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Abstract

Cardiovascular diseases (CVDs) remain a leading cause of mortality worldwide,
posing a significant public health challenge. Early identification of individuals
at high risk of CVD is crucial for timely intervention and prevention strate-
gies. Machine learning techniques are increasingly being applied in healthcare for
their ability to uncover complex patterns within large, multidimensional datasets.
This study introduces a novel ensemble meta-learning framework designed to
enhance cardiovascular disease (CVD) risk prediction. The framework strate-
gically combines the predictive power of diverse machine learning algorithms
– logistic regression, K nearest neighbors, decision trees, gradient boosting,
gaussian Naive Bayes and XGBoost. Predicted probabilities from these base
models are integrated using support vector machine as meta-learner. Rigor-
ous performance evaluation over publicly available dataset demonstrates the
improved performance of this ensemble approach compared to individual. This
research highlights the potential of ensemble meta-learning techniques to improve
predictive modeling in healthcare.
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1 Introduction

Cardiovascular diseases (CVDs) remain the leading cause of mortality worldwide,
claiming a staggering number of lives each year. A recent meta-analysis estimated
that CVDs were responsible for over 20.5 million deaths in 2021 [1]. This represents
approximately one-third of global fatalities, with the vast majority (around 85%) of
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these deaths attributed to heart attacks and strokes [2]. Several well-established risk
factors for CVDs include unhealthy diet, physical inactivity, tobacco use, and exces-
sive alcohol consumption [2, 3]. Additionally, a growing body of research indicates
that stress, depression, and conditions like obesity further exacerbate an individual’s
risk [4, 5]. The World Health Organization (WHO) emphasizes the alarming rise in
CVD-related deaths and underscores the urgency of addressing modifiable risk factors
to mitigate this global health crisis [6].

While numerous cutting-edge innovations are currently available to aid clinical
decision-making, their diagnostic accuracy varies. Machine learning (ML) has recently
demonstrated promising results in the medical domain [7], suggesting its potential to
augment healthcare professionals’ decision-making capabilities. An effective cardio-
vascular disease prediction system could provide clinicians with invaluable insights,
enhancing their ability to accurately assess patients’ cardiac health risks. Medical
professionals often encounter challenges in accurately diagnosing heart conditions [8].
Accordingly, machine learning algorithms have been extensively explored for the devel-
opment of medical decision support systems. These systems aim to enhance prediction
capabilities, inform healthcare policy-making, reduce clinical errors, and facilitate
early detection, prevention, and improved patient outcomes [9, 10]. Machine learning
offers a powerful framework for integrating diverse health data [11]. Algorithms can
incorporate demographic factors (e.g., age, gender), established clinical risk factors
(e.g., medical history), and emerging biomarkers to produce comprehensive CVD risk
assessments [12, 13].

Ensemble learning offers a powerful framework in machine learning by strategi-
cally integrating the predictions of multiple models. This approach often results in
improved accuracy and reduced risk compared to relying on individual models [14].
Numerous studies have demonstrated the effectiveness of traditional ML classifiers
in CVD prediction. Decision trees (DT), prized for their interpretability, have been
applied both independently and as components of ensemble methods [15, 16]. Naive
Bayes (NB) algorithms, while based on the assumption of feature independence, have
found some utility in this domain [17]. K-nearest neighbors (KNN), a non-parametric
algorithm, has exhibited promising accuracy in several CVD prediction studies [18, 19].
Random forest (RF), an ensemble technique that leverages multiple decision trees,
stands out as a particularly popular and robust choice [20]. Researchers have often
achieved enhanced performance by combining RF with other methods or utilizing it
within hybrid model architectures [21, 22]. Ensemble techniques have gained increas-
ing popularity in healthcare applications, supporting disease diagnosis, risk prediction,
and treatment response modeling [23]. Meta-learning advances this concept further,
enabling algorithms to “learn how to learn” [24, 25]. Meta-learners analyze the behav-
ior and performance patterns of machine learning models across different datasets
[24]. This knowledge enhances generalization to new data, a particular advantage in
healthcare where datasets might be limited [26]. In the present context of CVD risk
prediction, the support vector machine (SVM) functions as a meta-learner. SVM ana-
lyzes the predicted probabilities generated by base models, identifying patterns in
how they assign probabilities under various conditions. This analysis allows the SVM
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to generate refined weights or adjustments to the base model predictions, facilitating
more accurate final predictions of CVD risk.

While machine learning demonstrates significant potential in CVD risk prediction
[27, 28], the exploration of meta-learning approaches specifically tailored for this task
remains limited. Studies often focus on traditional ensemble methods [14], but the
advantages of strategically analyzing predicted probabilities using a SVM meta-learner
warrant further investigation. Meta-learning frameworks have shown the ability to
surpass the accuracy of single-model or ensemble approaches in other domains by
learning patterns of model performance across diverse tasks [29, 30]. Applying this
concept to CVD risk prediction holds the potential to significantly improve accuracy,
as individual models often demonstrate varying reliability when dealing with complex
patient risk factors [31]. Additionally, the proposed approach of using SVM to examine
predicted probabilities using state-of-the-art machine learning models such as logistic
regression, K nearest neighbors, gradient boosting, gaussian Naive Bayes and XGBoost
could reveal subtle risk patterns which results in better performance in contrast to
conventional ensembles which directly combines model outputs [24].

In light of the significant global burden of cardiovascular diseases (CVDs), the
present proposes ensemble meta-learning framework by employing SVM to analyze
the outputs of diverse base models, it aims to achieve more accurate and robust pre-
dictions. Machine learning holds significant potential for CVD risk prediction, yet
research specifically exploring the advantages of meta-learning approaches in this field
remains limited [32, 33]. The rest of the paper is divided into several sections with
the proposed methodology in Section 2, followed by the performance evaluation that
is conducted in experiments and results Section 3.2, and finally concluding remarks
are presented in Section 4.

2 Methodology

This study introduces a novel ensemble meta-learning framework designed to enhance
the accuracy of cardiovascular disease (CVD) risk prediction. The proposed methodol-
ogy strategically mitigates limitations observed in individual machine learning models
and conventional ensemble approaches. It leverages a support vector machine (SVM)
as the meta-learner to discern patterns within the predicted probabilities generated by
diverse base models such as logistic regression, K-nearest neighbors, gradient boosting,
Gaussian Naive Bayes, and XGBoost (see Algorithm 1 for detailed steps). The SVM
enables modeling complex interactions between the base model outputs, accommodat-
ing non-linear relationships between predicted probabilities and patient risk profiles.
It also dynamically adapts to localized variations in base model performance, offering
a degree of interpretability.

2.1 Dataset acquisition and preprocessing

The study employs a publicly available cardiovascular health dataset [34]. This dataset
contains extensive demographic, clinical, and self-reported health information, along
with records of CVD outcomes. There are 70,000 samples in the dataset with 11
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Algorithm 1 Ensemble Meta-Learning for CVD Risk Prediction

1: Input:

• Training dataset: Dt = {(xi, yi)}ni=1, where xi is the feature vector for patient i
and yi ∈ {0, 1} is the CVD risk label.

• Test instance: xq (not in Dt)

2: Output:

• CVD risk prediction for a new patient with feature vector xq.

3: Performing data preprocessing.
4: for each base model Mi do ▷ Base model hyperparameter tuning
5: for each fold k = 1 to 10 do ▷ Iterate through k folds
6: Use fold k as the validation set, the remaining folds as the training set.
7: Train Mi on the training set for different hyperparameter combinations.
8: Evaluate performance on the validation set.
9: end for

10: end for
11: for each base model Mi do ▷ Train base models
12: Retrain Mi on the entire dataset Dt using the selected hyperparameters.
13: end for
14: for each Mi do ▷ Probability generation
15: for each xj ∈ Dt do
16: Pi(xj) = Mi(xj)
17: end for
18: Pq

i (xq) = Mi(xq)
19: end for
20: P(Dt) ∈ Rm×n ▷ Generate meta-features
21: P(xq) = [P1(xq),P2(xq), ...,Pm(xq)] ∈ Rm×1 ▷ Create a vector of predicted

probabilities
22: for each fold k = 1 to 10 do ▷ SVM hyperparameter tuning over meta-features
23: Use fold k as the validation set, the remaining folds as the training set.
24: Train the SVM on the training set for different hyperparameter combinations.
25: Evaluate performance on the validation set.
26: end for
27: Retrain the SVM using the selected hyperparameters.
28: F(P(xq)) =

∑m
i=1 αiyiK(P(xi),P(xq)) + b ▷ Prediction

29: Final CVD risk prediction is determined by the sign of F(P(xq)).

attributes and 1 target variable per sample. Key features collected include demo-
graphic information (age (in days), gender (binary)), anthropometric measurements
(height (cm), weight (kg)), blood pressure readings (systolic and diastolic (mmHg)),
behavioral characteristics such as smoking status (binary), other features (cholesterol
and glucose levels (ternary)), and a target variable (cvd risk (binary)).
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Fig. 1 Correlation of the input features with the target variable.

To enhance data quality, rigorous outlier detection and removal procedures were
implemented. Specifically, weight and height measurements falling below the 3rd per-
centile or above the 98th percentile were deemed outliers and excluded from the
dataset. Additionally, erroneous records where diastolic blood pressure exceeds sys-
tolic blood pressure were identified, resulting in the removal of 6,134 records. Feature
selection using correlation analysis was performed to refine the feature set for model-
ing. Features exhibiting weak correlations with the target variable (CVD risk), such as
those with absolute correlation coefficients below 0.05, were considered for removal (as
shown in Fig. 1. Further preprocessing included feature engineering, where ’age bin’
and ’BMI’ categories were created, and mean arterial pressure (MAP) was calculated.
Finally, to mitigate the impact of feature scale discrepancies, a standard scaler was
applied, ensuring features have a zero mean and unit variance.

2.2 Classification algorithms

For the models under consideration, consider that the set of risk factors (input fea-
tures) are represented as X = (x1, x2, ..., xn) ∈ Rd×n, n is the number of instances
and each Xi represents input feature vector like age, cholesterol, etc. of d dimensions.
While each yi in Y = (y1, y2, ..., yn) ∈ R1×n indicates the cardiovascular risk fac-
tor (target/output feature), where 1 and 0 indicate “CVD risk” and “no CVD risk”
respectively.

2.2.1 Logistic regression

Logistic regression is a statistical method well-suited for binary classification problems,
such as predicting the presence or absence of cardiovascular disease (CVD) risk. It
models the probability of a target outcome (e.g., CVD risk) as a function of predictor
variables (e.g., blood pressure, cholesterol, smoking status). The goal is to predict the
probability of having CVD as shown in Eq. 1.

P (yi = 1|xi) =
1

1 + e−(β0+β1x1
1+β2x2

1+...+βdxd
1)

(1)
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where P (yi = 1|xi) is the probability of the outcome being positive (e.g., high CVD
risk) given the set of predictor variables xi = [x1

1, x
2
1, ..., x

d
1] ∈ Rd×1; β0 is the bias

term; β1, β2, ... βp are the coefficients associated with each feature.

2.2.2 Decision trees and boosting

Decision trees are hierarchical models that partition the feature space into distinct
regions through a series of recursive splits. At each node of the tree, a feature is
selected, and a threshold is determined to split the data into subsets that maximize
homogeneity with respect to the target outcome (e.g., CVD risk). This process con-
tinues until a stopping criterion is met (e.g., maximum tree depth, minimum samples
per leaf). Predictions are made based on the average outcome within the terminal leaf
node where a new data point lands. Within gradient boosting, decision trees serve
as weak learners. The gradient boosting algorithm sequentially trains decision trees
to minimize a differentiable loss function. Each new tree, hm(x), is fit to the resid-
uals (errors) of the previous model (as shown in Eq. 2) and the model is updated
as in the Eq. 3. Additionally, XGBoost also builds an ensemble of decision trees and
incorporates second-order Taylor approximations of the loss function to guide the
tree splits, resulting in more accurate and faster convergence. Additionally, it employs
regularization techniques to prevent overfitting as shown in Eq. 4.

ri = yi − Fm−1(xi) (2)

Fm(x) = Fm−1(x) + γhm(x) (3)

where ri represents the residual for individual i, yi is the true CVD outcome, and
Fm−1(xi) is the prediction from the previous iteration, and γ is the learning rate.

L =
∑
i

l(yi, ŷi) +
∑
k

Ω(fk) (4)

2.2.3 K nearest neighbors

In contrast to other machine learning algorithms, K-Nearest Neighbors (KNN) exhibits
a unique operational paradigm where KNN stores the training dataset, comprised of
feature vectors X and corresponding CVD risk labels Y . When presented with a new
data point, xq, the KNN prediction process entails the following steps: First, pairwise
distances between xq and each training example xi are calculated using Euclidean
distance (d(xq, xi) =

∑p
j=1(xqj − xij)

2) where p is the dimensionality of the feature
space. Next, the K nearest neighbors are identified, where the optimal value of K is
determined using elbow method (K = 11). Finally, KNN determines the CVD risk
prediction for xq based on the majority of its neighbors labels.

2.2.4 Gaussian Naive Bayes

This classifier operates on a probabilistic framework for CVD risk prediction. It
assumes features are conditionally independent given the class label. For a data xi,
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the probability of CVD risk is computed using Eq. 5.

P(y = 1|x) =
P (y = 1)

∏n
i=1 P (xi|y = 1)

P (x)
(5)

where P (y = 1) is the class prior, and features are assumed to follow a Gaussian
distribution within each class.

2.2.5 Meta-learning with SVM

A support vector machine (SVM) functions as the meta-learner within this framework.
Consider a set of base models denoted as M1,M2, ...Mn. Each model Mi generates
a predicted probability of CVD risk, denoted as Pi(x), for a given patient data point
xi. The SVM meta-learner finds a hyperplane (as shown in Eq. 6) that effectively
separates the space of base-model probability combinations associated with high-risk
cases from those associated with low-risk cases. The decision function is expressed as
F(P(x)) = wTP(x) + b. The final CVD risk prediction is determined based on the
sign of F(P(x)), where +1 is high risk and -1 is low or no risk.

minimize:
1

2
||w||2 + C

n∑
i=1

ξi

subject to: yi(w
TPi(x) + b) ≥ 1− ξi, ξi ≥ 0

(6)

where w is the weight vector, b is the bias term, C is a regularization parameter
controlling the trade-off between margin maximization and classification error, ξi rep-
resent slack variables allowing for some misclassification, and γ is a hyperparameter
that controls the width of the kernel. A smaller gamma makes the influence area of
points larger.

3 Experiments and results

3.1 Training and testing

Each model undergoes a careful hyperparameter tuning process to maximize potential
performance on unseen data. Grid search is used to explore a wide range of settings
for different aspects of each model (see Table 2 for detailed ranges). This includes the
penalty term for complex models (regularization in logistic regression), the number of
neighbors considered for predictions (K-nearest neighbors), parameters controlling the
complexity of decision trees, and the learning rates of gradient boosting and XGBoost.
For the SVM meta-learner, different kernel functions and flexibility control settings
are tested.

To prevent selection of settings that perform well specifically on the available data
due to chance, 10-fold cross-validation is employed. Models are trained on 9 folds and
tested on the remaining fold, with this process rotated through all the folds. This
strategy provides a more reliable estimate of how well each set of hyperparameter
settings will perform on new data. As shown in Table 2, the settings demonstrating
the best overall performance across cross-validation are selected to train the final
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models. The models are trained on high performance computing system. Evaluation
on test sets uses accuracy, precision, recall, F1-score, and area under the ROC curve
(AUC-ROC score) to measure performance of the trained models.

Table 1 Hyperparameter ranges explored in grid search for cardiovascular disease risk
prediction models.

Model Hyperparameter Range Explanation Chosen
Value

LR
Regularization (C) [0.001, 0.01, 0.1, 1,

10, 100]
Controls overfit-
ting/underfitting

0.1

Regularization
type

[L1, L2] L1 for feature
selection, L2 for
simpler models

L2

KNN
Number of
neighbors (k)

[1, 3, 5, 7, ..., 19] Number of nearest
neighbors to
consider when
classifying a new
data point

7

Distance metric [Euclidean,
Manhattan,
Cosine]

Choice depends on
feature
representation

Euclidean

GB/XGBoost
Number of trees [50, 100, 200, ...

500]
More trees more
complexity, but
potential
overfitting

200

Learning rate [0.01, 0.05, 0.1, 0.2] Controls the step
size for each tree’s
update

0.05

Maximum tree
depth

[2, 3, 4, 5, 6] Limits tree
complexity,
preventing
overfitting

4

DT
Maximum tree
depth

[2, 3, 4, 5, 6] Limits tree
complexity,
preventing
overfitting

5

Criterion [Gini, Entropy] Measures impurity
for splits

Gini

SVM
Kernel [Linear, RBF, Poly] Controls model

complexity
RBF

Regularization
parameter (C)

[0.01, 0.1, 1, 10,
100]

Controls overfit-
ting/underfitting

10

Gamma (for RBF
Kernel)

[0.001, 0.01, 0.1, 1,
5]

Controls the
influence area of
support vectors

0.1

GNB Prior probabilities (Often not tuned) The assumed prior
class probabilities

-
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3.2 Results and discussion

This section delves into the performance of the employed machine learning models
for cardiovascular disease (CVD) risk prediction. The key observations are presented
alongside a discussion of their implications and potential underlying factors.

The performance of the various classification models is summarized in Table 2
under four different feature selection (FS) and feature engineering (FE) scenarios. In
the baseline scenario (no FS, no FE) the models are trained directly on the original
dataset without any feature manipulation, however with standardization and outlier
removal; the second scenario follows FS and no FE, where only feature selection follows
from the scenario 1 based on the absolute correlation of more than 0.05 with the CVD
such as age, cholesterol, weight, glucose, systolic blood pressure, and diastolic blood
pressure; the third scenario extends the baseline by using feature engineering, while the

Table 2 Performance evaluation of various machine learning models for CVD risk prediction under
different feature selection (FS) and feature engineering (FE) scenarios.

Model FE FS Accuracy AUC-ROC Precision Recall F1-Score
LR - - 0.82 ± 0.03 0.85 ± 0.02 0.78 ± 0.04 0.80 ± 0.03 0.79 ± 0.03
KNN - - 0.80 ± 0.02 0.82 ± 0.03 0.75 ± 0.03 0.82 ± 0.02 0.78 ± 0.03
GNB - - 0.78 ± 0.03 0.80 ± 0.03 0.74 ± 0.04 0.80 ± 0.02 0.77 ± 0.03
DT - - 0.83 ± 0.03 0.87 ± 0.02 0.80 ± 0.02 0.81 ± 0.04 0.80 ± 0.03
GB - - 0.85 ± 0.02 0.89 ± 0.01 0.82 ± 0.04 0.83 ± 0.03 0.82 ± 0.02
XGBoost - - 0.86 ± 0.01 0.90 ± 0.02 0.83 ± 0.03 0.84 ± 0.04 0.84 ± 0.02
SVM-ML
(ours)

- - 0.88 ± 0.02 0.92 ± 0.01 0.85 ± 0.03 0.86 ± 0.02 0.85 ± 0.02

LR - ✓ 0.83 ± 0.02 0.86 ± 0.01 0.79 ± 0.03 0.81 ± 0.03 0.80 ± 0.02
KNN - ✓ 0.81 ± 0.03 0.83 ± 0.02 0.76 ± 0.02 0.83 ± 0.04 0.79 ± 0.03
GNB - ✓ 0.79 ± 0.04 0.81 ± 0.02 0.75 ± 0.03 0.81 ± 0.02 0.78 ± 0.04
DT - ✓ 0.84 ± 0.02 0.88 ± 0.02 0.81 ± 0.03 0.82 ± 0.02 0.81 ± 0.02
GB - ✓ 0.86 ± 0.02 0.90 ± 0.02 0.83 ± 0.02 0.84 ± 0.03 0.83 ± 0.02
XGBoost - ✓ 0.87 ± 0.01 0.91 ± 0.03 0.84 ± 0.03 0.85 ± 0.02 0.84 ± 0.03
SVM-ML
(ours)

- ✓ 0.89 ± 0.02 0.93 ± 0.01 0.86 ± 0.02 0.87 ± 0.03 0.86 ± 0.02

LR ✓ - 0.81 ± 0.02 0.84 ± 0.01 0.78 ± 0.03 0.80 ± 0.03 0.78 ± 0.02
KNN ✓ - 0.79 ± 0.02 0.82 ± 0.02 0.75 ± 0.03 0.82 ± 0.02 0.78 ± 0.03
GNB ✓ - 0.77 ± 0.01 0.81 ± 0.02 0.75 ± 0.03 0.80 ± 0.02 0.77 ± 0.03
DT ✓ - 0.84 ± 0.03 0.88 ± 0.02 0.80 ± 0.02 0.81 ± 0.04 0.80 ± 0.03
GB ✓ - 0.85 ± 0.02 0.89 ± 0.01 0.82 ± 0.04 0.83 ± 0.03 0.81 ± 0.01
XGBoost ✓ - 0.86 ± 0.01 0.90 ± 0.02 0.83 ± 0.03 0.84 ± 0.04 0.84 ± 0.02
SVM-
ML(ours)

✓ - 0.88 ± 0.01 0.92 ± 0.01 0.85 ± 0.03 0.86 ± 0.02 0.84 ± 0.01

LR ✓ ✓ 0.84 ± 0.02 0.87 ± 0.01 0.80 ± 0.03 0.82 ± 0.03 0.81 ± 0.02
KNN ✓ ✓ 0.82 ± 0.03 0.84 ± 0.02 0.77 ± 0.02 0.84 ± 0.04 0.80 ± 0.03
GNB ✓ ✓ 0.80 ± 0.04 0.82 ± 0.02 0.76 ± 0.03 0.82 ± 0.02 0.79 ± 0.04
DT ✓ ✓ 0.85 ± 0.02 0.89 ± 0.02 0.82 ± 0.03 0.83 ± 0.02 0.82 ± 0.02
GB ✓ ✓ 0.87 ± 0.02 0.91 ± 0.02 0.84 ± 0.02 0.85 ± 0.03 0.84 ± 0.02
XGBoost ✓ ✓ 0.88 ± 0.01 0.92 ± 0.03 0.85 ± 0.03 0.86 ± 0.02 0.85 ± 0.03
SVM-ML
(ours)

✓ ✓ 0.90 ± 0.02 0.94 ± 0.01 0.87 ± 0.02 0.88 ± 0.03 0.87 ± 0.02
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Fig. 2 ROC curves comparing the performance of multiple machine learning models for CVD risk
prediction across four different scenarios: a) baseline (without FE and FS), b) without FE and with
FS, c) with FE and without FS, and d) with FE and FS. (feature engineering (FE), feature selection
(FS))

fourth scenario also uses feature selection based on the criteria discussed in scenario
2 resulting in the input features such as MAP, age, cholesterol, BMI, and glucose.

The SVM meta-learner (SVM-ML) demonstrates consistent superiority across all
scenarios, as further visualized in Fig. 2 This highlights the strength of ensemble
approaches for this CVD risk prediction task. Notably, its robust performance even in
the baseline scenario (without FE or FS), achieving an accuracy of 0.88 ± 0.02 and
an AUC-ROC of 0.92 ± 0.01, suggests the ensemble’s capacity to effectively leverage
the strengths of the base models while mitigating their weaknesses. The gradient
boosting algorithms, XGBoost and Gradient boosting, also achieve promising results
closely trailing those of the SVM meta-learner. This success likely stems from their
inherent ability to model nonlinear relationships and complex interactions within the
data. The marginal difference between GB and XGBoost (e.g., only 0.01 difference in
baseline accuracy) suggests that for this particular dataset, the increased complexity
of XGBoost may not provide a significant advantage. Across all scenarios, Gaussian
Naive Bayes exhibits the lowest performance. This may be due to the violation of its
core assumption of feature independence. Real-world medical datasets, including those
for CVD risk prediction, often feature complex interdependencies.
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Feature selection alone leads to modest improvements in most cases (e.g., an accu-
racy increase from 0.88 ± 0.02 to 0.89 ± 0.02 for the SVM meta-learner), as evident in
Fig. 2. The observed gains for the SVM meta-learner is attributed to reduced redun-
dancy, facilitating the ensemble’s ability to discern subtle patterns related to CVD
risk by considering the most informative features. The impact of feature engineering
is more pronounced and model-dependent. Simpler models like logistic regression or
Gaussian Naive Bayes experience minimal or even slightly negative effects. Conversely,
tree-based models (DT, GB, and XGBoost) show improvements with accuracy gains
of up to 0.03. This emphasizes a potential synergy: feature engineering creates more
discriminative features, while feature selection aids in dimensionality reduction and
noise suppression (e.g., the SVM Meta-Learner achieves its highest accuracy of 0.90
± 0.02 in this scenario).

These results support the notion that well-designed features, potentially represent-
ing interaction effects, can significantly enhance the performance of models structured
to utilize such complexities. In light of this several avenues for future exploration
emerge from the current findings. Expanding the dataset size could potentially enhance
the generalizability of the models and allow for the investigation of more elaborate
ensemble architectures. Furthermore, delving into alternative feature engineering tech-
niques, such as feature transformation or dimensionality reduction, could potentially
improve model performance and interpretability. If biases are identified, incorporating
fairness metrics and techniques for mitigating bias during model training could be cru-
cial for ensuring responsible and trustworthy deployment of the models in real-world
applications.

4 Conclusion

This study demonstrates the dominance of the SVM based ensemble for cardiovascu-
lar disease (CVD) risk prediction, achieving the highest accuracy (0.90 ± 0.02) and
AUC-ROC (0.94 ± 0.01) when feature engineering and feature selection are combined.
Gradient boosting algorithms (GB, XGBoost) offer competitive performance, while
Gaussian Naive Bayes struggles due to the likely presence of feature dependencies.
The pronounced improvement of tree-based models with feature engineering under-
scores the importance of crafting features that represent interactions. These findings
suggest that the support vector machine as meta-learner is a robust for CVD risk
modelling, while careful feature engineering, guided by domain knowledge, is crucial
for maximizing performance.
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