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Abstract

Background

The potential value of large scale datasets is constrained by the ubiquitous problem of

missing data, arising in either a structured or unstructured fashion. When imputation

methods are proposed for large scale data, one limitation is the simplicity of existing

evaluation methods. Specifically, most evaluations create synthetic data with only a

simple, unstructured missing data mechanism which does not resemble the missing

data patterns found in real data. For example, in the UK Biobank missing data

tends to appear in blocks, because non-participation in one of the sub-studies leads to

missingness for all sub-study variables.

Methods

We propose a method for generating mixed type missing data mimicking key properties

of a given real large scale epidemiological data set with both structured and unstruc-

tured missingness while accounting for informative missingness. The process involves

identifying sub-studies using hierarchical clustering of missingness patterns and mod-

elling the dependence of inter-variable correlation and co-missingness patterns .
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Results

On the UK Biobank brain imaging cohort, we identify several large blocks of miss-

ing data. We demonstrate the use of our method for evaluating several imputation

methods, showing modest accuracy of imputation overall, with iterative imputation

having the best performance. We compare our evaluations based on synthetic data to

an exemplar study which includes variable selection on a single real imputed dataset,

finding only small differences between the imputation methods though with iterative

imputation leading to the most informative selection of variables.

Conclusions

We have created a framework for simulating large scale data with that captures the

complexities of the inter-variable dependence as well as structured and unstructured

informative missingness. Evaluations using this framework highlight the immense chal-

lenge of data imputation in this setting and the need for improved missing data meth-

ods.
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1 Background

Missing data is common in epidemiological and health data research and presents formidable

challenges for many analytical approaches. The causes of missing data vary, from being

inherent to the study design, to elective non-participation, or simply faults in measurement.

Much work has therefore been devoted to evaluating the performance of methods for handling

missing data. The most common approaches to comparing imputation methods include

simulating data and inducing missingness using a priori chosen mechanisms1,2. Alternatively,

artificial missingness is induced on real, complete data3–5 or real missingness patterns are

imposed on simulated data6. Simulation studies of this kind usually rely on quite restrictive

assumptions that might not be reflective of large scale epidemiological cohorts such as UK

Biobank (UKB). For example, while some studies induce missingness in an unstructured

manner1,4, in UKB missing data caused by non-participation in a sub-study/questionnaire

comes in “blocks”. Specifically, if a subset of participants do not participate in an extension

of the core study, then all of these subjects will have missing entries for the variables of this

extension, and (when the rows and columns of the subjects-by-variables matrix are suitably

reordered) this will form a solid block of missing data. Since UKB and similar datasets

consist of many different sub-studies and questionnaires, this is a crucial feature to consider

when evaluating the performance of imputation methods.

While there has been work done on the evaluation of existing methods on data with

structured missingness and the development of new methods for handling such data, it has

been common to use a non data-driven method for inducing structured missingness2,7,8 or

use real missingness patterns imposed on simulated data6. Assuming that the structured

missingness is Missing Completely at Random (MCAR) is especially problematic in the

case where it is created by non-participation, since we know that participants often are

disproportionately healthy9, meaning that the data is not likely to be MCAR. Our aim is

therefore to define a method of generating synthetic data which has the same properties as

a given data set. We want the pattern to satisfy the following three criteria:

1. There is structured missingness10, blocks of missingness caused by non-participation in
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sub-studies, as well as unstructured missingness that is not in blocks and is attributable

to any other cause.

2. Missingness is informative in the sense of MAR (Missing at Random), where there is

a relationship between missingness in a given variable and the observed elements of

other variables.

3. There is an association between inter-variable correlation and inter-variable missingness

similarity, typically where tightly correlated variables are more likely to be jointly

missing.

With our framework for simulating such synthetic data, we evaluate the performance of

several imputation methods. We are motivated by associations between the brain imaging

variables with health, demographic, behavioural and lifestyle variables in UK Biobank. Thus

we consider the subset of ≈ 40 000 subjects with imaging derived phenotype (IDP) data,

and a collection of ≈ 20 000 non-Imaging Derived Phenotypes (nIDPs) variables; these nIDP

variables are a mixture of continuous and binary variables (some of the binary variables are

1-hot encoding of categorical variables).

2 Methods

2.1 Terminology

Let n and d be the number of subjects and variables respectively, X be our n × d dataset

and M be the n× d missingness matrix where Mij = 1 if variable j is missing for subject i

and Mij = 0 if it is not missing. The following definitions and notation are central to our

work:

1. Variable-wise missingness pattern. For any variable j = 1, 2, ..., d, the variable-

wise missingness pattern for variable j is mv
j = (M1j,M2j, ...,Mnj) ∈ {0, 1}n.

2. Subject-wise missingness pattern. For any subject i = 1, 2, ..., n, the subject-wise

missingness pattern for subject i is ms
i = (Mi1,Mi2, ...,Mid) ∈ {0, 1}d.
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3. Variable-wise missingness distance. For any two variables j and j′, the variable-

wise missingness distance between them is the proportion of discordant missingness

indicators

Dv
jj′ =

1

n

n∑
k=1

1 {Mkj ̸= Mkj′} ,

where Dv = Dv
jj′ is the d× d variable-wise missingness distance matrix.

4. Subject-wise missingness distance. For any two subjects i and i′ the subject-wise

missingness distance between them is likewise

Ds
ii′ =

1

d

d∑
k=1

1 {Mik ̸= Mi′k} ,

where Ds is the n× n subject-wise missingness distance matrix.

5. Structured missingness. We call missingness that is caused by non-participation

in a sub-study/questionnaire structured missingness, resulting in a subset of subjects

having missing data for a set of variables. This is also sometimes called block-wise

missingness, as when subjects and variables are suitably reordered, this will result in

solid blocks of missing data in the data matrix.

6. Unstructured missingness. We call missingness that is not caused by non-participation

in a study/questionnaire unstructured missingness. This type of missingness will not

induce any sort of blocks of missingness.

We now define the stochastic mechanisms that can give rise to missing data. Let x be a d-

dimensional random vector drawn from the same distribution as the data in our data set and

m be its corresponding subject-wise missingness pattern. Let further xobs(m) and xmiss(m)

be the observed and unobserved parts of the random vector x respectively. We follow the

terms in Rubin (1976) for different types of missingness:

• Missing Completely at Random (MCAR)

P(m|x) = P(m).

This means that the missingness mask is completely independent from underlying data.
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• Missing at Random (MAR)

P(m|x) = P(m|xobs(m)).

This means that there exists some dependence between the missingness mask and the

underlying data, but that this relationship can be described using only observed data,

i.e., the relationship between m and x is determined exclusively by the observed part

xobs(m). For example, this can mean that there exists a group of variables with no

missingness which determine the missingness mask m.

• Missing Not at Random (MNAR)

P(m|x) ̸= P(m|xobs(m)).

For this type of missingness, the relationship between the data and the missingness

requires knowledge of underlying data. This is the most difficult setting to handle,

assuming no prior knowledge of the mechanism by which missingness is induced, since

it has been shown that for any MNAR model explaining missing data in a given data

set, there exists an MAR model with equal evidence11. In other words, there can be

no theoretical guarantees of correctness for MNAR models explaining missing data

barring direct knowledge of the missingness mechanism.

Characterising types of missingness is crucial to our work since many methods of han-

dling missing data, most notably Multivariate Imputation by Chained Equations (MICE),

have theoretical guarantees under MCAR and MAR12, while MNAR requires additional

assumptions13.

2.2 Parameters of the Generative Model

We assume that our data consists of C different sub-studies, where study c = 0 is assumed

to be a baseline study with no missingness while studies c = 1, ..., C − 1 are follow up

substudies with both structured and unstructured missingness. The following parameters

define our generative model:
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• {ρ}c,c′ , the distribution of between-variable correlations for all pairs of clusters c, c′.

We assume a mixed data generative model14, where data arise from a multivariate

normal distribution with zero means and unit variances: for continuous variables these

values are directly observed, while for binary variables the normal variate is latent and

the data is obtained by thresholding continuous variables to 0/1. Therefore, {ρ}c,c′

represents the correlation distribution of the underlying data prior to thresholding.

• πc the rate of structured missingness for cluster c.

• (αc, βc), parameters governing the rate of unstructured missingness for each variable.

We assume that the rate of unstructured missingness pusj is drawn from Beta(αc, βc) if

feature j belongs to sub-study c.

• Σcore. We assume that dcore variables from the baseline study c = 0 determine all

structured missingness through a logistic model. Σcore is the correlation matrix of

these core variables. The core variables are assumed to all be continuous.

• AUCc, the Area Under the Curve (AUC) score of the logistic model determining struc-

tured missingness for sub-study c.

2.3 Estimating Parameters

We estimate the parameters of the model using the following procedure, also detailed in the

flowchart in Figure 1.

1. Our C sub-studies are identified using hierarchical agglomerative complete linkage

clustering15.

2. The densities {ρ}c,c′ are estimated using a histogram for each pair of clusters c, c′.

3. We define a subject i to be structurally missing for a sub-study c if at least 90% of the

variables from c are missing for subject i. This will give us the vectors bs
c ∈ {0, 1}n

where bs
c,i = 1 if subject i is structurally missing for sub-study c. This result also
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Figure 1: Flow chart of the data analysis pipeline.

directly gives us πc, i.e., the probability of a subject having structured missingness for

cluster c.

4. Having identified all structured missingness, we can estimate (αc, βc) using the method

of moments on the remaining, unstructured missingness.

5. We use LASSO Logistic Regression (LASSO-LR)16 to simultaneously identify the core

variables that determine structured missingness and AUCc, by fitting C − 1 penalised

logistic regression models that use the baseline study data X0 as predictors and the

subject-wise structured missingness vectors bs
c as outcomes. Specifically, AUCc is esti-

mated using 5-fold cross validation. Note that the core variables are cluster specific and
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may or may not overlap for different clusters. We then estimate Σcore, the correlation

matrix of the core variables for all substudies. The penalty term λc for each LASSO

models can be chosen in multiple appropriate ways (see subsection 2.4.1).

2.4 Generating Synthetic Data
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Figure 2: Flow chart of the synthetic data generation pipeline.

The data is generated using a step-wise procedure as seen in Figure 2. Since all continuous

variables have unit variance correlation matrices and covariance matrices of continuous data

are the same.

1. Using Σcore, we simulate the cluster specific core variables {X∗
core}c for clusters c =

1, ..., C − 1, by drawing the full core variable data matrix X∗
core from N (0,Σcore).

2. Using a binary search procedure, we determine intercepts and coefficients of C − 1

logistic models determining structured missingness, with {X∗
core}c as covariates, such

that the model’s AUC score and rate of positive cases will match AUCc and πc. All

9

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 17, 2024. ; https://doi.org/10.1101/2024.04.23.24306030doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.23.24306030


the coefficients of the logistic models are assumed to be equal. Using these models, we

generate synthetic subject-wise structured missingness vectors bs∗
c .

3. We generate the rates of unstructured missingness pus∗j by drawing them independently

from Beta(αc, βc) where variable j is in sub-study c. Unstructured missingness is

assumed to be MCAR and is induced for each subject i and variable j with probability

pus∗j . By combining the generated structured and unstructured missingness, we obtain

an n× d synthetic missingness indicator matrix M∗.

4. We simulate the full d × d correlation matrix Σ∗ by drawing its entries from {ρ}c,c′

and, if necessary, projecting it to the nearest positive definite correlation matrix using

Higham’s algorithm17.

5. Having the complete correlation matrix, we generate the rest of the data X∗, condi-

tioned on the already simulated core variable data X∗
core. To allow for binary variables,

we threshold a subset of variables to become binary, corresponding to the same number

of binary variables in each cluster.

6. Finally the synthetic missingness mask M∗ is imposed upon X∗ to obtain the corre-

sponding synthetic data set with missingness X∗
miss.

This procedure generates synthetic datasets which satisfy the key criteria outlined in the

introduction. Crucially, we have access to the true mean vector and covariance matrix, as

well as the underlying data obscured by missingness.

2.4.1 Calibrating the Predictability of Missingness

The choice of penalty term λc for each LASSO-LR model that predicts structured missingness

can most easily be made by selecting the value of λc which minimises validation loss. This is,

however, not always the option which is most faithful to the assumptions of our generative

model. Since our generative model assumes that all core variables have equal importance in

predicting structured missingness, we want to choose a value of λc which will minimise the
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number of core variables of low predictive importance, while having a validation loss that is

close to that of the optimal value. This is an inevitably arbitrary feature of our generative

model and we choose to select a reasonable value of λc through trial and error.

2.5 Simulation Study

In order to demonstrate the use of our generative model, we will conduct a simulation study

on synthetic data mimicking the UK Biobank Brain nIDPs to evaluate the performance of

three commonly used imputation methods on this data set. Our study will test the accu-

racy of imputation as measured by Mean Squared Error (MSE) for continuous variables and

Balanced Accuracy (BA) for binary variables over B = 20 synthetically generated datasets.

Additionally, to illustrate the difficulty of imputing data with structured missingness, we

will perform the same simulation study on copies of the synthetic datasets where missing-

ness has been induced in an MCAR and completely unstructured manner. The data in each

sub-study is set to be missing using independent Bernoulli variables with probability equal

to the total rate of missingness for the sub-study.

The first imputation method is mean imputation, which will serve as our benchmark method.

The second is the matrix completion method SoftImpute18, which assumes that there exists

a low rank approximation of the data set. This method has a tuning parameter, the value

of the low rank, which we vary as 5%, 15% and 30% of the full matrix rank. Both the mean

imputation and SoftImpute methods will be binarised to impute binary variables using 0.5

as the threshold, so imputed values greater than or equal to 0.5 will be transformed to 1,

while the rest will be transformed to 0. The last method is called iterative imputation19 or

ICE, Iterative Imputation by Chained Equations3, which uses the same iterative procedure

as MICE, but does not include randomness in the imputed values and only creates a single

imputed data set. By testing the accuracy of iterative imputation we are effectively evaluat-

ing the accuracy of the “signal” component of the MICE imputation method. Additionally,

MICE is impractical to use in this high dimensional setting with respect to memory use and

computational time since it requires a large number of multiply imputed data sets. We chose
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to impute continuous values using Bayesian Ridge Regression19 and binary values using Lo-

gistic Regression with a Ridge penalty. In high dimensional setting, iterative imputation

requires us to choose a subset of k << d variables that will be used to impute each variable

j. These variables are normally set to be the k variables with highest absolute correlation

with j 19–21, or select the k variables with the most favorable missingness patterns20; all else

being equal, we favour variables for imputing j which are observed the most often in rows

where j is missing and therefore select variables using the rows of the matrix

V = MT (1n×d −M), (1)

where Vjj′ is the number of times j′ is observed when j is missing.

We propose a third selection method which utilises correlation and missingness jointly, while

being applicable to mixed data. It calculates a score Sjj′ which is proportional to the

maximum expected reduction imputation error (MSE for continuous and misclassification

rate for binary variables) under the assumption of MCAR and under the generative model

described in14 for joint continuous and binary data, i.e., an underlying multivariate normal

distribution with thresholding for binary variables.

• j and j′ are both continuous

Sjj′ = Vjj′ρ
2,

where ρ is the Pearson correlation between variables j and j′.

• j is continuous and j′ is binary

Sjj′ = Vjj′ρ
2,

where ρ is the Pearson correlation between variables j and j′.

• j is binary and j′ is continuous

Sjj′ = Vjj′

[∫ D/ρb

−∞
ϕ(x′)Φ

(
D − ρbx

′√
1− ρ2b

)
dx′+

12
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∫ ∞

D/ρb

ϕ(x′)

(
1− Φ

(
D − ρbx

′√
1− ρ2b

))
dx′ −max {p, 1− p}

]
if ρb > 0 and

Sjj′ = Vjj′

[∫ D/ρb

−∞
ϕ(x′)

(
1− Φ

(
D − ρbx

′√
1− ρ2b

))
dx′+

∫ ∞

D/ρb

ϕ(x′)Φ

(
D − ρbx

′√
1− ρ2b

)
dx′ −max {p, 1− p}

]
if ρb < 0, where ϕ and Φ are the the probability density function and cumulative

distribution function of the standard-normal distribution, ρ is the Pearson correlation

between variables j and j′, p is the rate of positive cases for variable j, D = Φ−1(p)

and

ρb = ρ

√
p(1− p)

ϕ(D)
.

D is the threshold of the underlying standard-normal variable that determines the

binary value of j and ρb is the correlation between this underlying variable and j′. The

reduction in misclassification loss can be calculated directly using these quantities by

assuming that we predict 0/1 depending on whether the median of the latent variable

conditioned on the value of j′ is greater than D or not.

• j and j′ are both binary

Sjj′ = Vjj′
[
p′ max {P(x = 1|x′ = 1), 1− P(x = 1|x′ = 1)}+

(1− p′)max {P(x = 1|x′ = 0), 1− P(x = 1|x′ = 0)} −max {p, 1− p}
]
,

where p and p′ are the rates of positive cases for p and p′ respectively. Here, the

reduction in misclassification loss is calculated directly from the 2 × 2 contingency

table of j and j′, since we know the most likely outcome of variable j given the value

of j′. This contingency table is calculated using p, p′ and ρ.

A formal proof of these results can be found in the supplementary material. We will vary

the tuning parameter k to be 10, 50 and 150.
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2.6 Illustrative Example: Variable Selection for Predicting Total

Grey Matter Volume

In order to demonstrate the validity of the conclusions drawn from our simulation study, we

apply our imputation methods to an analytical task on real data and see if there is agreement

between the results of the analysis and the conclusions drawn from the simulation study. We

chose the task of selecting 15 nIDPs for an Ordinary Least Squares (OLS) model predict-

ing log-transformed normalised total grey matter volume. The total pool to select from is

≈ 15 000 nIDPs (nIDPs with 0 variance or missingness above 40% were excluded). Impu-

tation is used here as a pre-processing step and LASSO-LR is used for variable selection.

The outcome, i.e., the 15 variables that are selected will vary depending on the imputation

method. We compare four different approaches: using only complete varibles, mean impu-

tation, SoftImpute and iterative imputation. The tuning parameters for SoftImpute and

iterative imputation are chosen based on their performance in the simulation study. The

four approaches are evaluated by the relevance of the 15 selected variables, as measured by

the pooled R2 estimates of each OLS model. To ensure fair assessment of the R2 scores

irrespective of missingness in the selected variables, we use the mice package in R13 to create

m = 100 multiply imputed data sets of all selected variables and pool the R2 scores and

their standard error estimates for each OLS model according to “Rubin’s rules”22. We use

the following estimator of this standard error23:

se(R2) =

√
4R2(1−R2)2(n− p− 1)2

(n2 − 1)(n+ 3)
,

where n is the number of observations and p the number of variables.

We also ensure that the baseline variables age squared, sex and Townsend deprivation

index are included in the OLS model as potential confounding variables.
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3 Results

3.1 Analysis Pipeline

Figure 3: Dendrogram of the 100 last agglomerations in the hierarchical clustering of nIDPs

by variable-wise missingness pattern, where distance between merged clusters (y-axis) is the

maximal variable-wise missingness distance between agglomerated clusters. We determine

that C = 4 clusters/substudies is an appropriate choice for illustrating the workings of

our method since it gives us reasonably sized clusters with a high between-cluster distance

relative to within-cluster distance.

As seen in subsection 2.3, we need to select a value for the number of substudies/clusters

C as a parameter of our analysis pipeline. This choice is jointly driven by the data itself
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Table 1: Table of cluster sizes.

Cluster # of Binary Variables # of Continuous Variables Total # of Variables

c = 0 13458 1227 14685

c = 1 371 6434 6805

c = 2 131 2012 2143

c = 3 3 235 238

as well as the need to select a small number of clusters/substudies to allow us to clearly

illustrate our methodology. Figure 3 shows the dendrogram of the 100 last agglomerations

in the hierarchical clustering of nIDPs by variable-wise missingness pattern. It can be seen

from this dendrogram that C = 4 will give us clusters which have a high between-cluster

missingness distance relative to within-cluster distance. The choice of C = 4 clusters also

gives us reasonably sized clusters for our analysis, as seen in Table 1.

The share of each nIDP type by cluster is shown in Figure 4. Cluster c = 0 contains almost

exclusively health and medical related nIDPs, cluster c = 2 contains mostly lifestyle and

environment related variables, cluster c = 3 almost exclusively contains cognitive phenotype

variables and cluster c = 1 contains a mix of the remaining types of variables. This results

shows that nIDPs of the same type tend to have similar variable-wise missingness patterns.

Figure 5 plots the histograms of the proportions of variable-wise missing data, i.e., frac-

tion of subjects missing for each variable in a cluster. As we can see, the cluster c = 0, the

cluster that contains mostly health- and medical related variables, has almost no missingness.

This is an expected result, as health records usually either contain too much missingness to

be included in the first place or they have very little missingness as absence of data indi-

cates abscence of recorded disease or diagnosis. Clusters c = 2, 3 have intermediate rates of

missingness with cluster c = 3 having lower rates of missingness as well as a lower variability

of rates of missingness, while c = 1 has very high rates of missingness. For this reason, we

will exclude cluster c = 1 from our generative model, as its variables have too high rates of

missingness to be interesting to use for imputation.
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Figure 4: Bar plots detailing the proportion of nIDP variable types in each cluster. Cluster

c = 0 contains almost exclusively health and medical related nIDPs, cluster c = 2 contains

mostly lifestyle and environment related variables, cluster c = 3 almost exclusively contains

cognitive phenotype variables and cluster c = 1 contains a mix of the remaining types

of variables. This shows that nIDPs of the same type tend to have similar variable-wise

missingness patterns.

Figure 6 displays the subject-wise missingness histograms, the proportion of cluster-c

variables missing for a given subject. The red line in each plot signifies the 90% threshold for

structured missingness, meaning that subjects for which 90% or more of the features assigned

to cluster c are missing are considered to have structured missingness for the variables in

cluster c. We can see that cluster c = 3 has a much clearer separation between structured

and unstructured missingness, whereas it is less clear for clusters c = 1, 2, likely due to higher
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Table 2: Table detailing the validation AUC for predicting structured missingness using

variables from cluster c = 0 and number of binary and continuous variables selected using

LASSO Logistic Regression (LASSO-LR) for optimal values of λc.

Cluster AUCc # of Binary Variables # of Continuous Variables dcore,c

c = 2 0.72 48 575 623

c = 3 0.90 271 948 1219

Table 3: Table detailing the validation AUC for predicting structured missingness using

variables from cluster c = 0 and number of binary and continuous variables selected using

LASSO logistic regression using λc = exp(6) for both clusters c = 2, 3.

Cluster AUCc # of Binary Variables # of Continuous Variables dcore,c

c = 2 0.71 5 62 67

c = 3 0.86 5 78 83

rates of unstructured missingness as well as our approximation of C = 4 leading to different

clusters being grouped together.

As discussed in subsection 2.4.1, the penalty terms λc need to be carefully chosen to

not violate the assumptions of our generative model. Manual tuning arrived at a value

of λc = exp(6) for both clusters c = 2, 3 which minimised both the total number of core

variables as well as the proportion of binary variables, while having validation AUC scores

close to those of the optimal values, as shown in Tables 2 and 3.

The final results of the data analysis are summarised in Table 4. These results indicate

that clusters c = 2, 3 have similar rates of structured missingness, while cluster c = 2 has a

much higher rate of unstructured missingness, as indicated by the values of αc and βc. It is

also apparent that the variables in cluster c = 3 have a more informative type of structured

missingness as we can see by the higher value of AUCc.
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Table 4: Table of results summarising the data analysis step of the method. These results

indicate that clusters c = 2, 3 have similar rates of structured missingness, while cluster

c = 2 has a much higher rate of unstructured missingness, as indicated by the values of αc

and βc. It is also apparent that the variables in cluster c = 3 have a more informative type

of structured missingness as we can see by the values of AUCc.

Cluster AUCc dcore,c πc αc βc

c = 2 0.71 67 0.26 6.0 4.6

c = 3 0.86 83 0.29 0.44 4.4

3.2 Simulation Study

Figure 7 plots the imputation accuracy by variable for datasets using the generative model

as well as the unstructured equivalent described in sub-section 2.5. The red line in each

violin plot is the median of the best performing method in that comparison, i.e., the lowest

median MSE and the highest median BA. To interpret the results, it should be noted that

the continuous variables of the generative model all have zero mean and unit variance. Iter-

ative imputation that uses Pearson correlation or the mixed score as its criterion for variable

selection is the best performing method overall. It is also notable that the SoftImpute per-

forms poorly for binary data and notably worse than the iterative imputation methods for

continuous data. When comparing the performance between generative model versus com-

pletely unstructured missing data, we can see that performance is better for the completely

unstructured case, for both continuous and binary variables. This difference is particularly

stark for cluster c = 3, where there is a lot of structured missingness and very little unstruc-

tured missingness, highlighting the difficulty of imputation in this setting. Finally, it should

be noted that we are rarely able to explain more than 20% of variance in the missing values

and that this could mean that the choice of imputation method will not greatly impact the

outcome of many analytical tasks, as the modest accuracy of imputation may not be enough

to greatly alter the final outcome.
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Table 5: R2 scores for the OLS models using the selected variables along with the number

of variables in the model that ended up being statistically significant. The results show a

modest difference between the three imputation methods, with iterative imputation having

the most statistically significant variables and the best R2 score. The results when using only

complete variables are worse with a considerably lower R2 score as well as fewer variables

ending up statistically significant.

Method R2 of OLS se(R2)

#Statistically
Significant
in OLS

# Binary vars.
selected

Rate of missingness
in selected vars.

Complete Variables 0.475 0.0034 11/15 12/15 0.00

Mean 0.510 0.0033 12/15 1/15 0.09

SoftImpute 0.504 0.0034 12/15 1/15 0.13

Iterative Imputation 0.516 0.0033 14/15 2/15 0.10

3.3 Illustrative Example

Table 5 lists the variance explained for the OLS model using the selected variables along with

the number of variables in the model that ended up being statistically significant. The results

show a modest difference between the three imputation methods, with iterative imputation

having the most statistically significant variables and the best R2 score. The results when

using only complete variables are worse with a considerably lower R2 score as well as fewer

variables ending up statistically significant. We also see that the complete variables method

selected many more binary variables and this is because the complete variables are mostly

health record data, i.e., data assigned to cluster c = 0, which is disproportionately binary

as seen in Table 1. Meanwhile, the results for iterative imputation are the best, having the

highest R2 score as well as the highest number of statistically significant variables. These

results align well with our simulation study; a small difference in the final outcome of the

analytical task for different methods caused due to the difficulty of imputing structurally

missing data, but with iterative imputation clearly being the best alternative.
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4 Discussion

We have proposed a method for generating large-scale data with complex patterns of missing

data that make imputation difficult. In particular, our data-driven simulation framework

allows for highly informative missingness and joint missingness for variables that are strongly

correlated. This ability to mimic the properties of large scale epidemiological datasets makes

our method useful for gaining insight into the performance of handling missing data for

different analytical tasks. There are, however, limitations to our model which are important

to note and represent potential future work on this topic. Our model assumes multivariate

normality for all continuous features, which limits the generalisability of any conclusions

drawn from simulation studies of analytical methods that are sensitive to non-gaussianity or

strong outliers. In such scenarios, it is possible that conclusions drawn using our generative

model would unduly favour linear methods over more complicated black-box methods that

would fare better on real, non-Gaussian data. This could be solved by parameterising the

model differently, allowing for more flexibility on the underlying multivariate distribution,

or by using non-parametric methods.

Another potential limitation of our generative model is that we assume that the correlation

structure of the data closely follows the missingness structure. This is because we assume

that for any pair of clusters c, c′, the correlation between pairs of variables in c and c′ are

drawn independently from some distribution {ρ}c,c′ , i.e., we assume that there is no further

covariance structure within or between sub-studies. We have found this to be approximately

true for the nIDPs that we have been working with, but this might not be the case for other

datasets. This could be solved by modelling missingness and correlation structure jointly in

a way which allows for further complexity inside sub-studies.

In this paper we chose to use C = 4 clusters of variables as an approximation of reality

in order to be able to inspect the properties of these clusters separately. In all likelihood,

the true number of substudies is higher, and more representative results could be obtained

by choosing a higher figure. We deemed it necessary to use a lower number in order to

demonstrate the inner workings of our method. When allowing C to be higher, we found
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C = 15 clusters with 100 or more variables present in the data set. These clusters all

had a very clear separation between the structured and unstructured missingness, which

bolsters our hypothesis that missingness in UKB data can be effectively modelled as we have

suggested.

5 Conclusions

The results from the simulation study combined with the illustrative example show that there

is room for improvement in the current missing data methodology to accommodate for this

specific type of missing data, and that the final result of many analytical tasks on data from

the UKB Brain Imaging cohort will vary little depending which commonly used imputation

method is chosen. This is due to the difficulty of imputation in this setting. Even so, we

have shown some advantage in using iterative imputation over matrix completion methods.

While we do not propose new missing data methods here, our results highlight the need for

developing methods that specifically account for structured missingness.

List of Abbreviations

• UKB - UK Biobank

• nIDP - non-Imaging Derived Phenotype

• MCAR - Missing Completely at Random

• MAR - Missing at Random

• MNAR - Missing not at Random

• AUC - Area Under the (Reciever Operating Characteristic) Curve

• LASSO-LR - Least Absolute Shrinkage and Selection Operator Logistic Regression

• MICE - Multivariate Imputation by Chained Equations
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• ICE - Imputation by Chained Equations

• MSE - Mean Squared Error

• BA - Balanced Accuracy

• OLS - Ordinary Least Squares
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Figure 5: Histograms of the proportions of missing data for variables in each cluster. Each

entry in the histogram for cluster c is the proportion of missing data for a single variable

belonging to cluster c. Cluster c = 0, i.e., the cluster that contains mostly health- and

medical related variables, has almost no missingness. Clusters c = 2, 3 have intermediate

rates of missingness with cluster c = 3 having lower rates of missingness as well as a lower

variability in the same, while c = 1 has very high rates of missingness.
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Figure 6: Histograms detailing the proportion of variables assigned to cluster c that are

missing, by subject. The red line in each plot signifies the 90% threshold for structured

missingness, meaning that subjects for which 90% or more of the features assigned to cluster

c are missing are considered to have structured missingness for the variables in cluster c.

We can see that the cluster c = 3 has a much clearer separation between structured and

unstructured missingness, whereas it is less clear for clusters c = 1, 2, likely due to higher

rates of unstructured missingness as well as our approximation of C = 4 leading to different

clusters being grouped together. 28
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Figure 7: Violin plots of the imputation accuracy by variable. The red line in each violin

plot is the median of the best performing method in that comparison, i.e., the lowest median

MSE and the highest median BA. Since continuous data is standardised, the MSE scores

correspond to 1 minus the variance explained by prediction. It is obvious that iterative

imputation that uses Pearson correlation or the mixed score as its criterion for selecting

k variables is the best performing method overall. It is also notable that SoftImpute per-

forms poorly for binary data. When comparing the performance between generative model

versus completely unstructured missing data, we can see that performance is better for the

completely unstructured case, for both continuous and binary variables. This difference is

particularly stark for cluster c = 3, where there is a lot of structured missingness and very

little unstructured missingness, highlighting the difficulty of imputation in this setting.
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