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Supplementary Note

1 Notations of the SAIGE-QTL method

Assuming the data contain read counts from RNA sequencing mapped to a gene for N cells across
n individuals, ci cells belong to the ith individual and N =

∑n
i=n ci. The sequencing read count for

the gene of interest, yij , of the jth cell from the ith individual is assumed to follow Poisson(µij),
where µij = exp (ηij) and ηij = Xcijαc + Xdiαd + Giβ + bi. Let Gi represent the allele count (0,1,
or 2) of the ith individual for the genetic variant to test, Xcij represent pc cell-level covariates, such
as cell states, including the intercept for the jth cell of the ith individual, and Xdi represent pd
individual (donor)-level covariates, such as age, gender, and ancestry PCs, for the ith individual. The
random effects bd is a length n vector of bi and is assumed to follow multivariate Normal distribution
bi ∼ N(0,

∑K
k=1 τkΨk), where τk are the variance component parameters and Ψk are known n × n

variance-covariance matrices, which can include the identity matrix to account for intra-individual
variance of read counts across multiple cells and the genetic relationship matrix to account for sample
relatedness, if any.

The read counts yij are assumed to be independent conditional on the random effect (Xcij , Xdi, Gi, bi)
and follows the Poisson distribution with mean an variance E(yij |Xcij , Xdi, Gi, bi) = µij and
V ar(yij |Xcij , Xdi, Gi, bi) = ϕv(µij), where v(µij) = µij is the variance function and the dispersion
parameter ϕ = 1.

Let Z be the N × n design matrix. Each row in Z contains a 1 and all other elements are 0s to
indicate which individual has the cell. The Poisson mixed model can be written as

η = Xcαc +ZXdαd +ZGβ + b

, where η is a length of N vector of ηij , Xc is a N × pc + 1 matrix containing cell-level covariates
including the intercept, Xd is a n× pd matrix containing individual-level covariates, and the random
effects for all cells b = Zbd is a vector with length of N . b ∼ N(0,

∑K
k=1 τkZΨkZ

T ) accounts for all
sources of correlation in the data.

1.1 Poisson generalized linear mixed model and penalized quasi-likelihood

Similar algorithms that were used in previous GWAS methods [1, 2, 3] are used in SAIGE-QTL to
fit the Poisson generalized linear mixed model under the null hypothesis H0 : β = 0. To estimate
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(α, ϕ, τ ), where α = (αc,αd), the integrated quasi-likelihood function can be written as

L (α, β = 0, ϕ, τ ) =

∫
exp{

n∑
i=1

ci∑
j=1

qlij(α, β = 0|b)}

× (2π)−
N
2

1∣∣∣∑K
k=1 τkVK

∣∣∣1/2 exp

(
−1

2
b⊤(

K∑
k=1

τkVK)−1b

)
db

=(2π)−
N
2

1∣∣∣∑K
k=1 τkVK

∣∣∣1/2
×
∫

exp

 n∑
i=1

ci∑
j=1

qlij(α, β = 0|b)−

(
1

2
b⊤(

K∑
k=1

τkVK)−1b

) db

, where Vk = ZΨkZ
T

qlij(α, β = 0|b)} =

∫ µij

yij

(yij − µ)

ϕv(µ)
d(µ) =

∫ µij

yij

yij − µ

µ
d(µ)

is the quasi-likelihood for the jth cell from the ith individual given the random effect b.
Let f(b) =

∑n
i=1

∑ci
j=1 qlij(α, β = 0|b) − 1

2b
⊤(
∑K

k=1 τkVK)−1b, we can then approximate the
integral using the Laplace approximation,∫

exp f(b)db ≈ (2π)N/2
∣∣∣−f ′′(b̃)

∣∣∣−1/2

exp(f(b̃)),

, where b̃ = argb max f(b) is the solution to f ′(b) = 0. Therefore, the log integrated quasi-likelihood
function can be approximated by

f ′(b) =
∂
∑n

i=1

∑ci
j=1 qlij(α,β=0|b)

∂b =
∑n

i=1

∑ci
j=1

∂qlij(α,β=0|b)
∂b

∂2qlij(α, β = 0|b)
∂b∂bT=−

∂µij
∂ηij

∂ηij
∂bij

ZT=−µijZijZT
ij

f ′′(b̃) = −(
∑n

i=1

∑ci
j=1 µijZijZ

T
ij)− (

∑K
k=1 τkVK)−1

ql (α, β = 0, ϕ, τ ) ≈ −1

2
log

∣∣∣∣∣
K∑

k=1

τkVK

∣∣∣∣∣− 1

2
log

∣∣∣∣∣∣(
n∑

i=1

ci∑
j=1

µijZijZ
T
ij) + (

K∑
k=1

τkVK)−1

∣∣∣∣∣∣
+

n∑
i=1

ci∑
j=1

qlij(α, β = 0|b̃)− 1

2
b̃
⊤
(

K∑
k=1

τkVK)−1b̃

= −1

2
log

∣∣∣∣∣
K∑

k=1

Z(τkΨkW + I)ZT

∣∣∣∣∣+
n∑

i=1

ci∑
j=1

qlij(α, β = 0|b̃)− 1

2
b̃
⊤
(

K∑
k=1

τkVK)−1b̃

(1)

, where W = diag(µ)
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1.2 Estimation of the fixed effects and random effects given the variance
components

We can obtain the score functions by taking derivatives of ql (α, β = 0, ϕ, τ ) with respect to β, α, and
b.

∂ql (α, β = 0, ϕ, τ )

∂α
=XT (y − µ)

∂ql (α, β = 0, ϕ, τ )

∂β
=GT (y − µ)

∂ql (α, β = 0, ϕ, τ )

∂b
=(y − µ)− (

K∑
k=1

τkVK)−1b

, where X =
[
Xc ZXd

]
. For the score test of H0 : β = 0 vs H1 : β ̸= 0, we only estimate

the (α̂, β̂, b̂) that maximize ql (α, β = 0, ϕ, τ ) under H0, setting β = 0. We denote the working
outcome vector Y = η +W−1(y − µ), where W = diag(µi), η = (η1, . . . , ηN ), δ = (δ1, . . . , δN ), and
µ = (µ1, . . . , µN ). Then, y − µ = W (Y − η) = W (Y −Xβ − Zb), and the score equations can be
written as, [

X⊤WX X⊤W

WX W + (
∑K

k=1 τkVK)−1

] [
α
b

]
=

[
X⊤WY
WY

]
Let Σ = W−1 +

∑K
k=1 τkVK , then

α̂ =
(
X⊤Σ−1X

)−1
X⊤Σ−1Y

b̂ =

(
K∑

k=1

τkVK

)
Σ−1 (Y −Xα̂).

1.3 Estimation of the variance component

Given α̂ = α̂(τ ), b̂ = b̂(τ ) estimated, from (1) the log-likelihood of the variance component can be
derived as,

ql(α̂(τ , ϕ), β = 0, ϕ, τ ) = c− 1

2
log|Σ| − 1

2
Y⊤PY,

where P = Σ−1 −Σ−1X
(
X⊤Σ−1X

)−1
X⊤Σ−1 and Σ = W−1 +

∑K
k=1 τkVk. We maximize the

corresponding restricted maximum-likelihood (REML),

qlR(α̂(τ , ϕ), β = 0, ϕ, τ ) = cR − 1

2
log|Σ| − 1

2
log|X⊤Σ−1X| − 1

2
Y⊤PY.

The score function with respect to τ are given by,

Uτ =
∂qlR(α̂(τ , ϕ), β = 0, ϕ, τ )

∂τk
=

1

2

[
Y⊤PZΨkZ

TPY − tr(PZΨkZ
T)
]
.

The corresponding observed information function, and the expected information function are given by

Jτ = −∂2qlR(α̂(τ , ϕ), β = 0, ϕ, τ )

∂τ2k
= −1

2
tr(PVkPVk) +Y⊤PVkPVkPY,

E (Jτ ) = E

[
−∂2qlR(α̂(τ , ϕ), β = 0, ϕ, τ )

∂τ2k

]
=

1

2
tr(PVkPVk),

respectively. Evaluating both observed and expected information functions involves computationally
expensive trace computations. To avoid the trace computations, the average information is used in the
AI-REML[1, 2, 4] algorithm. The average information is expressed as the average of Jτ and E(Jτ ),

AIτkτq =
1

2
Y⊤PVkPVqPY.

, where AI is an K ×K matrix with the (k, q)-th element AIτkτq .
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1.3.1 Algorithm to fit the null mixed model

The null model fitting algorithm can be summarized as,

1. Fit a Poisson linear model with τ = 0 to get initial estimates α̂(0) and working outcome vector
Y (0).

2. At the i-th step, update τ̂ using τ̂ (i) = τ̂ (i−1) +

AI
τ

∣∣∣
τ=τ̂(i−1)


−1U

τ

∣∣∣
τ=τ̂(i−1)

.

3. Update α̂, b̂ using Y and τ̂ (i).

4. Update Y using b̂
(i)
, α̂(i), τ̂ (i).

5. Repeat steps 2–4, until max

{
|β̂(i)−β̂(i−1)|
|β̂(i)|+|β̂(i−1)| ,

|τ̂ (i)−τ̂ (i−1)|
|τ̂ (i)|+|τ̂ (i−1)|

}
≤ tolerance.

1.4 Score test

The score test statistic under the null hypothesis is given by,

T =
∂ql

∂β

∣∣∣
(b̂,β=0,α̂,τ̂)

= G⊤Z⊤(y − µ̂) = G̃⊤(y − µ̂), (2)

where G̃ = ZG−X
(
X⊤ŴX

)−1

X⊤ŴZG is the covariate adjusted genotype vector, and X =[
Xc ZXd

]
is the covariate matrix with intercept included. The information matrix correspond-

ing to the score equations in (2) is given by,

I(α, β, b) =

X⊤WX X⊤WG X⊤W
G⊤WX G⊤WG G⊤W

WX Z⊤WG W + (
∑K

k=1 τkVk)
−1

 ,

Aij and A•i denote the (i, j)-th element and i-th column of a matrix A, respectively. Then, the variance
of the score statistic under H0 is given by,

V arH0
(T ) =

(
I(α̂, β̂, b̂)−1

)
22

= G⊤P̂G = G̃⊤P̂G̃,

where P̂ = Σ̂−1 − Σ̂−1X
(
X⊤Σ−1X

)−1
X⊤Σ̂−1, Σ̂ = Ŵ−1 +

∑K
k=1 τ̂kVk, and Vk = ZΨkZ

T.

2 Variance ratio approximation

Computation of the variance of the score statistic V arH0
(T ) = G̃⊤P̂G̃ requires calculating P̂G̃ re-

peatedly for all markers, which is computationally expensive. To avoid calculating P̂G̃ for all the
markers, previous linear mixed model [5, 6, 7] and logistic mixed model methods [2] first estimate the
variance ratio r̂ = G̃⊤P̂G̃/G̃⊤ŴG̃ using a small set of markers, and then approximate the variance
of the score statistic for all markers by r̂G̃⊤ŴG̃ in step 2. It has been shown in the studies that r̂ is
approximately constant for all genetic variants. This saves substantial computation time since Ŵ is a
diagonal matrix. Following the Computation of the variance of the score statistic V arH0

(T ) = G̃⊤P̂G̃
requires calculating P̂G̃ repeatedly for all markers, which is computationally expensive. To avoid
calculating P̂G̃ for all the markers, we estimate the variance ratio r̂ = G̃⊤P̂G̃/G̃⊤ŴG̃ using a small
set of markers, and then approximate the variance of the score statistic for all markers by r̂G̃⊤ŴG̃
in step 2. This saves substantial computation time since Ŵ is a diagonal matrix. Such variance ratio
approximation approaches were previously used in various linear[5, 6, 7] and logistic mixed effects
models[2] to speed up computation. Following the theoretical justification by Dey et al.[3] to show the
approximation also works in the frailty models, we can show that it also works in the Poisson mixed
model for eQTL mapping with scRNA-seq data.

4



Let E(Gi) = µg and the covariance matrix ofG is given by σ2
gΨ, whereΨ is the correlation matrix of

G and represents the n×n kinship matrix. The exact characterization of Ψ is not needed for the proof.
Then the elements ofG follows theBin(2, pg) distribution, then µg = 2pg, and σ2

g = 2pg(1−pg). LetGc

be the n×1 unadjusted (but mean-centered) genotype vector. Then E(Gc) = 0 and Cov(Gc) = σ2
gΨ.

LetQX̃ = X(X⊤ŴX)−1X⊤Ŵ be the weighted projection matrix. Then, E(G̃) = (I−QX̃)Zµg1 = 0,

and Cov(G̃) = σ2
g(I−QX̃)ZΨZT(I−QX̃)⊤, where 1 is the n× 1 vector of all element equal to unity.

We scale both the numerator and denominator of the variance ratio by N−1 so that they don’t blow
to infinity when looked at individually. Then, for the numerator,

E(N−1G̃⊤P̂G̃) =
σ2
g

N
tr
[
P̂(I−QX̃)ZΨZT(I−QX̃)⊤

]
=

σ2
g

N
tr(P̂ZΨZT),

since (I−QX̃)⊤P̂(I−QX̃) = P̂. Similarly, for the denominator,

E(N−1G⊤
c Z

⊤ŴZGc) =
σ2
g

N
tr
(
Z⊤ŴZΨ

)
,

As the eigenvalues of P̂,Ŵ,Ψ are bounded, and the distribution of G has bounded support, the
variances of the numerator and the denominator terms are both O(N−1), and the variance ratio
converges to,

r̂ =
G̃⊤P̂G̃

G⊤
c Z

⊤ŴZGc

p−→
limN→∞

{
N−1tr(P̂ZΨZT)

}
limN→∞

{
N−1tr

(
Z⊤ŴZΨ

)} .
The ratio on the right-hand side is constant across all markers as the individual limits in the numerator
and denominator exist and are bounded away from zero.

In addition, as we have previously shown in SAIGE-GENE[8], the variation of the estimated vari-
ance ratio can be smaller when Σ̂−1 is used in the denominator than when only Ŵ is used. Therefore,
in SAIGE-QTL, we incorporate Σ̂−1 and the covariate adjusted genotype vector into the denomi-
nator to approximate the V arH0(T ) with a smaller variation. More specifically, the variance ratio
r̂s = G̃⊤P̂G̃/G̃⊤

d Σ̂
−1G̃d is estimated. Let X̃d =

[
1 Xd

]
represent the donor-level covariate ma-

trix with intercept included with the size n × (pd + 1), then G̃d is the donor-level covariate adjusted
genotype vector with size N × 1 and

G̃d = ZG− ZX̃d

(
X̃⊤

dZ
⊤ŴZX̃d

)−1

X̃⊤
dZ

⊤ŴZG

= Z(G− X̃d

(
X̃⊤

dZ
⊤ŴZX̃d

)−1

X̃⊤
dZ

⊤ŴZG)

. Similarly, Let QX̃d
= X̃d

(
X̃⊤

dZ
⊤ŴZX̃d

)−1

X̃⊤
dZ

⊤ŴZ be the weighted projection matrix to

project out the donor-level covariates with intercept, then G̃d = Z(I−QX̃d
)G, E(G̃d) = Z(I−QX̃d

)µg1 =

0, and Cov(G̃d) = σ2
gZ(I−QX̃d

)Ψ(I−QX̃d
)⊤Z⊤.

For the denominator,

E(N−1G̃⊤
d Σ̂

−1G̃d) =
σ2
g

N
tr
(
Σ̂−1Z(I−QX̃d

)Ψ(I−QX̃d
)⊤Z⊤

)
,

Similarly, as the eigenvalues of P̂,Ŵ,Ψ, Σ̂−1 are bounded, and the distribution of G has bounded
support, the variances of the numerator and the denominator terms are both O(N−1), and the variance
ratio converges to,

r̂s =
G̃⊤P̂G̃

G̃⊤
d Σ̂

−1G̃d

p−→
limN→∞

{
N−1tr(P̂ZΨZT)

}
limN→∞

{
N−1tr

(
Σ̂−1Z(I−QX̃d

)Ψ(I−QX̃d
)⊤Z⊤

)} .
, which is constant across all markers as the individual limits in the numerator and denominator

exist and are bounded away from zero.
For each genetic variant, r̂ is first used to approximate the variance V arH0

(T ), if the p-value ¡ 0.05,
r̂s is used to obtain a more accurate V arH0

(T ).
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3 Using saddlepoint approximation[9] (SPA) for the null dis-
tribution of the score statistic

In traditional score tests, the distribution of the score statistic under H0 is approximated by a Normal
distribution, which uses the first two moments, mean and variance. This approach can perform poorly
in the tail regions, especially if the underlying distribution is highly skewed when the studying event
is very rare or the testing genetic variant has a very low minor allele count (MAC). Here, similar
to what has been applied in the logistic mixed models [10, 11, 2, 12] previously, we use the SPA
to approximate the null distribution of the score statistic to obtain accurate p-values. For this, we
utilize the fact that given the random effects b, the phenotype Y, which are read counts from RNA

sequencing, independently follow Poisson distribution. Tadj = G̃⊤(y − µ̂)/
√

r̂G̃⊤ŴG̃ is a weighted
sum of independent Poisson random variable. The approximated cumulant generating function (CGF)
of Tadj is

K(ξ; µ̂, c) =

N∑
i=1

µ̂i(e
G̃icξ − G̃icξ − 1)

, where c = (G̃⊤WG̃)−1/2.K ′(ξ; µ̂, c) and K ′′(ξ; µ̂, c) are first and second derivatives of K with( respect
to ξ.

K ′(ξ; µ̂, c) =

N∑
i=1

µ̂iG̃ic(e
G̃icξ − 1),

K ′′(ξ; µ̂, c) =

N∑
i=1

µ̂iG̃
2
i c

2eG̃icξ

To calculate the probability that Tadj < s, where s is the observed test statistic, we use the following
formula

Pr(T < s) = Φ

{
w +

1

w
log
( v

w

)}
,

where w = sign(ξ̂)[2{ξ̂s−K(ξ̂)}] 12 , v = ξ̂[K ′′(ξ̂)]
1
2 , ξ̂ is the solution of K ′(ξ̂) = s, and Φ is the standard

normal distribution function.

4 Approaches to reduce computation and memory cost

We developed SAIGE-QTL based on the SAIGE framework, which utilizes several state-of-the-art
approaches to reduce computation and memory cost to fit the null GLMM and to test for genetic
associations. Given that in the single-cell RNA sequencing data, each individual may have hundreds
and thousands of cells (N >> n), which N is the total number of cells and n is the total number of
individuals, we use several approaches to make SAIGE-QTL conduct matrix operations on the scale
of number of individuals to reduce a computation cost from O(N) to O(n).

First, to compute the test statistics T = G⊤Z⊤(y − µ̂) for each genetic variant, we pre-compute
the statistics Z⊤(y − µ̂), so the computation cost of obtaining T is O(n).

Second, to calculate V arH0
(T ) = G̃⊤P̂G̃ when estimating the variance ratios using randomly se-

lected genetic markers, we need to compute quantities of the form Σ̂−1a, where a is a vector of length
N . The standard computation technique of inverting Σ̂ (computation cost O(N3)) and multiplying
Σ̂−1 with a can be extremely time consuming when N is large. To compute quantities of the form
Σ̂−1a, we implemented the pre-conditioned conjugate gradient[13] (PCG) method, which computes
Σ̂−1a = x by iteratively solving the linear system of equations Σ̂x = a. Only Σ̂a needs to be computed
when the PCG method is used. Instead of storing the N ×N variance-covariance matrix V(memory
cost O(N2)), we only store the K matrices Ψk with the size n×n (memory cost O(kn2)) and the N×n
design matrix Z, which only cost 4N bytes if stored using a sparse matrix with 1s. Then, Σ̂a involves
the computation for ZΨkZ

⊤a, which is computed consecutively, with the time cost O(Nnk). As imple-
mented in SAIGE, we use the Hutchinson’s randomized trace estimation[14, 15] for calculating tr(PV).
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We also implemented multithreaded parallel computation for the matrix-vector multiplications in the
PCG steps using Intel Threading Building Block (TBB) from the RcppParallel[16] package.

Third, as described in , in step 2, the variance of the score statistic for all markers can be ap-
proximated by r̂G⊤

c Z
⊤ŴZGc or r̂sG̃

⊤
d Σ̂

−1G̃d. We pre-compute both Z⊤ŴZ and Z⊤Σ̂−1Z, so the
computation to approximate the variance of the score statistic becomes O(n) and for ∼ 5% genetic
variants, it costs O(n(pd + 1)).

Fourth, to reduce the redundancies of reading genotypes for each genetic variant when mapping
eQTLs for all 20,000 genes, SAIGE-QTL allows for analyzing multiple genes. We observed that
computation time has been dropped dramatically compared to analyzing each gene separately. This
is particukary useful for conducting genome-wide trans-eQTL mapping.
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