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Background: Although deep learning methods have shown great promise for identification 

of structural and functional cardiac abnormalities using electrocardiographic data, these 

methods are data hungry, posing a challenge for critically important tasks where ground 

truth labels are relatively scarce. Impaired coronary microvascular and vasomotor function 

is difficult to identify with standard clinical methods of cardiovascular testing such as 

coronary angiography and noninvasive single photon emission tomography (SPECT) 

myocardial perfusion imaging (MPI). Gold standard data from positron emission 

tomography (PET) are gaining emphasis in clinical guidelines but are expensive and only 

available in relatively limited centers. We hypothesized that signals embedded within 

resting and stress electrocardiograms (ECGs) identify individuals with microvascular and 

vasomotor dysfunction. Methods: We developed and pretrained a self-supervised 

foundation vision transformer model using a large database of unlabeled ECG waveforms 

(N=800,035). We then fine-tuned the foundation model for two clinical tasks: the difficult 

problem of identifying patients with impaired myocardial flow reserve (AI-MFR), and the 

relatively easier problem of detecting impaired LVEF (AI-LVEF). A second ECG database 

was labeled with task-specific annotations derived from quantitative PET MPI (N=4167). 

Diagnostic accuracy of AI predictions was tested in a holdout set of patients undergoing 

PET MPI (N=1031). Prognostic evaluation was performed in the PET holdout cohort, as 

well as independent cohorts of patients undergoing pharmacologic or exercise stress 

SPECT MPI (N=6635). Results: The diagnostic accuracy of AI-MFR with SSL pretraining 

increased significantly compared to de novo supervised training (AUROC, sensitivity, 

specificity: 0.758, 70.1%, 69.4% vs. 0.632, 66.1%, 57.3%, 𝑝 < 0.0001). SSL pretraining also 

produced a smaller increase in AI-LVEF accuracy (AUROC, sensitivity, specificity: 0.946, 

89.4%, 85.9% vs. 0.918, 87.6%, 82.5%, 𝑝 < 0.02). Abnormal AI-MFR was found to be 

significantly associated with mortality risk in all three test cohorts (Hazard Ratio (HR) 2.61 

[95% CI 1.83, 3.71], 𝑝 < 0.0001, PET cohort; HR 2.30 [2.03, 2.61], 𝑝 < 0.0001, 

pharmacologic stress SPECT cohort; HR 3.76 [2.36, 5.99], 𝑝 < 0.0001, exercise stress 

SPECT cohort). Conclusion: SSL pretraining of a vision transformer foundation model 

enabled identification of signals predictive of impaired MFR, a hallmark of microvascular 

and vasomotor dysfunction, and impaired LV function in resting and stress ECG waveforms. 

These signals are powerful predictors of prognosis in patients undergoing routine 
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noninvasive stress testing and could enable more efficient diagnosis and management of 

these common conditions. 
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1 Introduction 

Recent AI models of electrocardiogram (ECG) tracings have shown promise as low-cost 

screening tools for the detection of left ventricular systolic dysfunction and a variety of 

cardiac structural abnormalities (1,2). These models have been derived with ECG 

annotations based on structural labels related to the size and shape of the heart chambers 

(3). ECG signals have also traditionally been used as noninvasive tests of myocardial 

ischemia and infarction (4), and thus, may also have relevance for identifying tissue and 

cellular properties such as perfusion and potassium balance between intra- and 

extracellular compartments (5,6). 

Quantitative positron emission tomography (PET) is the gold standard for noninvasive 

characterization of myocardial ischemia and coronary microvascular dysfunction (7). 

Inspired by recent AI models of left ventricular systolic dysfunction, we sought to use ECG 

waveforms for AI prediction of tissue- and molecular-level phenomena related to 

myocardial blood flow and the uptake and retention of rubidium-82 (a potassium analog). 

Such models have not, to our knowledge, been previously reported due in part to the 

complexity and limited availability of appropriate ECG annotations based on quantitative 

PET measurements. Indeed, in preliminary AI studies using simple convolutional neural 

networks our results were promising but limited by the relatively small labeled dataset 

that was available for supervised training. 

Self-supervised learning (SSL) is a recent paradigm shift in AI which seeks to learn 

powerful task-agnostic representations from unlabeled data (8). Such foundation models 

can then undergo task-specific fine-tuning for multiple downstream tasks with much 

smaller amounts of annotated data (9). This approach underlies many contemporary state-

of-the-art large language and computer vision models (10,11). In this work we present an 

example of an SSL foundation model based on the vision transformer architecture and 

designed for ECG-based assessment of cardiac and coronary function. After pretraining the 

SSL model on a large database of unlabeled ECG waveforms, we demonstrate state-of-the-

art performance for two task-specific applications: the detection of impaired myocardial 

flow reserve (MFR) and left ventricular ejection fraction (LVEF). 
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2 Methods 

2.1 Data sources 

Two ECG databases were used for AI model development and validation. The publicly 

available MIMIC-IV-ECG repository v1.0 (12,13) provides a large database of standard 12-

lead resting ECGs of 10 sec duration. These waveforms were used as unlabeled data for 

pretraining the SSL ECG foundation model. 

A second database, an MPI registry at the University of Michigan Frankel Cardiovascular 

Center, consists of all consecutive patients who underwent clinically indicated stress 

testing with cardiac PET-CT or SPECT-CT myocardial perfusion imaging (MPI). This 

database was used to generate annotated data for task-specific fine-tuning of the 

foundation model. For the present study, patients were included with at least one rest-

stress MPI exam. For patients with more than one exam, the earliest evaluable exam was 

included. Patients were excluded if they had a history of heart transplantation, missing or 

uninterpretable image data, or missing demographic or hemodynamic data. 

Patients that had undergone both PET-CT and SPECT-CT exams were included in the PET 

cohort only and were excluded from the SPECT cohort to avoid label leakage. The SPECT 

cohort was used as an independent test population for prognostic evaluation. All patient 

data was de-identified and informed consent was waived under an exemption from the 

University of Michigan Institutional Review Board. 

2.2 Noninvasive stress testing 

Rest and stress cardiac 82Rb PET exams were performed according to clinical guidelines for 

MPI testing (14) and measurement of MBF (15,16) as previously described (17). 

Cardiac 99mTc-sestamibi SPECT exams were performed according to guidelines (18) as 

previously described (19). Left ventricular ejection fraction (LVEF) (20) and stress total 

perfusion deficit (TPD) (21) were routinely estimated during all imaging exams. Stress was 

induced either pharmacologically with intravenous bolus administration of regadenoson 

(0.4 mg), by treadmill exercise using a Bruce, modified Bruce, or Cornell protocol, or by a 

combination of intravenous regadenoson and low-level treadmill exercise. All PET exams 
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were conducted with regadenoson vasodilator stress while SPECT exams employed a wider 

variety of stress protocols. Heart rate, systolic, and diastolic blood pressure were 

monitored continuously during imaging. 

Twelve-lead ECG waveforms of 10 sec duration and 500 Hz sampling rate were recorded at 

baseline immediately before stress testing and at 1 min intervals during stress (in supine 

position for pharmacologic or combination pharmacologic/low-level exercise stress) or 

once during each exercise stage (for exercise stress). Rest and stress ECG data were used 

for AI model development. 

2.3 Data annotations 

ECG annotations were derived from concurrently acquired PET image data. Myocardial 

blood flow (MBF) was measured from 30-frame dynamic PET images at rest and stress 

with a clinically validated, commercially available 1-tissue compartmental model, and MFR 

was computed as the ratio of stress over rest MBF and averaged globally over the entire left 

ventricular (22,23). Left ventricular volumes were measured from 16-frame ECG-gated PET 

images at rest using a clinically validated, commercially available algorithm, and LVEF was 

computed as one minus the volume ratio at systole over diastole (20). Each ECG waveform 

was labeled with two task-specific annotations: presence or absence of impaired MFR, 

defined as global MFR less than 2.0, which is a widely used threshold for prognostically 

significant MFR impairment (24,25); and presence or absence of impaired LV function 

defined as LVEF less than 35% (26). 

2.4 Prognostic outcome 

The primary patient outcome for prognostic evaluation of the AI models was mortality 

from all causes. The vital status of each patient was determined by integrating data from 

death certificates and hospital records. 

2.5 Deep learning model 

Model development 

ECG waveform data was used directly as input to a Vision Transformer neural network (27) 

adapted for multichannel, 1-dimensional input (1dViT) (Figure S1 (a)). Waveform patches 
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of fixed 100 msec width were flattened, linearly projected into an embedding space of 

dimension 800, combined with a trainable class token, and summed with trainable 

positional encoding (27). A series of twelve Transformer Encoder blocks followed, each 

incorporating pre-layer normalization (28), 8 self-attention heads, and a multi-layer 

perceptron with GELU activation (29) and hidden dimension of 3200 (Figure S1 (a)). The 

final classifier head consisted of global average pooling, layer normalization, and a linear 

classifier. The number of input ECG leads was reduced from twelve to eight since the three 

augmented unipolar leads are linear combinations of the bipolar leads, and by Einthoven’s 

triangle equation only two of the three bipolar leads are linearly independent (30). ECG 

preprocessing consisted of missing value imputation and waveform normalization to zero 

mean and unit standard deviation. For LVEF prediction, a single 1dViT backbone was used 

with resting ECG waveform input. For MFR prediction, a dual-1dViT fusion model (Figure 

S1 (b)) was used with resting and stress ECG waveform input. The 1dViT backbone 

contained 92.7 million trainable parameters and was developed using the pytorch 

framework (v2.1.1) (31). 

SSL model pretraining 

For SSL pretraining, the 1dViT backbone was paired with a small Transformer Decoder to 

perform a pretext task of masked signal modeling (32,33). The decoder had eight 

Transformer blocks similar to the 1dViT encoder blocks but with embedding dimension of 

256 and 16 self-attention heads. Embedded input patches were randomly masked with a 

masking ratio of 60%, and only non-masked patches entered the encoder (33). Before input 

to the decoder, encoded patches were combined with a trainable mask token for each 

masked patch and summed with positional encoding. The input waveform was 

reconstructed at the level of raw time steps with an 𝐿2 loss (33). The AdamW optimizer was 

used (34) with an initial learning rate of 1e-5, linear warmup for 5 epochs to 1e-3 followed 

by a cosine decay schedule (35). Pretraining was performed for 300 epochs with a batch 

size of 384. 
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Model fine-tuning 

The SSL pretrained 1dViT encoder was subsequently fine-tuned on labeled data for each 

downstream task. Only the top 4 Transformer blocks were trained during fine-tuning, 

while freezing the remaining 8 blocks. A binary cross-entropy loss function was utilized 

with the AdamW optimizer and linear warmup from 1e-5 to 5e-5 followed by cosine decay. 

Fine-tuning was performed for up to 100 epochs with batch sizes of 256 and 128 for LVEF 

and MFR prediction tasks, respectively. Fine-tuning iterations were stopped early when 

validation loss failed to decrease for ten consecutive epochs. For comparison, the same two 

models without SSL-pretraining were tuned and validated de novo with the same labeled 

data and training setup, except the peak learning rate during linear warmup was set to 1e-3 

as used for SSL pretraining. 

Model evaluation 

Evaluations were performed with the PET holdout test cohort after completion of AI model 

fine-tuning. Model performance for each downstream task was computed as the diagnostic 

accuracy of the binary outcomes and area under the ROC curve (AUROC) relative to the 

true task-specific data labels. Prognostic evaluation of the AI models was also performed in 

the PET holdout and SPECT MPI test cohorts (Figure 1). The two SPECT cohorts 

(pharmacologic and exercise stress) were tested separately as the appropriateness of the 

model for exercise stress ECG data was uncertain and considered exploratory. 

2.6 Statistical methods 

For diagnostic evaluation, the DeLong test (36) was used to compare AUROCs, and a 

generalized McNemar test (37) for joint comparison of sensitivity and specificity. To 

facilitate comparison between ROC curves, a threshold was selected as the point on the 

curve closest to the point of perfect discrimination (sensitivity=1, specificity=1). For each 

prognostic cohort, Cox proportional hazards models and Kaplan-Meier curves were created 

to test the association of AI predicted impairment with all-cause mortality risk. Adjustment 

of Cox models was pre-specified for patient demographics, baseline risk factors, and 

standard MPI findings on the basis of judgment and prior work (24,38). Baseline covariates 

included patient age, sex, body mass index (BMI), diabetes, hypertension, hyperlipidemia, 
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known coronary artery disease (CAD, history of myocardial infarction (MI) or previous 

percutaneous coronary intervention (PCI) or coronary artery bypass graft), LVEF, and 

stress TPD as a combined relative measure of ischemia or scar. Subgroup analysis was 

performed stratifying by age (< 60y), BMI (< 30kg/m2), sex, diabetes, dyslipidemia, 

hypertension, known CAD, LVEF (< 50%), and stress TPD (< 5%). 

Model discrimination was assessed using likelihood ratio χ2 and c-index. The change in 

discrimination after adding AI predicted impairments to the baseline Cox models was 

assessed with continuous net reclassification improvement (NRI) (39). Non-nested Cox 

models were compared using Fine’s test (40). 

Continuous variables are summarized as mean±SD or median [1st – 3rd quartiles]. Welch’s 

unequal variances t-test or Wilcoxon rank sum tests were used as appropriate for 

comparisons of continuous parameters, and 𝜒-squared tests were used to compare 

categorical variables. Two-sided p-values less than 0.05 were considered statistically 

significant. Analyses were performed using R Statistical Software (v4.1.0) (41) with 

packages survival (v3.2-11) (42), rms (v6.2-9) (43), pROC (v1.18.0) (44), DTComPair 

(v1.2.4) (45), survminer (v0.4.9) (46), nricens (v1.6) (47), forestploter (v1.1.0) (48), 

gtsummary (v1.5.2) (49), and Publish (v2021.05.25) (50). 

3 Results 

3.1 Patient population 

The MIMIC-IV-ECG repository provided 800,035 diagnostic resting ECGs acquired in 

161,352 patients. For SSL pretraining, ECG data were split into training and validation 

subsets (97.5%/2.5%) and no other patient data were used. Of 12,764 patients in the MPI 

registry, 5202 patients underwent stress testing with PET-CT, and 7303 underwent SPECT-

CT (Figure 1). The PET cohort was randomly split into training, validation, and holdout test 

subsets with ratios 60:20:20%. AI model diagnostic and prognostic evaluation was 

performed using the PET holdout test cohort (N=1031), as well as 5102 patients who 

underwent pharmacologic stress SPECT MPI and 1533 patients who underwent exercise 

stress SPECT MPI. 
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3.2 Baseline characteristics 

Baseline characteristics are shown in Table 1 stratified by patient cohort. As expected, the 

PET MPI cohorts for model derivation and holdout test had nearly identical clinical 

characteristics. However, the pharmacologic stress SPECT MPI cohort differed 

meaningfully from the PET MPI cohort, reflecting heterogeneity in patient referral and 

practice patterns. SPECT patients were older, with lower rates of obesity, diabetes, and 

history of MI, and higher rates of hypertension, hyperlipidemia, and mortality than the PET 

cohorts. Baseline characteristics of the exercise stress SPECT MPI cohort is shown in Table 

S1. 

3.3 AI model diagnostic evaluation 

In the PET holdout test cohort, the incidence of impaired MFR (<2) was 48% (N=461) and 

impaired LVEF (<35%) was 11% (N=113). Within this cohort, the AUROC for both tasks 

was significantly increased for models based on the SSL-pretrained foundation model 

compared to de novo training without SSL (AI-MFR, p<0.0001; AI-LVEF, p=0.0176), and 

diagnostic accuracy was similary increased (AI-MFR, p<0.0001; AI-LVEF, p=0.0078) 

(Figure 2, Table S2, Table S3). However, the absolute gain was much greater for AI-MFR. 

3.4 Prognostic assessment 

AI model predictions of abnormal AI-MFR with and without SSL-pretraining were both 

significantly associated with risk of death in adjusted Cox models (Hazard Ratio (HR) 2.61 

and 1.66, Table 2). However, SSL-based predictions provided better model fit (p=0.0212), 

approaching that of PET-measured MFR impairment (HR 3.18, Table 2, Figure 3). Cox 

models of SSL-based AI-MFR and PET-MFR were not significantly different (p=0.779), and 

provided similar discrimination (c-index 0.717 vs 0.725) and overall NRI (0.538 vs 0.534) 

(Table 2, Table S6). In contrast, PET-measured LVEF impairment was not a predictor of 

mortality risk in this population (possibly due to collider bias from referral patterns), and 

only SSL-based AI-LVEF was significantly associated with mortality (HR 1.66, Table 2, 

Figure S2 (b)). 

Similar prognostic results were observed in the pharamcologic stress SPECT cohort (Table 

S4, Table S6, Figure S3 (b)). A Cox model of SSL-based AI-MFR again provided better model 
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fit than that without SSL (p<0.0001). Intriguingly, AI-MFR remained a strong predictor of 

outcomes in the exploratory SPECT exercise stress cohort (HR 3.76, 𝑝 < 0.0001) despite 

the dramatically different type of stress (treadmill exercise versus vasodilator 

medications), much lower event rate and broadly healthier population (Table S5, Figure S4 

(b)). Overall NRI was also significantly positive (Table S6) . 

3.5 Subgroup analysis 

In subgroups stratified by patient characteristics, abnormal AI-MFR was consistently a 

strong predictor across subgroups and remained significantly associated with higher 

mortality risk in the PET holdout test cohort (Table S7 and Table S8) and both 

pharmacologic (Table S9) and exercise stress (Table S10) SPECT cohorts. AI-MFR was a 

significant independent predictor of mortality in women, patients with diabetes, 

hypertension, LV dysfunction, and those with minimal or no stress perfusion abnormality 

(TPD < 5%) representing patients with likely diffuse coronary microvascular dysfunction. 

4 Discussion 

We have applied a data-efficient SSL approach to develop, to our knowledge, the first deep 

neural network with the ability to detect impaired MFR, demonstrating that complex 

tissue- and molecular-level pathophysiology results in characteristic electrophysiologic 

changes detectable in surface ECG tracings. These results demonstrate that SSL and vision 

transformer architectures can enable training of clinically relevant tools with far less gold 

standard data than previously believed. Importantly, this may facilitate the development of 

deep learning based low-cost testing strategies for advanced diagnostics previously 

thought to be inaccessible or extremely challenging due to the need for extremely large 

training datasets. 

4.1 AI considerations 

Our results demonstrate the value of the self-supervised learning paradigm for clinical AI 

applications. Using a large publicly available database of unlabeled ECG data, we pretrained 

a single SSL foundation model, which we then fine-tuned for two distinct clinical tasks. Our 

annotated dataset of 4167 PET MPI patients, though relatively large as a clinical PET 

population, is small by AI model training standards. However, for task-specific fine-tuning 
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this annotated data was sufficient to achieve a diagnostic accuracy for impaired LVEF 

(AUROC 0.946) (Figure 2 (b), Table S3) comparable to a previous AI study (AUROC 0.932) 

(26) which required ten times more annotated data (44,959 patients). Our SSL foundation 

model also significantly improved the diagnostic accuracy of detecting impaired MFR 

compared to de novo supervised training (Figure 2 (a), Table S2). 

Although our AI models yielded highly accurate predictions of AI-LVEF (Table S3), and 

moderately accurate predictions of AI-MFR (Table S2), the clinical evaluation of AI-MFR 

showed consistently stronger prediction of mortality risk than AI-LVEF, approaching the 

prognostic value of gold standard PET measurements of MFR (Table 2, Figure 3 (b)). The 

lower prognostic value of AI-LVEF may be due in part to the low prevalence of impaired 

LVEF in the test cohorts (11%, in PET holdout; 3.5% in pharmacologic SPECT; and 0.5% in 

exercise SPECT). This underscores the importance of evaluating clinically meaningful 

endpoints in AI applications. Interestingly, abnormal AI-MFR and AI-LVEF remained 

significant predictors of mortality risk even in the subset of patients with preserved MFR>2 

and LVEF>35% (Table 3), and this was true in both the PET holdout and pharmacologic 

stress SPECT cohorts. This suggests that ECG abnormalities were detected by the AI model 

before overt clinical impairment of MFR or LVEF. A similar result has been reported in two 

previous studies (26,51) with AI models predicting four-fold higher risk of future LV 

systolic dysfunction in subjects with normal LVEF. 

4.2 Clinical implications 

Coronary microvascular and vasomotor dysfunction (CMVD) develops as a result of aging, 

diabetes, and a range of other cardiometabolic diseases (52,53) and causes myocardial 

ischemia and symptomatic angina without obstructive coronary disease (54,55). 

Approximately half of patients referred for invasive cardiac evaluation are found to have no 

obstructive coronary disease (56), and of these, more than two-thirds have some form of 

CMVD (54). Further, CMVD is associated with markedly increased rates of adverse cardiac 

outcomes (57,58). 

Cardiac stress testing with quantitative PET MPI is considered the noninvasive gold 

standard for assessing CMVD (7). Although guidelines broadly recommend PET testing for 
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a range of clinical conditions (61), its accessibility remains limited and many regions are 

underserved by PET (62). In resource constrained environments, AI-MFR could provide a 

cost-effective initial test to direct patients who would benefit most from PET testing. 

Further, AI-MFR could be useful as a low-cost adjunct to other more accessible stress 

testing modalities such as stress SPECT, stress echocardiography, and exercise ECG, 

providing valuable additional information on CMVD phenotyping. 

In clinical evaluation of the AI-MFR metric, we demonstrated consistently strong 

prognostic performance in three distinct clinical populations: a holdout test cohort 

undergoing PET MPI for which MFR measurements were available (Table 2), and two 

independent SPECT MPI cohorts undergoing either pharmacologic or exercise stress, and 

for whom MFR measurements were not possible (Table S4, Table S5). Our results 

demonstrate that impaired AI-MFR is independently associated with higher risk of death 

after adjusting for clinical risk factors and standard MPI measurements. Impaired AI-MFR 

improved the prognostic discrimination of standard MPI in terms of increased c-index and 

continuous Net Reclassification Improvement in all three cohorts, indicating the strong 

generalizability of this AI model. In subgroup analysis of patients with minimal or no stress 

perfusion abnormalities (stress TPD<5, Table S8), AI-MFR remained a consistent predictor 

of adverse outcomes, consistent with the identification of impaired MFR with coronary 

microvascular dysfunction (63). 

Ahmad, et al. (64) recently performed a ground-breaking study on a related question. Using 

logistic regression and rest ECG data, they built a prediction model to detect coronary 

microvascular dysfunction identified with invasive coronary vasomotor testing. Although 

such invasive testing is precise, it is rarely performed and is subject to marked referral and 

selection biases. Further, invasive testing is rarely performed in all three coronary arteries 

and thus measures may reflect regional rather than global cardiac abnormalities. Given the 

limited sample size, simpler model architecture, and lack of stress perturbation data, the 

performance of their prediction model was limited (64). We believe the higher 

performance of our approach may in part be due to integration of ECGs from both resting 

and stress conditions. Prior studies have demonstrated that broad metabolic and 

physiologic changes are detectible with a single episode of exercise (65). 
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4.3 Limitations 

Although we evaluated our AI models in three non-overlapping clinical test populations, all 

were from a single, high-volume health system. Further external validation in additional 

populations is warranted to confirm robustness. 

The present study did not evaluate the diagnostic performance of the AI models for 

detection of obstructive CAD. We speculate that detecting AI-MFR impairment could 

potentially improve the diagnostic accuracy of standard relative MPI interpreted visually 

by clinicians for the presence of high risk left main or multi-vessel obstructive CAD, as seen 

for PET-measured MFR in prior studies (63,66,67). 

Global MFR does not distinguish CMVD from myocardial perfusion impairments due to 

focal epicardial or diffuse CAD. Our recent work has shown that regional quantitative PET 

measures combined with relative perfusion and global MFR can be highly effective at 

assessing the additive risk of diffuse or microvascular disease (68). Further work will be 

necessary to integrate these results with the present ECG AI model predictions to further 

characterize CMVD. 

4.4 Conclusion 

Using a data-efficient self-supervised foundation model with a vision transformer 

architecture, we have demonstrated that ECG waveforms at rest and during stress carry 

important clinical information related to tissue and cellular properties, namely, coronary 

microvascular and vasomotor function. The same foundation model identified structural 

abnormalities associated with left ventricular systolic dysfunction. These deep learning 

metrics have prognostic value similar to that of gold standard measurements. 
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Table 1: Baseline characteristics of patients who underwent pharmacologic stress testing by 
myocardial perfusion imaging stratified by cohort. AI models were developed with the Model 
Derivation cohort and tested in the PET Holdout Test and SPECT Pharmacologic Stress 
cohorts. 

 

PET MPI Cohort  SPECT MPI Cohort  

p-value2 Model 
Derivation,  
N = 4,1671 

Holdout 
Test,  

N = 1,0311 

Pharmacologic 
Stress,  

N = 5,1021 

Demographics 

Age (y) 63 (12) 63 (12) 66 (12) <0.001 

Male sex 2,312 (55) 590 (57) 2,874 (56) 0.53 

Race    <0.001 

White 3,404 (82) 840 (81) 4,127 (81)  

Black 512 (12) 115 (11) 504 (9.9)  

Other 251 (6.0) 76 (7.4) 471 (9.2)  

Cardiovascular Risk Factors 

Body mass index (kg/m2) 34 (10) 33 (9) 30 (8) <0.001 

Obesity 2,539 (61) 599 (58) 2,299 (45) <0.001 

Hypertension 3,179 (76) 776 (75) 4,017 (79) 0.005 

Diabetes 1,652 (40) 422 (41) 1,676 (33) <0.001 

Hyperlipidemia 2,747 (66) 673 (65) 3,699 (73) <0.001 

Family history of coronary 
artery disease 

2,807 (67) 681 (66) 1,715 (34) <0.001 

Current smoker 336 (8.1) 99 (9.6) 1,135 (22) <0.001 

History of myocardial 
infarction 

799 (19) 200 (19) 714 (14) <0.001 

Prior percutaneous coronary 
intervention 

816 (20) 201 (19) 952 (19) 0.50 

Prior coronary artery bypass 
graft 

418 (10) 102 (9.9) 491 (9.6) 0.80 

Symptoms 

Angina 1,819 (44) 431 (42) 2,204 (43) 0.56 

Dyspnea 665 (16) 172 (17) 1,077 (21) <0.001 

Hemodynamics 

Heart rate, rest (bpm) 73 (14) 73 (13) 69 (13) <0.001 

SBP, rest (mm Hg) 132 (23) 131 (24) 143 (25) <0.001 

DBP, rest (mm Hg) 71 (24) 71 (22) 80 (13) <0.001 
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PET MPI Cohort  SPECT MPI Cohort  

p-value2 Model 
Derivation,  
N = 4,1671 

Holdout 
Test,  

N = 1,0311 

Pharmacologic 
Stress,  

N = 5,1021 

Rate pressure product (mm Hg 
bpm) 

9,658 (2,496) 
9,524 

(2,471) 
9,853 (2,522) <0.001 

Heart rate, stress (bpm) 93 (20) 92 (28) 101 (21) <0.001 

SBP, stress (mm Hg) 120 (31) 119 (30) 161 (27) <0.001 

DBP, stress (mm Hg) 64 (39) 63 (36) 80 (14) <0.001 

PET Measurements 

LV ejection fraction, rest (%) 57 (15) 58 (15) --- 0.80 

LV ejection fraction, stress (%) 61 (16) 61 (16) 65 (13) <0.001 

Total perfusion deficit, stress 
(%) 

7 (10) 7 (11) 5 (9) <0.001 

Myocardial blood flow, rest 
(ml/min/g) 

1.08 (0.39) 1.08 (0.41) --- 0.93 

Myocardial blood flow, stress 
(ml/min/g) 

2.17 (0.83) 2.16 (0.82) --- 0.79 

Myocardial flow reserve 2.11 (0.72) 2.12 (0.74) --- 0.88 

Outcomes 

All-cause mortality 696 (17) 172 (17) 1,118 (22) <0.001 
1 Mean (SD); n (%) 
2 One-way ANOVA; Pearson’s Chi-squared test 
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Table 2: Prognostic evaluation in the PET holdout cohort (N=1031 patients). Cox Proportional 
Hazards models of ECG AI model predictions (AI-MFR, AI-LVEF) and PET measurements and 
risk of all-cause mortality. 
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Table 3: Prognostic evaluation in subsets of patients with preserved MFR>2 and LVEF>35%. 
Cox Proportional Hazards models of ECG AI model predictions (AI-MFR, AI-LVEF) and risk of 
all-cause mortality demonstrating that even when direct clinical measurements are available, 
these AI measures may have added prognostic value. 
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11 Figures 

Figure 1: CONSORT diagram. 
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Figure 2: Diagnostic evaluation in the PET holdout test cohort (N=1031 patients). AI model 
predictions of abnormal MFR (a) and abnormal LVEF (b) with and without the SSL-
pretrained foundation model. SSL-based models were fine-tuned and validated on the PET 
derivation cohort (N=4167 patients); models with no SSL pretraining were tuned and 
validated de novo in the same derivation cohort. See Table S2 and Table S3 for 95% 
confidence intervals and p-values. 

(a) 
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(b) 

 

 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 21, 2024. ; https://doi.org/10.1101/2023.10.25.23297552doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.25.23297552


29 
 

29 
 

Figure 3: Adjusted incidence of all-cause mortality between ECG AI model predictions of 
abnormal MFR (AI-MFR, solid lines) without (a), and with (b) the SSL-pretrained foundation 
model. Dotted lines show a model of PET-measured MFR. Evaluation was performed on the 
PET holdout test cohort (N=1031 patients). 

(a) 
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(b) 
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Table S1: Baseline characteristics of patients who underwent SPECT myocardial perfusion 
imaging stratified by stress modality. 

 
Pharmacologic 

Stress,  
N = 5,1021 

Exercise 
Stress,  

N = 1,5331 
p-value2 

Demographics 

Age (y) 66 (12) 61 (11) <0.001 

Male sex 2,874 (56) 974 (64) <0.001 

Race   <0.001 

White 4,127 (81) 1,279 (83)  

Black 504 (9.9) 89 (5.8)  

Other 471 (9.2) 165 (11)  

Cardiovascular Risk Factors 

Body mass index (kg/m2) 29.6 (7.7) 28.8 (5.2) <0.001 

Obesity 2,299 (45) 593 (39) <0.001 

Hypertension 4,017 (79) 907 (59) <0.001 

Diabetes 1,676 (33) 317 (21) <0.001 

Hyperlipidemia 3,699 (73) 1,029 (67) <0.001 

Family history of coronary artery 
disease 

1,715 (34) 576 (38) 0.004 

Current smoker 1,135 (22) 207 (14) <0.001 

History of myocardial infarction 714 (14) 137 (8.9) <0.001 

Prior percutaneous coronary 
intervention 

952 (19) 242 (16) 0.010 

Prior coronary artery bypass graft 491 (9.6) 68 (4.4) <0.001 

Symptoms 

Angina 2,204 (43) 855 (56) <0.001 

Dyspnea 1,077 (21) 305 (20) 0.30 

Hemodynamics 

Heart rate, rest (bpm) 69 (13) 66 (11) <0.001 

SBP, rest (mm Hg) 143 (25) 135 (18) <0.001 

DBP, rest (mm Hg) 80 (13) 80 (11) 0.39 

Rate pressure product (mm Hg bpm) 9,853 (2,522) 8,920 (2,059) <0.001 

Heart rate, stress (bpm) 101 (21) 145 (21) <0.001 

SBP, stress (mm Hg) 161 (27) 190 (26) <0.001 

DBP, stress (mm Hg) 80 (14) 80 (14) 0.18 
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Pharmacologic 

Stress,  
N = 5,1021 

Exercise 
Stress,  

N = 1,5331 
p-value2 

SPECT Measurements 

LV ejection fraction, stress (%) 65 (13) 68 (10) <0.001 

Total perfusion deficit, stress (%) 5 (9) 3 (6) <0.001 

Outcomes 

All-cause mortality 1,118 (22) 91 (5.9) <0.001 
1 Mean (SD); n (%) 
2 Welch Two Sample t-test; Pearson’s Chi-squared test 
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Table S2: Diagnostic evaluation in the PET holdout test cohort (N=1031 patients). ECG AI 
model predictions of abnormal MFR with and without the SSL-pretrained foundation model. 
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Table S3: Diagnostic evaluation in the PET holdout test cohort (N=1031 patients). ECG AI 
model predictions of abnormal LVEF with and without the SSL-pretrained foundation model. 
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Table S4: Prognostic evaluation in the pharmacologic stress SPECT cohort (N=5102 patients). 
Cox Proportional Hazards models of ECG AI model predictions and risk of all-cause mortality. 
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Table S5: Prognostic evaluation in the exercise stress SPECT cohort (N=1533 patients). Cox 
Proportional Hazards models of ECG AI model predictions and risk of all-cause mortality. 
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Table S6: Continuous Net Reclassification Improvement (NRI) of ECG AI model MFR 
predictions with and without the SSL-pretrained foundation model. 
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Table S7: Subgroup analysis in the PET holdout test cohort. ECG AI model predictions of MFR 
(AI-MFR) without SSL-pretrained foundation model and mortality risk. 
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Table S8: Subgroup analysis in the PET holdout test cohort. ECG AI model predictions of MFR 
(AI-MFR) with SSL-pretrained foundation model and mortality risk. 
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Table S9: Subgroup analysis in the pharmacologic stress SPECT cohort. ECG AI model 
predictions of MFR (AI-MFR) with SSL-pretrained foundation model and mortality risk. 
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Table S10: Subgroup analysis in the exercise stress SPECT cohort. ECG AI model predictions of 
MFR (AI-MFR) with SSL-pretrained foundation model and mortality risk. 
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Figure S1: ECG AI model architecture. (a) The one-dimensional Vision Transformer (1dViT) 
model; (b) Fusion model combining two 1dViT channels for rest and stress ECG input. 

(a) 

 

  

(b) 
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Figure S2: Adjusted incidence of all-cause mortality between ECG AI model predictions of 
abnormal LVEF (AI-LVEF, solid lines) without (a), and with (b) the SSL-pretrained foundation 
model. Dotted lines show a model of PET-measured LVEF. Evaluation was performed on the 
PET holdout test cohort (N=1031 patients). 

(a) 
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(b) 
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Figure S3: Adjusted incidence of all-cause mortality between ECG AI model predictions of 
abnormal MFR (AI-MFR) without (a), and with (b) the SSL-pretrained foundation model. 
Evaluation was performed on the pharmacologic stress SPECT cohort (N=5102 patients). 

(a) 
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(b) 
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Figure S4: Adjusted incidence of all-cause mortality between ECG AI model predictions of 
abnormal MFR (AI-MFR) without (a), and with (b) the SSL-pretrained foundation model. 
Evaluation was performed on the exercise stress SPECT cohort (N=1533 patients). 

(a) 
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(b) 
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