6.4 to -0.0) -29.3 (-32.1 to -26.9) -37.2 (-38.7 to -35.4)
65-74 -14.6 (-16.9 to -11.7) -0.5 (-2.6 to 1.9) -2.3 (-6.6 to 1.5) -22.6 (-26.9 to -19.9) -35.3 (-38.4 to -34.1)
75+ -15.1 (-18.4 to -11.2) 0.5 (-3.0 to 2.7) -0.7 (-4.4 to 3.4) -18.0 (-23.0 to -13.7) -31.3 (-34.6 to -27.8)

AI/AN

0-4 -15.5 (-20.2 to -12.2) 1.9 (-2.4 to 6.0) -4.5 (-10.8 to 4.5) -15.1 (-21.0 to -10.2) -28.9 (-34.2 to -25.9)
5-17 -8.9 (-11.3 to -6.2) -0.0 (-2.4 to 2.9) -1.8 (-4.7 to 1.4) -9.9 (-12.8 to -7.2) -19.2 (-23.3 to -17.0)

18-49 -15.9 (-17.9 to -14.3) -0.1 (-2.8 to 2.9) -3.6 (-6.7 to 0.5) -21.9 (-25.6 to -19.4) -35.1 (-38.9 to -33.3)
50-64 -15.1 (-19.3 to -10.6) -0.5 (-3.6 to 2.6) -2.2 (-5.5 to 4.2) -26.0 (-31.9 to -21.8) -39.1 (-42.3 to -35.3)
65-74 -13.5 (-18.9 to -7.7) -1.4 (-6.7 to 6.2) 1.9 (-6.4 to 9.7) -23.7 (-29.5 to -18.0) -31.4 (-40.3 to -24.7)
75+ -14.0 (-27.5 to -5.4) -7.6 (-15.1 to 1.0) 3.0 (-13.0 to 17.7) -24.3 (-31.6 to -9.2) -29.4 (-41.8 to -18.4)

Asian

0-4 -5.5 (-8.8 to -2.7) -0.3 (-1.8 to 2.4) 3.9 (1.8 to 8.6) -7.0 (-11.1 to -4.8) -13.6 (-17.5 to -11.6)
5-17 -3.9 (-5.9 to -1.7) -0.1 (-1.0 to 1.4) 2.9 (1.0 to 5.6) -3.9 (-6.9 to -1.4) -9.0 (-10.7 to -7.2)

18-49 -6.6 (-8.9 to -5.2) 0.1 (-2.4 to 1.6) 3.5 (1.6 to 6.0) -14.2 (-18.4 to -12.3) -20.8 (-23.9 to -19.9)
50-64 -6.9 (-9.3 to -4.9) -0.5 (-2.0 to 2.5) 3.4 (1.1 to 7.1) -16.8 (-20.7 to -15.0) -23.4 (-26.4 to -22.3)
65-74 -6.3 (-12.1 to -4.1) -0.2 (-3.6 to 3.1) 2.4 (-2.2 to 8.1) -15.0 (-18.5 to -9.9) -21.6 (-26.0 to -18.0)
75+ -8.3 (-12.1 to -3.7) 1.1 (-2.5 to 4.7) 1.9 (-4.1 to 9.2) -11.9 (-17.7 to -8.7) -21.8 (-26.6 to -17.9)

Hispanic

0-4 -10.2 (-12.1 to -8.6) -0.2 (-1.7 to 1.4) 0.0 (-1.4 to 2.6) -10.6 (-14.5 to -9.2) -21.9 (-25.0 to -19.5)
5-17 -6.2 (-7.5 to -5.5) 0.1 (-1.0 to 1.2) 1.2 (0.2 to 2.8) -5.6 (-8.1 to -4.5) -13.0 (-14.9 to -11.6)

18-49 -15.7 (-17.8 to -14.8) -0.2 (-1.1 to 1.5) -5.7 (-7.5 to -3.3) -23.6 (-26.9 to -21.9) -37.0 (-39.5 to -36.0)
50-64 -11.0 (-13.4 to -9.6) -0.3 (-1.3 to 2.4) -7.2 (-10.1 to -4.2) -27.5 (-30.4 to -25.8) -36.9 (-38.8 to -35.5)
65-74 -14.7 (-17.3 to -12.8) -0.0 (-1.9 to 3.1) -2.8 (-5.9 to 0.8) -20.5 (-25.0 to -17.8) -33.8 (-36.2 to -31.4)
75+ -14.4 (-18.2 to -11.8) -0.7 (-3.1 to 2.2) -0.7 (-4.9 to 3.0) -16.4 (-21.5 to -12.6) -29.2 (-34.0 to -26.4)

Table 2.: Table of the percent difference in the number of symptomatic infections compared to the baseline scenario.
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Median Percent Difference of Hospitalizations from Baseline (IQR) %

Racial/Ethnic Group Ages Equal Vaccination Equal Comorbidities Equal Work-Risk Low-Risk Workplaces
Equal Disease Progression

and
Low-Risk Workplaces

White

0-4 -16.8 (-27.5 to -6.5) 1.5 (-9.4 to 14.7) 4.5 (-13.6 to 24.5) -4.9 (-22.0 to 8.7) -25.2 (-36.2 to -17.2)
5-17 -9.7 (-20.8 to 6.3) -17.4 (-27.0 to -8.4) -2.1 (-14.5 to 8.7) -7.1 (-19.0 to 6.9) -27.3 (-38.7 to -19.0)

18-49 -15.2 (-22.2 to -8.4) -36.0 (-38.6 to -32.0) 0.5 (-8.7 to 9.4) -17.8 (-23.9 to -8.4) -53.5 (-56.8 to -50.5)
50-64 -9.7 (-17.4 to 2.9) -37.7 (-41.7 to -35.0) 2.6 (-3.1 to 13.1) -13.6 (-21.4 to -9.2) -54.2 (-59.0 to -48.7)
65-74 -11.7 (-18.4 to -2.4) -21.9 (-27.8 to -17.5) -3.1 (-14.0 to 10.1) -14.2 (-24.2 to -5.4) -41.7 (-46.5 to -38.2)
75+ -10.7 (-13.8 to -7.2) -27.1 (-32.2 to -22.2) 2.2 (-7.2 to 8.9) -12.5 (-19.2 to -2.5) -47.0 (-51.8 to -43.4)

Black

0-4 -16.7 (-31.0 to 7.9) -54.2 (-63.1 to -40.5) 3.8 (-14.3 to 40.0) -13.3 (-33.3 to 0.0) -66.0 (-75.0 to -57.5)
5-17 -6.4 (-21.4 to 25.0) -55.9 (-69.2 to -45.5) 4.2 (-21.7 to 25.0) -4.2 (-19.0 to 20.1) -62.6 (-69.7 to -50.7)

18-49 -24.0 (-29.8 to -14.9) -70.7 (-74.1 to -67.1) -1.8 (-17.3 to 8.2) -28.2 (-33.8 to -19.4) -83.4 (-86.8 to -81.4)
50-64 -6.9 (-17.4 to 3.2) -71.3 (-75.2 to -66.8) -5.4 (-11.9 to 11.8) -26.9 (-38.4 to -17.2) -81.0 (-83.7 to -78.8)
65-74 -21.4 (-32.6 to -5.9) -50.5 (-57.7 to -43.8) -4.7 (-18.5 to 14.0) -29.2 (-40.4 to -18.8) -66.7 (-75.3 to -56.4)
75+ -11.7 (-24.4 to 5.7) -23.3 (-28.8 to -15.3) 2.3 (-15.6 to 20.0) -18.2 (-32.9 to -1.2) -47.3 (-56.6 to -40.0)

AI/AN

0-4 0.0 (-50.0 to 37.5) -55.0 (-100.0 to -33.3) 0.0 (-27.1 to 100.0) 0.0 (-50.0 to 50.0) -75.0 (-100.0 to -50.0)
5-17 -33.3 (-100.0 to 0.0) -50.0 (-100.0 to 0.0) 0.0 (-66.7 to 100.0) 0.0 (-60.0 to 0.0) -66.7 (-100.0 to 0.0)

18-49 -15.5 (-50.0 to 33.3) -50.0 (-70.0 to -4.2) 0.0 (-50.0 to 50.0) 0.0 (-50.0 to 50.0) -75.0 (-87.5 to -50.0)
50-64 -25.0 (-55.4 to 45.8) -50.0 (-71.4 to 0.0) 0.0 (-33.3 to 100.0) -50.0 (-66.7 to 0.0) -66.7 (-80.0 to -25.9)
65-74 -12.5 (-100.0 to 100.0) -33.3 (-100.0 to 8.3) 0.0 (-25.0 to 200.0) 0.0 (-75.0 to 0.0) -33.3 (-66.7 to 100.0)
75+ -50.0 (-66.7 to 0.0) 0.0 (-65.0 to 100.0) 0.0 (-66.7 to 100.0) -41.7 (-100.0 to 0.0) -12.5 (-80.0 to 0.0)

Asian

0-4 -15.4 (-34.5 to 23.3) -37.5 (-56.7 to -11.5) 20.0 (-33.3 to 88.9) -25.0 (-51.7 to 17.4) -38.2 (-62.3 to 0.0)
5-17 -6.2 (-44.4 to 33.3) -16.7 (-33.3 to 25.0) 0.0 (-34.1 to 54.2) -20.8 (-50.0 to 33.3) -16.7 (-42.9 to 33.3)

18-49 -12.5 (-27.1 to 8.4) -8.3 (-34.8 to 12.1) -13.3 (-35.3 to 28.6) -25.0 (-46.3 to 0.0) -26.7 (-43.7 to -6.7)
50-64 0.0 (-33.3 to 16.7) 0.0 (-21.4 to 28.2) 7.7 (-18.2 to 46.2) -25.0 (-41.7 to 4.2) -31.0 (-46.5 to -7.4)
65-74 -15.5 (-41.5 to 25.5) -6.1 (-24.6 to 21.5) -8.3 (-31.2 to 50.0) -16.7 (-35.5 to 18.2) -40.0 (-61.5 to -14.9)
75+ -8.9 (-29.2 to 10.1) -26.3 (-42.6 to -12.2) 0.0 (-25.0 to 37.5) -10.0 (-35.0 to 5.7) -43.4 (-55.0 to -26.3)

Hispanic

0-4 -13.6 (-27.1 to -2.1) -44.6 (-51.7 to -33.1) -5.5 (-18.8 to 18.6) -18.2 (-26.2 to -4.2) -59.4 (-68.4 to -49.3)
5-17 -13.9 (-29.0 to 3.2) -37.1 (-45.8 to -21.0) -7.5 (-21.9 to 11.8) -13.9 (-27.3 to 3.3) -44.1 (-55.0 to -31.1)

18-49 -15.9 (-28.0 to -7.5) -40.7 (-44.5 to -36.9) -12.3 (-21.4 to 2.0) -22.5 (-31.2 to -13.9) -63.4 (-67.4 to -59.0)
50-64 -8.1 (-19.2 to 1.2) -37.6 (-45.3 to -26.4) -3.4 (-16.9 to 8.5) -34.2 (-39.0 to -20.7) -64.6 (-70.6 to -61.7)
65-74 -21.0 (-30.5 to -2.4) -12.0 (-29.1 to 6.1) 9.1 (-13.1 to 29.3) -21.6 (-32.4 to -4.9) -46.6 (-53.2 to -39.1)
75+ -14.0 (-24.4 to -3.9) -4.1 (-14.2 to 14.9) 7.5 (-8.5 to 34.1) -14.3 (-26.6 to 4.0) -29.6 (-39.4 to -12.6)

Table 3.: Table of the percent difference in the number of hospitalizations compared to the baseline scenario.
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