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Abstract 

Alzheimer's disease (AD) is acknowledged as one of the most common types of dementia. 

Various brain regions were found to associated with AD pathology. Precuneus and fusiform 

gyrus are two notable regions whose role has been implicated in cognitive function. However, 

a thorough investigation was lacking to link these regions with AD pathology. In this study, 

we conducted a comprehensive radiomic based investigation using magnetic resonance 

imaging (MRI) scans to link precuneus and fusiform gyrus with AD pathology. We obtained 

T1 weighted MR scans of AD (n=133), MCI (n=311) and CN (n=195) subjects from ADNI 

database at three different time points (i.e., 0, 6 and 12 months). Then, we conducted statistical 

analysis to compare these features among AD, MCI and CN subjects. We found significant 

decline in gray matter volume (GMV) and cortical thickness of both precuneus and fusiform 

gyrus in AD as compared to the MCI and CN subjects. Further, we utilized these features to 

develop machine learning classifiers to classify AD from MCI and CN subjects and achieved 

accuracy of 97.78% and 94.41% respectively. These results strengthen the connection of 

precuneus and fusiform gyrus with AD pathology and opens a new avenue of AD research.  
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1. Introduction 

Alzheimer’s disease (AD) is the primary cause of dementia, affecting 60% to 80% of 

cases globally (1). It's characterized by memory loss, cognitive decline, and behavioral 

changes, leading to a loss of independence (1). Mild cognitive impairment (MCI) is a 

transitional stage, with about 35% of cases progressing to AD or dementia within 3-4 

years (1). In 2015, AD cost around 818 billion USD globally, impacting over 47 million 

individuals (2). By 2050, its prevalence is projected to quadruple, affecting nearly 1 in 

85 people, primarily due to population aging (3).  

In Alzheimer's Disease (AD), the precuneus and fusiform gyrus are pivotal regions 

implicated in the neurodegenerative cascade leading to cognitive impairment and 

functional decline. The precuneus serves as a central hub for various cognitive 

processes, including episodic memory retrieval, visuospatial processing, and self-

referential cognition (4, 5, 6, 7, 8). Numerous neuroimaging studies have consistently 

revealed significant atrophy, hypometabolism within the precuneus, and reduced 

connectivity with the default mode network in individuals with AD (9, 10, 11, 12,13,14) 

particularly in the early stages of the disease (15). The atrophy in the precuneus area is 

also shown even in the non-amnestic Aβneg-AD individuals (16).   

Conversely, the fusiform gyrus is renowned for its specialization in facial recognition 

and the processing of complex visual stimuli (17). In AD, alterations in the fusiform 

gyrus have been observed as reduced gray matter volume (18) and disrupted functional 

connectivity (19). These changes underlie the characteristic deficits in facial 

recognition and discrimination encountered by AD patients, contributing to their 

impaired social cognition and interpersonal interactions.  

Emerging evidence suggests that the precuneus serves as a convergence zone 

integrating sensory, mnemonic, and attentional information critical for cognitive 

processing, including facial recognition mediated by the fusiform gyrus (20, 21, 22, 23 

,7). Disruptions within this network, specifically in face perception, may lead to the 

cascade of cognitive impairments like disruption in face-related episodic memory 

retrieval, limited interpersonal relations, and poor spatial awareness observed in AD, 

encompassing deficits in memory consolidation, attentional control, and social 

cognition. Understanding of the structural and functional alterations within these 

regions may offer valuable biomarkers for early diagnosis and monitoring disease 

progression in AD. The present study employs a machine learning-based approach 
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leveraging radiomics analysis of MRI data to identify novel biomarkers from the 

precuneus and fusiform gyrus by systematically analyzing volumetric and surface 

features extracted from MRI images of individuals across different stages of cognitive 

impairment, including cognitively normal (CN), mild cognitive impairment (MCI), and 

AD. We have developed an ML-based classifier that can categorize individuals into 

MCI or AD based on their precuneus and fusiform gyrus features.  

 

2. Methodology 

2.1 Data Description 

We downloaded the T1-weighted MRI images from the ADNI1 collection (named 

ADNI1: Complete 1Yr 1.5T) in the Alzheimer's Disease Neuroimaging Initiative 

(ADNI) database (http://adni.loni.usc.edu/), which comprises cohorts with 195 

cognitive normal (CN), 311 mild cognitive impairment (MCI), and 133 Alzheimer's 

disease (AD) subjects. The age range for CN individuals spans from 60 to 91 years 

while those with MCI range from 55 to 91 years, and for those diagnosed with AD, it 

ranges from 55 to 90 years. In the ADNI dataset, Mini-Mental State Examination 

(MMSE), Clinical Dementia Rating (CDR), and the National Institute of Neurological 

and Communicative Disorders and Stroke/Alzheimer's Disease and Related Disorders 

Association (NINCDS/ADRDA, 24) were the criteria used to assess the level of 

cognition in the samples (CN, MCI, and AD) 

(https://adni.loni.usc.edu/methods/documents/). CNs have an MMSE score in the range 

of 24–30, a CDR score of 0, and no signs of depression. MCIs have an MMSE score in 

the range of 24–30 and a CDR score of 0.5, with memory complaints and minimally 

impaired daily activities. AD criteria include MMSE scores of 20–26 (inclusive) and a 

CDR of 0.5 or 1.0, fulfilling NINCDS/ADRDA criteria 

(https://adni.loni.usc.edu/methods/documents/).  For each subject, three time points of 

scans were available, i.e., the initial screening (month 0), the 6-month mark (month 06), 

and the 12-month mark (month 12). The MRI 1.5T images were acquired with multicoil 

phased-array head coil (MA), FOV set at 240 x 240 mm, flip angle of 8 degrees, and 

TR of 2300 ms (25).  In the ADNI collection, images were pre-processed for multi-

planar reconstruction-reslicing (MPR-R), B1 radiofrequency pulse for non-uniformity 

correction, gradient warping, and N3 to reduce intensity non-uniformity 

(https://adni.loni.usc.edu/methods/documents/). 
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2.2 Radiomic-Based Feature Extraction and Statistical Method 

We implemented the fully automated ‘Recon-All’ pipeline provided by Freesurfer 

software (http://surfer.nmr.mgh.harvard.edu/) for feature extraction. It is an open-

source package to analyze and display structural, functional, and diffusion 

neuroimaging data from cross-sectional and longitudinal research 

(https://surfer.nmr.mgh.harvard.edu/). This pipeline initially follows a few image 

processing steps, i.e., motion artifact correction, transformation to Talairach image 

space, intensity normalization, and skull striping (26). Cortical parcellation was 

performed for feature extraction using the Desikan-Killiany atlas, which divides the 

MRI scans into discrete 34 anatomical regions (27). Eight different types of radiomic 

features i.e., the total gray matter volume (GMV, mm^3), the number of vertices, the 

average cortical thickness (mm), the total surface areas (mm^2), the integrated rectified 

mean curvature (mm^-1), the integrated rectified Gaussian curvature (mm^-2), the 

folding index, and the intrinsic curvature index) were calculated for the precuneus and 

fusiform gyrus from both left and right hemisphere. 

We applied the nonparametric Mann-Whitney U test to compare these eight features of 

the precuneus and fusiform gyrus between CN, MCI, and AD subjects at three time 

points.  The p-values were adjusted using the Benjamin-Hochberg correction method. 

Box and whisker plots were used to provide a graphical representation of the 

distribution of these groups. 

 

2.3 Machine Learning Predictive Model Development 

We combined above mentioned 16 radiomic features of both right and left hemispheres 

of precuneus and fusiform gyrus (total 32 features) and trained three binary 

classification models, i.e., AD vs CN, MCI vs AD, and CN vs MCI. We also used age 

of the individuals as one of the features to see its impact on the performance of these 

models. Additionally, classification models that solely used precuneus or fusiform-

based features were also constructed. We deployed the Random Forest Classifier (RFC) 

algorithm to develop the classification models. First, the dataset was divided into a 

training dataset (80%) and a test dataset (20%), and the KNN imputation method was 

implemented to ensure uniformity (28). The class imbalance was addressed through 

random undersampling, while hyperparameter optimization of the RFC was carried out 
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using the “RandomizedSearchCV” function to enhance model performance. The 

trained model underwent a comprehensive performance evaluation using various 

statistical metrics, e.g., accuracy, precision, recall, F1-score, ROC AUC, and Matthews 

Correlation Coefficient (MCC) (29, 30,1). Further, all the classifier models were tested 

on a test dataset to select the top-performing model. 

 

3. Results  

3.1 Statistical Analysis for MRI-based Radiomic Features 

We extracted the volumetric and surface related features from MRI images and applied 

Mann-Whitney U test to compare the eight classes of these radiomic features of 

precuneus and fusiform gyrus (Supplementary Tables 1-8 and Supplementary Figures 

1-7). Among these features, we found significant reduction in gray matter volume 

(GMV) of precuneus among AD patients as compared to the MCI (Padjusted = 1.95e-05) 

and CN (Padjusted = 8.78e-09) at 0 time point (Figure 2 and Supplementary Table 1). 

Similar trends were observed at six- and twelve-months follow-ups (Figure 2 and 

Supplementary Table 1). Interestingly, the GMV of the fusiform gyrus was also 

significantly reduced in the AD patients as compared to the MCI (Padjusted = 3.50e-06) 

and CN (Padjusted = 2.66e-09) at 0 time point (Figure 3 and Supplementary Table 1). At 

time points of 6 and 12 months also, reduction in GMV of fusiform gyrus was observed 

(Figure 3 and Supplementary Table 1). In addition to GMV, we also observed 

significant reduction in average cortical thickness in both precuneus and fusiform gyrus 

(Supplementary Table 2 and Supplementary Figure 1) and increase in gaussian and 

mean curvature of fusiform gyrus (Supplementary Tables 3 and 4 and Supplementary 

Figures 2 and 3). We also performed statistical analysis for other radiomic features and 

observed significant differences (Supplementary Tables 4-8 and Supplementary 

Figures 4-7). 

 

3.2 Performance of Machine Learning-based Classification Models 

We developed three classification models in this study i.e., AD vs CN, MCI vs AD and 

MCI vs CN and obtained an adequate performance for all three models using RFC. For 

AD vs CN (33 features), we obtained accuracy of 97.78% and 93.25% with AUC values 

of 0.98 and 0.97 in training and test dataset respectively (Table 1 and Figure 4(a)). For 

AD vs MCI (33 features), we obtained accuracy of 94.41% and 82.70% with AUC 
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values of 0.96 and 0.92 in training and test dataset respectively (Table 2 and Figure 

4(b)). For MCI vs CN (33 features), we obtained accuracy of 96.56% and 86.26% with 

AUC values of 0.97 and 0.94 in training and test dataset respectively (Table 3 and 

Figure 4(c)). To mitigate the effect of age on model performance, we checked the 

performance of these models without age as one of the training features. Strikingly, 

without age (32 features) also, we observed the adequate performance for all three 

models (Tables 1-3 and Figure 4) which shows the predictive power of the MRI-based 

radiomic features of precuneus and fusiform gyrus. Along with accuracy and AUC, we 

also calculated other statistical matrices to assess the performances of these models 

(Tables 1-3 and Figure 4). Along with combined models of precuneus and fusiform 

gyrus, we developed classifier models using radiomic features of either precuneus or 

fusiform gyrus and found slightly better performance for fusiform gyrus-based 

classification models (Supplementary Tables 9-14 and Supplementary Figures 8-9). 

 

4. Discussion 

In this study, we investigated a potential link between the precuneus and fusiform gyrus 

with AD pathology using statistical and machine learning analysis on MRI-based 

radiomic features. We extracted eight MRI-based radiomic features of the left and right 

hemispheres of the precuneus and fusiform gyrus i.e., gray matter volume, average 

thickness, folding index, intrinsic curvature index, integrated rectified Gaussian 

curvature, integrated rectified mean curvature, surface area, and number of vertices 

using Freesurfer automated pipeline. In our statistical analysis, we observed that gray 

matter volume of both precuneus and fusiform significantly decreased in AD patients 

as compared to the MCI and CN at all three time points (0, 6 and 12 months). 

Reduced gray matter volume is a prevalent sign of AD pathology and has been proposed 

as an essential physiological structure of cognitive function decline (31). Our 

observation aligns with a previous report on Voxel-based research that found gray 

matter volume reductions in the right fusiform gyrus of AD patients (32). Moreover, 

lower gray matter density in the precuneus and its atrophy was shown to be more 

prominent in early-onset AD patients in various voxel-based investigations on gray 

matter atrophy (15, 33). Additionally, we also observed a significant decrease in 

average thickness of precuneus and fusiform in AD patients. There was significant 

increase in gaussian curvature of AD subjects in fusiform gyrus. Significant reduction 
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in cortical thickness was previously reported in patients with AD and MCI (32), 

however increased gaussian curvature along with a decrease in precuneus and fusiform 

thickness were not reported earlier. Our findings strengthen the previously identified 

association between fusiform gyrus and AD pathology and open a new direction of 

association of precuneus and fusiform gyrus, and AD pathology. 

To further investigate the potential of the precuneus and fusiform in classifying AD 

patients with MCI and CN, we developed random forest-based classifier models. Three 

binary models were built combining the radiomic features of the precuneus and 

fusiform gyrus (33 radiomic features including age) and we achieved accuracy of 

97.78%. 94.41% and 96.56% for AD vs CN, AD vs MCI and MCI vs CN respectively. 

Similarly, we also developed classifier without age to mitigate the pervasive nature of 

age in classifying AD patients from MCI and CN subjects. Without age as a feature, we 

obtained accuracy of 97.35%, 94.18% and 97.25% for AD vs CN, AD vs MCI and MCI 

vs CN respectively. These performance metrices of classifier models suggest the 

classifying potential of radiomic features of precuneus and fusiform gyrus and provide 

strong evidence for the critical roles of the precuneus and fusiform gyrus in AD 

pathology. Based on the results of this study, we advocate to study AD pathology in the 

light of radiomic features of precuneus and fusiform gyrus. However, more 

investigations are necessary to expand the knowledge and understanding of the precise 

pathways through which the precuneus and fusiform gyrus contribute to the AD 

pathology. A better understanding of the role of the precuneus and fusiform gyrus and 

features based analysis in AD and also non-amnestic Aβneg-AD individuals could 

provide a generalized early detection method. 

In conclusion, this study for the first time providing the evidence-based genesis of roles 

of both the precuneus and fusiform gyrus combined in AD pathology. Moreover, it adds 

to the corpus of our knowledge on neuroanatomical foundations of AD and hold 

significant promise for early detection, prevention, and focused interventions for AD 

diagnosis and treatment.  
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Tables 

Table 1: Performance of random forest classifier using radiomic features of both precuneus and 

fusiform gyrus (left and right hemisphere) for AD vs CN classification (n = Size of Dataset). 

 

 

Table 2: Performance of random forest classifier using radiomic features of both precuneus and 

fusiform gyrus (left and right hemisphere) for AD vs MCI classification (n = Size of Dataset). 

 

 

                    Dataset Accuracy Precision Recall F1- score AUC MCC 

With Age 

(33 features) 

Training Dataset 

(n = 944) 
97.78% 1.00 0.96 0.98 0.98 0.96 

Testing Dataset 

(n = 237) 
93.25% 0.96 0.93 0.94 0.97 0.86 

Without Age 

(32 features) 

Training Dataset 

(n = 944) 
97.35% 1.00 0.96 0.98 0.98 0.95 

Testing Dataset 

(n = 237) 
91.56% 0.93 0.93 0.93 0.96 0.82 

Dataset Accuracy Precision Recall F1- score AUC MCC 

With Age 

(33 features) 

Training Dataset 

(n = 1271) 
94.41% 1.00 0.92 0.96 0.96 0.88 

Testing Dataset 

(n = 318) 
82.70% 0.92 0.82 0.87 0.92 0.63 

Without Age 

(32 features) 

Training Dataset 

(n = 1271) 
94.18% 1.00 0.92 0.96 0.96 0.88 

Testing Dataset 

(n = 318) 
82.70% 0.93 0.82 0.87 0.92 0.63 
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Table 3: Performance of random forest classifier using radiomic features of both precuneus and 

fusiform gyrus (left and right hemisphere) for MCI vs CN classification (n = Size of Dataset). 

 

 

  

                        Dataset Accuracy Precision Recall F1- score AUC MCC 

With Age 

(33 features) 

Training Dataset 

(n = 1454) 
96.56% 1.00 0.94 0.97 0.97 0.93 

Testing Dataset 

(n = 364) 
86.26% 0.89 0.88 0.89 0.94 0.71 

Without Age 

(32 features) 

Training Dataset 

(n = 1454) 
97.25% 1.00 0.96 0.98 0.98 0.94 

Testing Dataset 

(n = 364) 
84.34% 0.89 0.85 0.87 0.93 0.67 
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Figure Legends 

 

Figure 1: Schematic diagram showing the study plan.  

 

Figure 2: MRI scans showing the gray matter volume (GMV) of precuneus (right hemisphere) from 

representative samples from cognitive normal (CN), mild cognitive impairment (MCI), and Alzheimer's 

disease (AD) individuals at three time points (months 0, 6, and 12). Bar plots showing the statistical 

differences in the GMV of precuneus (z = 31.94, MNI coordinate) (*: p  0.05; **: p  0.01; ***: p  

0.001; ****: p  0.0001). 

 

Figure 3: MRI scans showing the gray matter volume (GMV) of fusiform gyrus (right hemisphere) from 

representative samples from cognitive normal (CN), mild cognitive impairment (MCI), and Alzheimer's 

disease (AD) individuals at three time points (months 0, 6, and 12). Bar plots showing the statistical 

differences in the GMV of precuneus (z = 31.94, MNI coordinate) (*: p  0.05; **: p  0.01; ***: p  

0.001; ****: p  0.0001; ns: p > 0.05). 

 

Figure 4: ROC plots for the different classifier models developed radiomic features of both precuneus and  

fusiform gyrus, with and without age; (a) AD vs CN (b) AD vs MCI (c) MCI vs CN. 
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Figure 1 
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 Figure 2 
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Figure 3 
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Figure 4 
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