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We discuss the {non-coding SNP, cell type, gene, trait} quadruplet predictions by CT-FM-SNP and cS2G 1 reported in Table 1.
For the asthma candidate causal variant rs479844, CT-FM-SNP inferred CD4+ T cells as a high confidence causal cell type, and cS2G inferred OVOL1 as a target gene. While asthma risk variants linked to OVOL1 were previously identified by GWASs 2,3, the role of this gene was mostly described for eczema: OVOL1 encodes a putative zinc finger domain containing a transcription factor regulating the expression of FLG in atopic dermatitis and keratinocytes 4,5. Our predictions are consistent with the observation that OVOL1 regulates the levels and the relative abundance of CD4+ T cells 6,7
For the chronotype candidate causal variant rs13081924, CT-FM-SNP inferred fetal excitatory neurons as a high confidence causal cell type, and cS2G inferred WNT7A as a target gene. WNT7A is a member of the conserved Wnt signaling pathway previously implicated in the regulation of sleep cycles 8,9. It is also a key regulator of brain development 10 and specifically regulates the number and strength of excitatory synapses (consistent with CT-FM-SNP result), with a less pronounced role in inhibitory neurons 11. 
For the lymphocyte count candidate causal variant rs35592432, CT-FM-SNP inferred CD8+ T cells as a high confidence causal cell type, and cS2G inferred FOXP1 as a target gene. FOXP1 is an ubiquitously expressed gene implicated in various biological processes including development and regulation of various immune cells 12,13. It is also implicated in T cells regulation, in particular by regulating CD8+ T cells quiescence 14 (consistent with CT-FM-SNP result). Additionally, a more pronounced impact of FOXP1 deletion on CD8+ T cells rather than CD4+ T cells was reported 15,16.
For the neuroticism candidate causal variant rs34272688, CT-FM-SNP inferred fetal excitatory neurons as a high confidence causal cell type, and cS2G inferred ATAD2B as a target gene. Association between ATAD2B variants and neuroticism was previously reported in a GWAS 17, and the transient expression of ATAD2B was reported in developing neurons 18 (consistent with CT-FM-SNP result).
For the platelet count and platelet volume candidate causal variant rs117672662, CT-FM-SNP inferred megakaryocytes as a high confidence causal cell type, and cS2G inferred ACTN1 as a target gene. ACTN1 is mainly expressed in megakaryocytes and mature platelets19 and ACTN1 mutations were previously implicated in macrothrombocytopenia - a rare condition associated with lower platelet counts and abnormally large platelets 20 (consistent with CT-FM-SNP result). 
Finally, for the platelet volume candidate causal variant rs998908, CT-FM-SNP inferred megakaryocytes as a high confidence causal cell type, and cS2G inferred CD9 as a target gene. CD9 belongs to a family of tetraspanins and is involved in megakaryocyte differentiation 21,22 (consistent with CT-FM-SNP result).
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Supplementary Figure 1. Overview of CTS SNP-annotations used in this study. We report the number of CTS SNP-annotations within each biological group. A total of 927 CTS SNP-annotations were retrieved from ENCODE4 (653), ABC model (52) and CATlas (222) and assigned to one of the nine biological groups. 
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Supplementary Figure 2. Preliminary simulations to assess CT-FM power and accuracy as a function of S-LDSC maximum Z-score. We report the power and accuracy of CT-FM in simulations with one causal cell type and different sample sizes, when considering all simulations (blue), simulations where S-LDSC maximum Z-score is > 4 across all the CTS SNP-annotations (green), and simulations where S-LDSC maximum Z-score is ≤ 4 across all the CTS SNP-annotations (red). We report the mean PIP of the causal SNP-annotation(s), the proportion of causal SNP-annotations identified as a candidate causal cell type (candidate causal cell type sensitivity), and the proportion of SNP-annotations identified as a highly-confident causal cell type that are truly causal (highly-confident causal cell type precision). For each scenario, we performed 500 simulations. Error bars represent 95% confidence intervals. We note that these preliminary simulations were performed as described in the Methods section, except that we did not rescaled positive per-SNP h2 after setting negative expected per-SNP h2; indeed, setting those values to 0 led to h2 enrichment lower than observed in the height GWAS, thus leading to many simulations with an S-LDSC maximum Z-score is ≤ 4 (unlike in main simulations) (416, 159, and 114 in simulations with N = 100K, 350K, and 1M, respectively). We observed that restricting CT-FM analyses to simulations where S-LDSC maximum Z-score is > 4 provides fairly high power and accuracy.
Because expected per-SNP h2 can be negative, we initially set these values to 0, and rescaled positive per-SNP h2 so that expected h2 enrichment of each annotation in the model was similar to the ones observed on the height GWAS.
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Supplementary Figure 3. Correlation between the selected and the causal cell type in unsuccessful CT-FM iterations. For simulations with 1 causal cell type and 350K sample size, we report 67/500 iterations in which CT-FM did not attribute the highest PIP to the causal osteoblast CTS-SNP annotation, but still selected a highly correlated cell type (mean R = 0.56).
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Supplementary Figure 4. Conditional S-LDSC analysis for five blood traits. We report the initial S-LDSC Z-scores of the 927 CTS SNP-annotations used by CT-FM under iteration 0. Candidate causal CTS SNP-annotations (i.e., assigned to a CS by CT-FM) are indicated in red. To validate that the CSs detected by CT-FM captured most of the conditionally independent causal signal, we reran S-LDSC conditioned on the SNP-annotations in CT-FM CSs (and the background annotations) on the remaining CTS SNP-annotations (i.e., not assigned to a CS by CT-FM). We report the new S-LDSC Z-scores under iteration 1. For 4 out of the analyzed 5 traits, we observed that none of the remaining CTS SNP-annotations had a  Z-score > 4, confirming that no CTS conditional effect remains in the data after identifying CS with CT-FM. For platelet count, 2 of the remaining 919 CTS SNP annotations presented a  Z-score > 4 after conditional S-LDSC analysis, corresponding to bone marrow myeloid progenitors (Z = 4.02, similar CTS SNP annotations were previously identified in a CT-FM CS) and fetal megakaryocytes (Z = 4.65), for which CT-FM-SNP assigned a lot of candidate SNPs (see main text). The dashed horizontal line represents S-LDSC   Z-score = 4.
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Supplementary Figure 5. CT-FM-SNP results in five blood cell traits when restricting analyses to 282 SNPs with Polyfun SNP-PIP > 0.95. (left) We report the number of candidate causal SNPs that were linked to at least one causal cell type by CT-FM-SNP. CT-FM-SNP results for all candidate variants are reported in Supplementary Table 7. (right) We report the number of high confidence {non-coding SNP, cell type, trait} triplets inferred by CT-FM-SNP where the cell type is consistent with CT-FM results. We highlight triplets where the causal CTS SNP-annotation was also found in CT-FM CSs (green), triplets where the causal CTS SNP-annotation was not found in CT-FM CSs, but corresponds to the same cell type (blue), and triplets where the causal CTS SNP-annotation was not found in CT-FM CSs (grey). Overall, we observed high consistently between CT-FM-SNP analyses performed on candidate SNPs with SNP-PIP > 0.95 (main Fig. 3) and SNP-PIP > 0.95, demonstrating that conclusions from our main analyses are robust to the imperfect selection of candidate causal SNPs. RBC: red blood cell. 
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Supplementary Figure 6. CT-FM results when using CTS SNP-annotations from a single source. We report CT-FM results (number of credible sets and number of high confidence PIP>0.5 causal CTS SNP-annotations) obtained when using exclusively ABC (52 annotations), CATlas (222 annotations) and ENCODE4 (653 annotations) datasets. We identified 66, 57 and 19 CSs and 47, 52 and 19 high-confidence causal cell types for ENCODE4, CATlas and ABC sources respectively, which were consistent with main CT-FM results (Supplementary Fig. 6 and Supplementary Table 17). These results demonstrate the benefits of leveraging CTS SNP-annotations from different sources.
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Supplementary Figure 7. S-LDSC conditional analyses in schizophrenia. We report S-LDSC Z-scores for each of the 927 CTS SNP-annotations in analyses were each SNP-annotation were analyzed independently (top), were conditioned on SNP-annotations from brain CT-FM CSs (middle), and were conditioned on SNP-annotation from the hepatocyte CT-FM CS (bottom). The dashed horizontal line represents S-LDSC   Z-score = 4. We observed 50 blood/immune SNP-annotations with an S-LDSC Z-score > 4 in the unconditional S-LDSC analyses. After conditioning to the hepatocyte SNP-annotation, no more blood/immune SNP-annotations had an S-LDSC Z-score > 4, suggesting a link between liver, immune system, and schizophrenia risk. We note that after conditioning to the brain SNP-annotations,  only 2 blood/immune SNP-annotations had an S-LDSC Z-score > 4, confirming the link between brain, immune system, and schizophrenia risk.
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Supplementary Figure 8. CT-FM results in a second rheumatoid arthritis GWAS 23. CT-FM identified one credible set mostly driven by T cells-related CTS SNP-annotations (max PIP = 0.31 for CD8+ T cells). Of note, a second credible set was identified containing B cell-related CTS SNP-annotations (max PIP = 0.27 for naive B cells, data not shown) but was excluded from the analysis during the quality control step (see Methods).
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Supplementary Figure 9. Results of CT-FM-SNP for UK Biobank traits with 2 CT-FM credible sets. For 7 traits with 2 CT-FM credible sets (rows), we indicate the proportion of SNPs assigned to causal CTS SNP-annotations of CT-FM CS1 (blue), CT-FM CS2 (green), both CT-FM CS1 and CS2 (purple) and the proportion of SNPs assigned to different CTS SNP-annotations not found in CT-FM CSs. 61% of SNPs were assigned to CTS SNP-annotations previously identified by CT-FM across 7 traits. The height trait presented the highest number of SNPs assigned to different CTS SNP-annotations not found in CT-FM CSs (194 / 417 SNPs). Nearly half of these SNPs (84/194, 43%) were assigned to CTS SNP-annotations corresponding to fibroblasts - a candidate causal cell type identified by CT-FM (CS2) with a different CTS SNP-annotation.
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Supplementary Figure 10. SNP-heritability (h2) and proportion of SNPs assigned to CT-FM CS1 and CS2 for 7 UK Biobank traits. We report the fraction of h2 explained by SNPs in the intersection of CT-FM CSs by the h2 explained by the SNPs in the union of CT-FM CS annotations (pink bars) and the proportion of SNPs analyzed by CT-FM-SNP assigned to both CT-FM CSs (red bars). Numerical results are reported in Supplementary Table 25. We observed consistent results, validating that CT-FM-SNP does not overestimate the number of SNPs assigned to at least two CSs. 
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Supplementary Figure 11. Comparison of KL divergence coefficients with maximum S-LDSC Z-score observed in a SuSiE CS. We report the results of a permissive CT-FM analysis without any S-LDSC Z-score filtering for 47 UK Biobank traits. We observed a strong correlation (R2=0.79) between the KL divergence coefficient (y-axis) and the maximum S-LDSC Z-score observed in a SuSiE CS (x-axis). The threshold of KL coefficient ≥ 3 (dashed line) was used in this study as it optimizes the selection of well-powered credible sets.
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Supplementary Figure 12. Comparison of CT-FM results with including/excluding CTS SNP-annotations with a negative S-LDSC Z- score. We observed nearly identical CT-FM PIP values (correlation R2 = 0.99) and CT-FM credible sets (22/22 CTS annotations identified in CS by both methods).
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Supplementary Figure 13. Concordance between expected and observed Z-scores across 63 GWASs. We report the correlation coefficients r2 between observed and expected Z- sScores calculated by SuSiE-RSS kriging approach 24,25. We observed a high concordance between expected and observed Z-scores across traits (mean r2 = 0.95 across the 63 GWASs) indicating reliability of CT-FM fine-mapping results.
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