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Abstract  

Aim: Diagnostic imaging is an integral part of identifying spondyloarthropathies 

(SpA), yet the interpretation of these images can be challenging. This review 

evaluated the use of deep learning models to enhance the diagnostic accuracy of SpA 

imaging. 

Methods: Following PRISMA guidelines, we systematically searched major databases 

up to February 2024, focusing on studies that applied deep learning to SpA imaging. 

Performance metrics, model types, and diagnostic tasks were extracted and analyzed. 

Study quality was assessed using QUADAS-2. 

Results: We included 22 studies demonstrating that deep learning aids in diagnosing 

and classifying SpA, differentiating arthritis forms, and estimating disease 

progression and structural changes. These models, particularly those using advanced 

U-Net architectures, consistently outperformed traditional diagnostic methods, 

showing a notable increase in diagnostic accuracy. 

Conclusion: Deep learning models are excellent for augmenting the accuracy of SpA 

imaging diagnostics. Despite their potential, challenges in overcoming retrospective 

study biases and integrating these models into clinical practice remain. Future 

directions should aim to validate these models in real-world clinical settings. 
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Introduction  

Medical imaging, including X-rays and Magnetic Resonance Imaging (MRI), plays a 

vital role in diagnosing Spondyloarthropathies (SpA) (1–3). Despite the importance of 

imaging, interpretating these images is challenging due to the subtle and variable 

manifestations of SpA (1).  

In recent years, artificial intelligence (AI), particularly deep learning, has shown 

promise in enhancing diagnostic accuracy across various medical fields, including 

rheumatology and radiology (2–5) . Deep learning employs artificial neural networks 

designed to analyze images efficiently. Its application in diagnosing SpA, however, 

has not been comprehensively reviewed (2,6). Convolutional Neural Networks 

(CNNs), a type of deep learning method, have notably improved diagnostic accuracy 

in medical imaging, including for SpA (7–11). Unlike classical machine learning, 

which relies on manual feature extraction, deep learning automates this process, 

enabling more accurate interpretations of radiological images (12) (Figure 1). 

Figure 1: Comparative Overview of Deep Learning and Machine Learning. 
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In this systematic literature review, we assess the effectiveness of deep learning 

techniques in enhancing the accuracy of diagnostic imaging for SpA. Our goal is to 

determine how these advanced models contribute to the precision of imaging 

interpretations in the clinical setting. 

Fundamentals Concepts of Deep Learning and Computer Vision 

Computer Vision Tasks in Medical Imaging 

Three essential computer vision tasks—classification, detection, and segmentation—

use deep learning algorithms to improve diagnostic precision (13,14). 

Classification assigns each image to a specific category based on established criteria. 

In the context of SpA, deep learning models can distinguish between normal, 

inflammatory, and structural changes. This task is fundamental for assessing disease 

stage, guiding treatment decisions, and evaluating treatment effectiveness (13,14). 

Detection involves locating key features in medical images and marking them with a 

region of interest (ROI) (10). For SpA, this task may target the identification of 

inflammation or structural changes such as erosions or fusions in the spine and 

sacroiliac joints. Deep learning algorithms scan images and visually mark significant 

abnormalities, aiding clinicians in quickly identifying critical areas (13,14).  

Segmentation partitions a digital image into segments by delineating the exact pixel-

wise borders of areas of interest, such as lesions or organs. In SpA, segmentation may 

accurately outline affected areas in the joints or spine, thereby enabling measurement 

of the extent of inflammation or bone growth. This precision is essential for assessing 

disease severity and monitoring progression (10,13,14). 

Deep Learning Models in Medical Imaging 
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Currently, in the computer vision field, the primarily used deep learning algorithm is 

convolutional neural networks (CNN) (5,15). This methodology excels in image 

analysis by identifying repeating patterns through a multi-layered approach (15) 

(Figure 2).  U-Net, a subset of CNN, specializes in segmenting medical images to 

precisely highlight areas of interest (16), such as borders of an inflammatory process 

(17). CNNs include several types of models such as ResNet, EfficientNet and others. 

These models can analyze intricate details in images, including complex 3-

dimensional, multi-anatomical planes (Figure 3) (18–21).  

Figure 2: Typical Convolutional Neural Networks (CNN) Workflow for the 

diagnosis of ankylosis. 

This schematic represents a convolutional neural network (CNN) architecture used for medical image analysis. An 

MRI input undergoes preprocessing to enhance features, which is then passed through consecutive convolutional 

layers where features are extracted and analyzed. Each layer applies filters to detect specific attributes, pooling 

layers to reduce dimensionality, and activation functions to introduce non-linearity, facilitating the identification of 

complex patterns. The final classification is done through fully connected layers, resulting in the output that 

categorizes the image into diagnostic categories, such as 'Ankylosis' or 'Normal'. 

Figure 3: Deep Learning Analysis of MRI for AS Diagnosis Utilizing 3D-Unet. 
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This figure presents a deep learning framework, specifically a U-Net model, processing MRI scans to diagnose 

Ankylosing Spondylitis (AS). Two MRI inputs, representing different anatomical planes, feed into the neural 

network which then utilizes convolutional layers to extract features and identify patterns indicative of AS, leading 

to a diagnostic output. 

These models have transformed radiology, enhancing diagnostic accuracy and 

efficiency in interpreting a wide range of imaging modalities (2,12,16,18,22,23).  

These techniques have also proven effective in detecting subtle signs of SpA, 

differentiating it from other conditions, and aiding in the assessment of disease 

progression (7,8,21,24).  

Methods 

Search Strategy 

The review was registered with the International Prospective Register of Systematic 

Reviews - PROSPERO (Registration code: CRD42024517372). We adhered to the 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 

guidelines (25,26).  A systematic search of key databases including PubMed, Embase, 

Web of Science, and Scopus was conducted, concluding in February 2024. To 

enhance our search, we supplemented our database inquiries with manual screening of 

the references of included studies and searches on Google Scholar. Our search 
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strategy employed a combination of specific keywords related to artificial intelligence 

such as 'Artificial Intelligence,' 'Deep Learning,' 'Neural Networks', along with terms 

pertinent to spondyloarthritis, and terms relating to diagnostic imaging techniques 

including 'MRI,' 'CT,' and 'X-ray.' Detailed search strings for each database are 

provided in the Supplementary Materials. 

Study Selection 

We included original research articles that focused on the integration of deep learning 

in the radiographic diagnosis of SpA. Studies were selected if they provided data for 

assessing the performance metrics of models, such as area under the curve, accuracy, 

sensitivity, and specificity. We excluded review papers, case reports, conference 

abstracts, editorials, preprints, and studies not conducted in English.  

Data Extraction 

Two independent reviewers [initials] extracted data from each study using a 

structured form, ensuring coverage of relevant variables. These included the title, 

author, publication year, study design, radiology method used, the body part 

examined, research task, sample size, AI method/model employed, performance 

metrics, limitations, main results, and their implications. Any differences in data 

extraction were resolved through collaborative discussion, with a third reviewer's 

input sought when necessary. 

Risk of Bias 

To evaluate the quality and robustness of the methodologies in the included studies, 

the QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies-2) tool was 

used (27).  
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Results  

Search Results and Study Selection 

Our search across PubMed, Embase, Web of Science, and Scopus initially identified 

897 papers. After removing 472 duplicates, 425 articles remained. Subsequent title 

and abstract screening excluded 354 papers, leaving 71 full-text articles for 

evaluation. Ultimately 21 articles were selected for inclusion. One additional article 

was identified through reference checking, leading to a total of 22 studies included in 

our review (6–9,17,19–21,24,28–40). The selection process is visually represented in 

Figure 4, the PRISMA flowchart.  

Figure 4: PRISMA flowchart. 
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Risk of Bias 

The risk of bias analysis (Figure S1) highlighted that most studies demonstrated a 

low risk across various domains. Specifically, seven studies exhibited low risk in all 

evaluated domains, reinforcing their credibility and methodological robustness 

(6,8,21,28,31,36,40). Overall, 17 studies were classified as low risk (6–8,19–

21,24,28–34,36,37,40), three as high risk (17,35,38), and two as presenting some 

concerns (9,39) (Figure S1-2), underscoring a generally low risk of bias. Regarding 

applicability concerns, most studies showcased a low risk, indicating their relevance 

to broader clinical settings. However, it is noteworthy that some studies faced 

limitations due to small sample sizes.  

Overview of Included Studies 

This systematic review includes	22 studies exploring the use of deep learning in SpA 

imaging diagnosis, published between 2019 and 2024(6–9,15,17–20,26–38) (Figure 

S3). These studies, predominantly published in impactful quartile 1 (Q1) journals 

(Figure 5, Table S1). 
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Figure 5: Distribution of the Included Studies by Quartile and Year. 

 

The studies involved diverse patient populations. Sample sizes range from smaller 

cohorts, such as 56 patients in Faleiros et al. (28), to more extensive datasets, like the 

6436 pelvic X-rays analyzed in Li et al. (7).The clinical tasks implemented were      

also diverse, addressing different aspects of SpA diagnosis and management. 

Examples include the detection of inflammatory sacroiliitis (19,38), differentiating 

arthritis types (20), grading vertebral changes (39), and predicting the course of 

ankylosing spondylitis (7).   

The radiographic images analyzed in this review included X-ray, MRI, and Computed 

Tomography (CT). Specifically, MRI was employed in 12 studies, with a focus on the 

sacroiliac joint and the whole spine. Five studies utilized CT, while another five 

employed X-ray, primarily for diagnosing sacroiliitis and grading vertebral changes. 

A wide array of models has been employed. For instance, Lee et al. (2023) used a 

two-stage framework combining Faster R-CNN and VGG-19 (19), while Bressem et 

al. employed a sophisticated 3D U-Net architecture followed by a dual-encoder 
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ResNet-101 (40). Koo et al. utilized a modified HRNet for key-point detection 

alongside a ResNet 152-based CNN (39).   

The performance of these models was generally promising, though varied. Sensitivity, 

specificity, and AUROC (Area Under the Receiver Operating Characteristic Curve) 

are commonly used metrics. For example, Lee et al. reported a patient-level 

sensitivity of 94.7% and specificity of 69.1%, with an AUC of 0.816 (19). Bressem et 

al. achieved an AUC of 0.94 for detecting inflammatory changes (40). Koo et al. 

demonstrated high sensitivity 93.6% and accuracy 95.7% for grading vertebral 

changes in ankylosing spondylitis (39). (Figure S3 summarizes the most important 

performance metrics in the studies that reported sensitivity, specificity, or AUC).  

Clinical tasks  

The clinical tasks of the included studies can be grouped into three broad categories: 

Diagnosis and Classification of SpA, Differentiation of Arthritis Forms, and Analysis 

of Disease Progression and Structural Changes (Figure S4 visually illustrates the 

distribution of the clinical tasks among the included studies). Each category 

encapsulates the key findings, performance metrics, and notable characteristics of the 

AI models utilized in the studies. 

Diagnosis and Classification of SpA 

In MRI studies, Lee et al. (2023 - MRI), Bressem et al. (2022 - MRI), Bordner et al, 

and Roles et al. focused on diagnosing axial SpA (19,37,38,40).  

Lee et al. utilized a two-stage faster R-CNN and VGG-19 network achieving a 

sensitivity of 94.7% and specificity of 69.1% (19). Bressem et al. (2022) reported an 

AUC of 0.94 with their 3D dual-encoder ResNet-101 for detecting inflammatory 

changes (40). Bordner et al. developed a mask-RCNN modelpredicting active 
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sacroiliitis with high accuracy, evidenced by MCC values up to 0.90 and AUCs up to 

0.98 (36). Roles et al. study utilized a ResNet18-based CNN, achieving a high cross-

validation AUC of 94.5% (37). Zhang (2024) et al. and Li et al. demonstrated the 

potential of CNNs in diagnosing sacroiliitis and ankylosing spondylitis (9,20) , with 

Li's ensemble models surpassing human experts (precision, recall, and AUC values of 

0.91, 0.90, and 0.96, respectively) (7). Faleiros et al. and Lin et al. also showed high 

accuracy in MRI classification for active inflammatory sacroiliitis and spinal 

inflammation, respectively, matching radiologist performance (28,29). 

"In X-ray studies, Lee et al. (2023 – Xray) and Bressem et al. (2021 - Xray) utilized 

deep learning models to diagnose sacroiliitis from radiographs (8,33).  

Lee et al. utilized a DenseNet121 CNN, achieving up to 100% sensitivity and 

specificity for certain grades of spondylolisthesis (33). Bressem et al. (2021), 

employedResNet-50, with AUC of 0.97 and 0.94 invalidation and test datasets, 

respectively (8). Additionally, Ureten et al. applied pre-trained models like VGG-16, 

ResNet-101, and Inception-v3, reaching an accuracy of 89.9% with VGG-16 (21). 

For CT images, Zhang et al. (2023) utilized nnU-Net and a 3D CNN to grade 

sacroiliitis in ankylosing spondylitis (17). The nnU-Net achieved Dice coefficient of 

0.889 for the test set, indicating high segmentation accuracy. For grading sacroiliitis, 

the 3D CNN model yielded micro average AUCs of 0.91 for the test set, with 

accuracy levels of 0.802.  

Differentiation of Arthritis Forms 

Folle et al. study on differentiating Psoriatic Arthritis (PsA) from other forms using 

ResNet neural networks showed AUC values ranging from 67% to 75% (20). 

Disease Progression and Structural Changes Analysis 
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Five studies examined radiographic progression and structural changes. Koo et al. 

study utilized a CNN model for grading vertebral bodies changes, showing high 

sensitivity and accuracy (39). Gou et al. used LHR-Net for lesion segmentation and 

ankylosing spondylitis grading, with a dice coefficient score of 0.71 (36).   

Zhang (2023) et al and Berghe et al. leveraged CT imaging for sacroiliitis analysis 

(17,34). Zhang et al. nnU-Net achieved a Dice coefficient of 0.915, indicating high 

segmentation accuracy (17). Berghe et al. study utilized U-Net for sacroiliac joint 

segmentation with a dice coefficient of 0.75 (34). Lee et al. (2021) utilized ResNet18 

to detect bone marrow edema in the sacroiliac joints from MRI images, achieving an 

impressive accuracy of 93.5% (35). 

Discussion 

We analyzed 22 studies that employed deep learning models to enhance the diagnostic 

imaging of SpA using MRI, CT, and X-ray techniques. Our findings indicate MRI as 

the most effective modality, highlighted by Lee et al.’s two-stage framework with 

high sensitivity and specificity (19), and Bressem et al.'s 3D CNN architecture, 

reaching an AUC of 0.94 (40). These models often surpassed the performance of 

human experts in diagnosing and classifying axial SpA. CT imaging also 

demonstrated strong results, especially in segmentation and grading of sacroiliitis, 

with Zhang et al.'s nnU-Net showing high segmentation accuracy and diagnostic 

reliability (17). In contrast, X-ray-based models, while still effective, generally 

showed lower performance compared to MRI and CT.  

The integration of CNNs and U-Net has markedly improved the accuracy of imaging 

diagnoses in SpA, presenting a potential in transformation rheumatology and 

radiology (6,8,28,29,31). Deep learning methods have excelled in identifying complex 
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patterns and segmenting medical images (2,15,18). However, the performance metrics 

across studies, such as sensitivity, specificity, and AUC, exhibit variability. This 

variability underscores the necessity for standardized benchmarks in future research to 

ensure the consistency and reliability of AI applications. 

Integrating AI with human expertise is crucial for nuanced interpretation and 

decision-making (2,15). For example, the study by Koo et al. demonstrated high 

sensitivity and accuracy in grading vertebral changes in ankylosing spondylitis using 

a modified HRNet alongside a ResNet 152-based CNN (39). This integration 

highlights AI's potential to augment human diagnostic capabilities, emphasizing the 

importance of collaborative efforts between technology and clinical expertise 

(2,3,23,41). 

While CNNs, particularly ResNets and U-Nets, were predominantly used, notable 

exceptions include Tenorio et al.’s use of a fully connected artificial neural network 

(ANN) for radiomic model development, which yielded high results (31). 

Additionally, an Attention U-Net algorithm provided a unique adaptation by 

enhancing the standard U-Net with attention mechanisms for more effective focus on 

pertinent image areas (22). With the recent advent of attention and transformer 

models in computer vision, their utilization for SpA is expected to increase in the 

coming years. 

The results of our study, along with the current direction of the literature, underscore 

that the potential impact of AI's integration into clinical practice, particularly within 

the fields of rheumatology and radiology (2–4,42,43). However, prospective studies 

are crucial to validate AI models, especially those based on deep learning, and to 

investigate their applicability in the clinical setting (44). The use of AI in diagnostic 

imaging faces challenges. These include the dependency on data quality and 
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variability in study methodologies (2,23). Ensuring that models accurately reflect the 

heterogeneity of SpA is critical. Addressing these limitations is pivotal for the safe 

and effective deployment of AI. 

The limitations of the reviewed studies stem from their retrospective nature, often 

leading to challenges in data diversity and applicability in clinical settings. 

Additionally, most studies did not compare AI model performance with human 

practitioners. For instance, Lee et al. relied on expert consensus for ground truth, 

possibly limiting real-world applicability (19).  Folle et al. faced challenges with 

insufficient training datasets, a common issue in deep learning studies that affects 

model robustness (18). Similarly, Bressem et al. encountered biases due to their 

selective use of imaging techniques, potentially affecting the comprehensiveness of 

their findings (38).  These examples highlight common issues in this specific area of 

AI research, such as data quality, model validation, and potential biases, which are 

important for the practical application of AI in medical imaging (Table 2).  

Additionally, a meta-analysis was not conducted due to the heterogeneity of the 

studies involved (43).  

In conclusion, deep learning models offer improvements in the accuracy of SpA 

imaging diagnostics, particularly with MRI. Despite their potential, transitioning them 

into clinical application requires overcoming current retrospective biases and 

integrating AI with clinical expertise. Future directions should aim to standardize 

methodologies and validate these models in diverse clinical settings. 
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Specific Boolean strings used to screen the different databases:  
PubMed  
("Artificial Intelligence" OR "AI" OR "Deep Learning" OR "Machine Learning" OR 
"Neural Networks" OR "Computer Vision" OR "Automated Diagnosis" OR 
"Algorithm*") AND  
("Spondyloarthritis" OR "Ankylosing Spondylitis" OR "Axial Spondyloarthritis" OR 
"Spinal Arthritis" OR "Spondyloarthropathy" OR "Inflammatory Back Pain") AND  
("Radiography" OR "Radiographic Diagnosis" OR "MRI" OR "Magnetic Resonance 
Imaging" OR "CT" OR "Computed Tomography" OR "X-Ray" OR "X-Ray Imaging" OR 
"Radiograph" OR "Imaging Techniques" OR "Diagnostic Imaging") 
Embase 
('artificial intelligence'/exp OR 'AI' OR 'deep learning' OR 'machine learning' OR 
'neural networks' OR 'computer vision' OR 'automated diagnosis' OR 'algorithm*') 
AND  
('spondyloarthritis'/exp OR 'ankylosing spondylitis'/exp OR 'axial spondyloarthritis' 
OR 'spinal arthritis' OR 'spondyloarthropathy' OR 'inflammatory back pain') AND  
('radiography'/exp OR 'radiographic diagnosis' OR 'MRI' OR 'magnetic resonance 
imaging'/exp OR 'CT' OR 'computed tomography'/exp OR 'x-ray'/exp OR 'x-ray 
imaging' OR 'radiograph' OR 'imaging techniques' OR 'diagnostic imaging') 
Web of Science 
(TS=("Artificial Intelligence" OR "AI" OR "Deep Learning" OR "Machine Learning" OR 
"Neural Networks" OR "Computer Vision" OR "Automated Diagnosis" OR 
"Algorithm*")) AND  
(TS=("Spondyloarthritis" OR "Ankylosing Spondylitis" OR "Axial Spondyloarthritis" OR 
"Spinal Arthritis" OR "Spondyloarthropathy" OR "Inflammatory Back Pain")) AND  
(TS=("Radiography" OR "Radiographic Diagnosis" OR "MRI" OR "Magnetic Resonance 
Imaging" OR "CT" OR "Computed Tomography" OR "X-Ray" OR "X-Ray Imaging" OR 
"Radiograph" OR "Imaging Techniques" OR "Diagnostic Imaging")) 
 
Scopus  
( TITLE-ABS-KEY ( "Artificial Intelligence" OR "AI" OR "Deep Learning" OR "Machine 
Learning" OR "Neural Networks" OR "Computer Vision" OR "Automated Diagnosis" 
OR "Algorithm*" ) ) AND ( TITLE-ABS-KEY ( "Spondyloarthritis" OR "Ankylosing 
Spondylitis" OR "Axial Spondyloarthritis" OR "Spinal Arthritis" OR 
"Spondyloarthropathy" OR "Inflammatory Back Pain" ) ) AND ( TITLE-ABS-KEY ( 
"Radiography" OR "Radiographic Diagnosis" OR "MRI" OR "Magnetic Resonance 
Imaging" OR "CT" OR "Computed Tomography" OR "X-Ray" OR "X-Ray Imaging" OR 
"Radiograph" OR "Imaging Techniques" OR "Diagnostic Imaging" ) ) 
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