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KEY POINTS 

Question: How can we examine the multi-dimensional generalizability of randomized clinical 

trials (RCT) to real-world patient populations? 

Findings: We demonstrate a novel phenotypic distance metric comparing an RCT to real-world 

populations in a large multicenter RCT of heart failure patients and the corresponding patients in 

multisite electronic health records (EHRs). Across 63 pre-randomization characteristics, pairwise 

assessments of members of the RCT and EHR cohorts were more discordant from each other 

than between members of the EHR cohort (median standardized mean difference 0.200 [0.037-

0.410] vs 0.062 [0.010-0.130]), with a majority (55%) of RCT participants closer to each other 

than any individual EHR patient. The approach also enabled the quantification of expected real 

world outcomes based on effects observed in the RCT. 

Meaning:  A multidimensional phenotypic distance metric quantifies the generalizability of 

RCTs to a given population while also offering an avenue to examine expected real-world patient 

outcomes based on treatment effects observed in the RCT.  
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ABSTRACT 

Importance: Randomized clinical trials (RCTs) are the standard for defining an evidence-based 

approach to managing disease, but their generalizability to real-world patients remains 

challenging to quantify. 

Objective: To develop a multidimensional patient variable mapping algorithm to quantify the 

similarity and representation of electronic health record (EHR) patients corresponding to an RCT 

and estimate the putative treatment effects in real-world settings based on individual treatment 

effects observed in an RCT. 

Design: A retrospective analysis of the Treatment of Preserved Cardiac Function Heart Failure 

with an Aldosterone Antagonist Trial (TOPCAT; 2006-2012) and a multi-hospital patient cohort 

from the electronic health record (EHR) in the Yale New Haven Hospital System (YNHHS; 

2015-2023).  

Setting A multicenter international RCT (TOPCAT) and multi-hospital patient cohort 

(YNHHS).  

Participants: All TOPCAT participants and patients with heart failure with preserved ejection 

fraction (HFpEF) and ≥1 hospitalization within YNHHS. 

Exposures: 63 pre-randomization characteristics measured across the TOPCAT and YNNHS 

cohorts.  

Main Outcomes and Measures: Real-world generalizability of the RCT TOPCAT using a 

multidimensional phenotypic distance metric between TOPCAT and YNHHS cohorts. 

Estimation of the individualized treatment effect of spironolactone use on all-cause mortality 

within the YNHHS cohort based on phenotypic distance from the TOPCAT cohort. 
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Results: There were 3,445 patients in TOPCAT and 11,712 HFpEF patients across five hospital 

sites. Across the 63 TOPCAT variables mapped by clinicians to the EHR, there were larger 

differences between TOPCAT and each of the 5 EHR sites (median SMD 0.200, IQR 0.037-

0.410) than between the 5 EHR sites (median SMD 0.062, IQR 0.010-0.130). The synthesis of 

these differences across covariates using our multidimensional similarity score also suggested 

substantial phenotypic dissimilarity between the TOPCAT and EHR cohorts. By phenotypic 

distance, a majority (55%) of TOPCAT participants were closer to each other than any individual 

EHR patient. Using a TOPCAT-derived model of individualized treatment benefit from 

spironolactone, those predicted to derive benefit and receiving spironolactone in the EHR 

cohorts had substantially better outcomes compared with predicted benefit and not receiving the 

medication (HR 0.74, 95% CI 0.62-0.89).   

Conclusions and Relevance: We propose a novel approach to evaluating the real-world 

representativeness of RCT participants against corresponding patients in the EHR across the full 

multidimensional spectrum of the represented phenotypes. This enables the evaluation of the 

implications of RCTs for real-world patients. 

Words: 375 
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INTRODUCTION 

Randomized clinical trials (RCTs) are the standard for defining optimal care practices, but 

quantifying their generalizability to real-world patients remains challenging.1–4 

Underrepresentation and under-enrollment of key patient demographic and clinical 

subpopulations contribute to this gap, leading to decreased external validity of RCT treatment 

effect outcomes in these populations. 5–12 The generalizability of RCTs across real-world 

populations relies on their external validity.3  Prior studies assessing the external validity of 

RCTs, however, have been unable to capture the complete profile of patients, relying instead on 

comparing populations across a few covariates or one covariate at a time.12–15 For example, 

hypothetically, if an RCT had an equal gender distribution, but all men had renal disease, and all 

women had diabetes, a real-world cohort with similar gender composition but with renal disease 

and diabetes present split equally between genders would be indistinguishable on univariate 

comparisons of gender, diabetes, or renal dysfunction. This example, while an extreme case, 

does not even account for the complex relationships across all covariates. Therefore, a multi-

dimensional phenotypic representation of cohorts is needed to adequately evaluate 

representativeness between RCT cohorts and real-world populations. 

To address this, we leveraged participant-level data from a large, phase 3 RCT of heart 

failure with preserved ejection fraction (HFpEF).16,17 The inherently heterogeneous patient 

profiles of HFpEF provide an ideal use case for multi-dimensional phenotypic representation, 

which we define as phenomapping.17–19 In the RCT, the Treatment of Preserved Cardiac 

Function Heart Failure with an Aldosterone Antagonist Trial (TOPCAT), spironolactone did not 

significantly lower the risk of major adverse cardiovascular events.20 Subsequent analyses of 
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TOPCAT have shown heterogeneous treatment effects across participants, requiring an 

evaluation of the extent to which the RCT cohort is representative of real-world patients.20–22 

Identifying the complex phenotypic profile of patients with HFpEF in a real-world cohort 

can quantify the generalizability of TOPCAT across patient populations. We leverage the 

population of HFpEF patients captured in the electronic health record (EHR) at 5 hospital sites in 

a large, geographically dispersed health system to demonstrate a strategy to define the 

representativeness of RCT for both patient characteristics and anticipated real-world treatment 

effects. 

 

METHODS 

Study Populations 

The first study population, the TOPCAT trial, was a multi-center international RCT that enrolled 

patients between 2006 and 2012 and evaluated the effect of spironolactone compared with 

placebo on the incidence of the combined cardiovascular outcome of death from cardiovascular 

cause, myocardial infarction, stroke, aborted cardiac arrest, and hospitalization for 

decompensated heart failure among patients with HFpEF. Details of TOPCAT 

(ClinicalTrials.gov identifier: NCT00094302)  have been previously published.20 The study 

enrolled 3445 individuals ≥ 50 years from North America, South America, Georgia, and Russia 

with left ventricular ejection fraction (LVEF) ≥ 45%, one sign and one symptom of heart failure, 

and at least one hospitalization for heart failure in the preceding 12 months. Alternatively, those 

without a hospitalization but with an elevated B-type natriuretic peptide were also included. 

The second data source was the Yale New Haven Health System, a large health system 

that includes several hospitals and associated primary care locations with diverse racial and 
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socioeconomic demographics across Connecticut and Rhode Island. We focused on patients 

admitted with heart failure to one of the Connecticut sites between January 2015 through April 

2023. The study included patients across 5 sites within 4 geographically distinct hospitals: Yale 

New Haven Hospital York Street Campus (YNHH YSC) and Yale New Haven Hospital St. 

Raphael’s Campus (YNHH SRC), Greenwich Hospital (GH), Bridgeport Hospital (BH), and 

Lawrence + Memorial Hospital (LMH). Of note, YNHH YSC and YNHH SRC are located in 

New Haven, while the other sites are located in other cities/towns in Connecticut. The health 

system uses an Epic EHR system with data organized in Epic Clarity®, a SQL database 

management system. Strengthening the Reporting of Observational Studies in Epidemiology 

(STROBE) reporting guidelines were followed. 

EHR Heart Failure Cohort Derivation 

Mapping an RCT to an EHR cohort study requires the identification of a cohort that best 

emulates the eligibility criteria of the study. We extracted patients with at least one hospital 

admission with a heart failure International Classification of Diseases, Tenth Revision, Clinical 

Modification (ICD-10-CM) code, representing codes with the root I50. We curated patient 

encounters with an echocardiogram within six months of the hospitalization and an LVEF of 

45% or above and without any prior echocardiogram with an LVEF below 45%. Hospital sites 

included YNHH YSC, YNHH SRC, BH, GH, and LMH, referred to collectively as the EHR 

cohorts. 

Curation and Mapping of RCT variables to EHR cohorts 

We extracted baseline demographics, conditions, procedures, vital signs, medications, laboratory 

values, and echocardiogram variables from participant-level data for TOPCAT. We selected 

structured TOPCAT variables with <50% missingness, therefore representing conditions that 
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were captured in a majority of participants. We excluded covariates that provided redundant 

information or did not have a corresponding definition in the EHR and variables that were 

related to the trial logistics or its timeline (eTable 1). In all, 63 covariates, 1 treatment arm 

indicator, and 1 outcome of time to composite cardiovascular mortality were included (Figures 

1a and 1b, Table 1, eTable 2).   

Two clinicians (PT and EKO) collaboratively defined the computational phenotype of 

each of the 65 TOPCAT variables and outcomes to be deployed in the EPIC Clarity® extracts to 

map the TOPCAT variables. These included tables summarizing structured data such as 

conditions, procedures, laboratory values, and medications and semi-structured data such as 

echocardiogram reports from the EHR. For those with multiple hospitalizations, a random 

hospitalization encounter was chosen as the start date, and outpatient medications, procedures, 

conditions, vital signs, and laboratory values were included, if available, to simulate a baseline 

phenotypic profile similar to the TOPCAT participants (Online Supplement). 

Each data category required a separate rule-based mapping function with variable ICD-

10-CDM code or variable name string-search (Supplemental Methods, Figure 1b, eTable 4). The 

primary outcome in the EHR cohorts was all-cause death, representing events occurring in the 

health system and supplemented with out-of-hospital death data from the CT death index. Events 

were counted beginning 30 days and ending 5 years after index hospitalization to assess extended 

use of spironolactone. Those patients without an outcome after 5 years were censored to match 

follow up time in TOPCAT, and patients who died within 30 days of index hospitalization were 

removed from outcome analysis in order to further match patients with lower acuity to the 

TOPCAT participants. 
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TOPCAT and EHR cohorts were pre-processed separately with continuous and binary 

categorical values. Pre-processing included imputation of missing values, removal of variables 

with high collinearity, and winsorization of outliers, which followed our previously described 

methods19 (Supplemental Methods). 

 

Phenotypic Distance Metric to Evaluate Representation Distance Between Cohorts 

We defined a metric to summarize the differences across a cohort’s complex multivariate 

differences by calculating a dissimilarity distance across covariates. We combined distances 

across the covariate landscape using Gower’s distance, which is a similarity metric that 

incorporates mixed-type (categorical and continuous) data (Supplemental Methods).23 We 

weighted each covariate distance by its prognostic significance, defined by the beta coefficient of 

a univariate Cox proportional hazards model to predict the hazard of the combined 

cardiovascular outcome in the TOPCAT control arm. We refer to this weighted Gower’s distance 

as the “phenotypic distance”. Larger cohorts were subsampled to have the same number of 

individuals as smaller cohorts for comparison. 

To quantitatively assess the distance between cohorts, we compared the median Gower’s 

distance distribution within a cohort with the distribution between two cohorts. The Gower’s 

distance, however, is a dimensionless scaled metric of relative distance, so defining this distance 

between the TOPCAT and EHR cohorts is not directly interpretable. To address this, we defined 

the ratio of median phenotypic distances between two cohorts and within one cohort, named the 

phenotypic distance metric (PDM), which quantifies the indexed dissimilarity when comparing 

individuals between two cohorts.  A ratio greater than 1 represented a larger difference between 

cohorts than within one cohort.  
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In sensitivity analyses, we evaluated median differences in TOPCAT and the five 

hospital cohorts comparing the median distances within and between subgroups, including the 

TOPCAT spironolactone and placebo arms, and the 5 EHR based cohorts. 

Individual EHR Patient Representation in RCT 

We defined the position of each EHR patient within the phenotypic distribution of TOPCAT 

patients across prognostically relevant covariates. For this, we recalculated the weighted 

Gower’s distance of each EHR cohort patient from the TOPCAT cohort covariates most 

prognostic for the combined cardiovascular outcome. Next, we defined an index TOPCAT 

participant, the one most phenotypically representative of TOPCAT participants, based on the 

shortest phenotypic distance to all other TOPCAT participants.  We estimated the representation 

of each EHR cohort patient in TOPCAT by calculating their percentile of phenotypic distance 

from the index TOPCAT participant. Specifically, using the TOPCAT cohort distribution of 

phenotypic distance from the index TOPCAT participant, we determined the percentile of each 

EHR cohort patient within this distribution, representing the position of each EHR patient within 

the phenotypic distribution of TOPCAT patients. 

RCT-derived clinical effect estimates against treatment patterns in the EHR 

Based on our prior work19,24, we also used TOPCAT to define a personalized treatment effect 

estimate as a function of patient covariates (Online Supplement). We then calculated each EHR 

patient’s estimated individualized hazard ratios (iHRs) based on the model developed in 

TOPCAT. We compared the all-cause mortality outcome of those EHR patients with an expected 

benefit from spironolactone (iHR<1) across strata of those receiving and not receiving 

spironolactone in the clinical setting.  

Statistical Analysis 
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We summarized categorical variables by number and proportion present in each group and 

continuous variables as mean and standard deviation or median and interquartile range. 

Categorical variables were compared between the two cohorts using a chi-squared test and 

continuous variables using Welch’s two-sided t-test.25 We also calculated the standardized mean 

difference for each covariate between each cohort pair and the median standardized mean 

difference with IQR for each TOPCAT-EHR cohort pair and each pair of EHR cohorts.25 

We calculated the PDM as described above with interquartile values of the metric. We 

depicted the qualitative difference between the TOPCAT cohort and the EHR cohort by 

projecting the phenotypic distances onto a dimensionality reduction method called uniform 

manifold approximation and projection (UMAP).19,26,27 The method projects the high-

dimensional dataset onto two dimensions by ensuring points are closest to their nearest neighbors 

while also attempting to preserve the global representation of each point in the manifold.  

Group-level outcome hazard rate differences were evaluated using Cox proportional 

hazards models over five years with the treatment arm as an independent covariate. We adjusted 

for age, sex, diabetes mellitus, and prior heart failure hospitalization, representing covariates that 

were adjusted for in the reported analyses of TOPCAT. All statistical tests were 2-sided with a 

pre-specified Type 1 Error rate of 0.05. 

The Yale Institutional Review Board reviewed this study, and a waiver of consent was 

granted because it was a retrospective study of medical records. 

 

RESULTS 

Populations Characteristics 
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The TOPCAT trial had 3445 participants with a median age of 69 (61-76, 25-75% IQR) years 

and included 1775 (52%) women. Of the trial population, 1722 (50%) were assigned to the 

spironolactone arm and 1723 (50%) to the placebo control arm. The EHR cohorts included 

30,858 patients with a diagnosis of heart failure. Of these, 12,548 (41%) had one or more 

hospitalizations with a principal or a secondary diagnosis of heart failure (91,404 hospitalizations 

overall) and had at least one echocardiogram across either inpatient or outpatient settings, 

demonstrating an LVEF ≥45% and no prior echocardiograms with an LVEF <45%. There were 

11,712 patients included in the final EHR cohorts who had at least one echocardiogram within 

six months of their hospital admission, similar to the TOPCAT inclusion criteria. Among the 

index hospitalization randomly chosen for each patient, 3588 (30%) patients were treated at 

YNHH YSC, 3435 (29%) at YNHH SRC, 2637 (22%) at BH, 591(5%) at GH, and 1461(12%) at 

LMH.  Across these sites, the median age of patients ranged from 76 (IQR 65-85) years to 84 

(IQR 76-90) years. The proportion of women ranged from 54% to 61%. Overall, the EHR 

cohorts were older, had more women, and had a higher proportion of minorities compared with 

TOPCAT (Table 1).  

Similarity and representation between RCT and real-world EHR cohorts 

Both by qualitative UMAP visualizations (eFigure 1) and quantitative similarity distance 

comparisons (Table 2), there was a phenotypic separation between the TOPCAT and EHR 

cohorts (median phenotypic distance of 0.23 (IQR 0.21-0.27, Figure 2b).  These differences are 

in contrast to the treatment and placebo arms within the TOPCAT cohort, as well as pairs of sites 

in the EHR cohort that were less different (median phenotypic distance of 0.20 (IQR 0.18-0.23), 

Figures 2a and 2c). Acknowledging that phenotypic differences exist within each cohort simply 

due to the variation of phenotypic profiles, we indexed the similarity between cohorts to the 
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similarity of phenotypic distances within the reference cohort, thus defining the ratio as the 

PDM. Using this approach, we confirmed the phenotypic similarity between the treatment and 

placebo arms of TOPCAT (PDM of 0.99 (IQR 0.98-1.0)) and estimated a median phenotypic 

distance metric between the EHR cohorts of (PDM of 0.98 (IQR 0.96-1.0)). In contrast, the PDM 

between the pooled EHR cohorts and the TOPCAT population was 10% above 1, at 1.1 (1.1-

1.2). With regards to real-world individual representation within TOPCAT, we compared all 

EHR patients to the most representative TOPCAT participant, or the individual closest in 

phenotypic distance to all other participants, termed the index TOPCAT participant.  All patients 

in the EHR cohorts were further in phenotypic distance from the index TOPCAT participant than 

55% of the TOPCAT participants. In addition, the average patient in the EHR cohorts was 

further from the index TOPCAT patient than 80% of the TOPCAT patients. 

Outcomes in real-world cohorts based on expected therapeutic effects in the RCT 

Based on the individualized treatment effectiveness model developed in TOPCAT, 10,519 of the 

10,548 EHR patients with an outcome were predicted to benefit from spironolactone use (iHR of 

<1). Of these, 1,119 (11%) were receiving the medication before outcome measurement. Within 

the EHR cohorts, patients with a high predicted benefit from spironolactone who also were on 

spironolactone had lower mortality than those who were not on spironolactone (Online 

Supplement). This was statistically significant even after adjusting for age, sex, a history of 

diabetes mellitus, and a prior heart failure hospitalization, with an adjusted hazard ratio for risk 

to the first occurrence of all-cause mortality of 0.83 (95% confidence interval 0.74-0.94, p-value 

<0.001) (Figure 3, eTable 6). 

 

DISCUSSION 
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In this study, we demonstrate a strategy to quantify the multi-dimensional representation gap 

between an RCT and real-world patients in the EHR by presenting an approach to map 

computable phenotypes of RCT participants to real-world clinical populations. We propose a 

quantitative metric that computes information across all available covariate axes to define a 

unifying similarity score across cohorts, and apply the score with individualized outcome 

information in the RCT to identify EHR patients most likely to benefit from the RCT 

intervention. The PDM quantified differences between TOPCAT and the EHR cohorts while 

quantifying similarities between the 5 EHR cohorts or between TOPCAT treatment arms. In 

addition, all individual EHR patients were further in phenotypic distance from a representative 

TOPCAT participant compared to the majority of TOPCAT participants, supporting 

quantification of the representation gap. We also demonstrate that based on an individualized 

treatment response model developed among TOPCAT participants, 99% of EHR patients with 

HFpEF were those who would be expected to benefit from spironolactone use, and that within 

these patients, those on spironolactone experienced a 26% reduction in major cardiovascular 

outcomes.   

Our study builds upon the literature evaluating the representativeness of RCTs for real-

world settings. Prior approaches have focused on defining differences across a limited number of 

covariate axes and have also largely been used on one-to-one comparisons across singular 

covariate or solely categorical data, with the information across covariate comparisons 

interpreted qualitatively.12–15,28–30 Our approach addresses these challenges by deploying a 

strategy that goes beyond describing differences between the RCT and the EHR on individual 

features and instead quantifies the differences across multiple axes. This is innovative as it 

overcomes the fallacy of comparing the average distribution of covariates across the entire 
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population against the averages across another population, which ignores stark differences in 

various clinical subpopulations that are not identified by focusing on the average. In addition, we 

apply a quantitative phenotypic distant metric across five sites within four different hospitals that 

demonstrate the flexibility of the application across different cohorts. 

Our study has important clinical implications. When clinicians assess whether a patient 

would benefit from a particular treatment, they often refer to relevant RCTs for intervention in 

medical practice. They must also, however, look at the patient in front of them and determine 

how effectively the study translates to care. They ascertain (1) how generalizable is the study 

result to my patient? and (2) was my patient well-represented in this trial? The clinician 

considers not only demographics or comorbidities but also the entire picture of the patient. Our 

approach addresses each aspect of these decision quantitatively and interpretatively by providing 

the phenotypic distance metric to assess where the patient in question lies along the phenotypic 

distribution of the RCT participants and to suggest whether the patient may benefit from the 

intervention based on phenotypic similarity to the RCT participants. 

Our study uses TOPCAT as an example of RCT to demonstrate a process to capture the 

complex multidimensional picture of each RCT participant and to compare them directly to real-

world patients such as those in the EHR. We describe a method to predict benefits in the real-

world population based on individual patient characteristics and covariates deemed important by 

RCT individuals and also assess their representation in the RCT. Our quantification of the large 

representation gap between TOPCAT and EHR patients with HFpEF suggest an overarching 

need to assess representation from a multi-dimensional perspective during trial implementation 

and interim analysis.31 This further supports an increased role of tracking trial recruitment 

against real-world populations.  
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  Another observation from our work is the intensive nature of mapping data from clinical 

trials to real-world populations in the EHR. We highlight the challenges and variability of 

translating RCT cohorts and study variables to the EHR setting, suggesting another impedance to 

translating RCT evidence to our patients. Common data models such as the Observational 

Medical Outcomes Partnership standardize EHR mapping to make this research easier to 

accomplish and apply across multinational institutions.32 As trials increasingly become 

pragmatic, there is an urgent need to computably define RCT conditions within the context of the 

EHR since the manual approach to identify key features will represent a challenge for trial 

operations.  

There are limitations that merit consideration. Representation of real-world populations 

in the EHR is a unique challenge since the data represent a snapshot of time when the patient 

interacts with the medical system, and the patients seeking care likely represent a subset of the 

HFpEF population. The patients included, however, represented five sites with unique and 

diverse patient populations, thus maximizing the possible landscape of patients with HFpEF. 

Second, we chose a set of covariates available across the RCT and the EHR, which may not be a 

fully representative set of conditions that differ between individuals. However, features captured 

in large RCTs are often comprehensive, and our clinician-led approach designed a strategy to 

map many of these conditions using text phrases, billing codes, and all possible patient 

encounters in the system. We also confirmed the robustness of our approach with sensitivity 

analyses that focused on prognostically relevant conditions with similar results. Third, we chose 

Gower’s distance given its flexibility with modeling both categorical and continuous data and its 

ability to weigh some conditions more relative to the others. Although this represents one of 

many Euclidean distances appropriate for assessing differences across covariates, it has been 
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found superior to the other methods in identifying phenotypic differences.33  Finally, outcome 

risk ratios calculated in the EHR patients with HFpEF are susceptible to both ascertainment and 

unmeasured confounding by indication. We mitigated the bias by adjusting for the same 

covariates as seen in TOPCAT and focusing only on those patients predicted to have benefit 

from spironolactone use.  

We propose a novel approach to evaluating the real-world representativeness of RCT 

participants against corresponding patients in the EHR across the full multidimensional spectrum 

of the represented phenotypes. This enables the evaluation of the implications of RCTs for real-

world patients. 
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Figures

Figure 1: Study Overview A: Depiction of the extraction of TOPCAT and EHR patients with 
HFpEF. B: Second Panel: Narrowing and acquisition of TOPCAT variables to 65 clinically 
relevant variables with rule-based mapping to EHR variables. C: Third panel: univariate and 
multivariate covariate comparison between TOPCAT and EHR patients with HFpEF across 
multiple sensitivity analyses comparing the different TOPCAT treatment arms and those with 
and without prior HF hospitalizations with first and last admission encounters within the EHR 
patients with HFpEF, and two definitions of EHR patients with HFpEF derived by EF. Fourth 

25 
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panel:  Assessing the generalizability of TOPAT by deriving personalized hazard ratios for 
spironolactone use in the TOPCAT participants, training an extreme gradient boosting classifier 
on the most important covariates for determining these HRs and applying it to the EHR patients 
with HFpEF, comparing composite cardiovascular outcomes in the EHR patients with HFpEF 
stratified by predicted personalized benefit and being on spironolactone, and finally assessing the 
representation of EHR patients with HFpEF in the TOPCAT population by calculating the 
percentile distance each EHR patient is from the median TOPCAT participant. Abbreviations: 
EHR: Electronic Health Record, HR: Hazard Ratio, YNHHS: Yale New Haven Hospital System 
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Figure 2: Median Phenotypic Distance within TOPCAT subgroups and between TOPCAT 
and EHR subgroups. A: Histogram of median phenotypic distance between TOPCAT 
subgroups: the TOPCAT spironolactone (S.) Arm (dark red), and the TOPCAT Placebo (P.) Arm 
(dark orange). B: Histogram of median phenotypic distance between the TOPCAT cohort (Dark 
red) and EHR cohort (Purple). C: Median phenotypic distance difference of each subgroups from 
the entire EHR cohort median phenotypic distance. Orange is York Street Campus (YNHH 
YSC), Yellow is St. Raphael’s Campus (SRC), Lime green is Bridgeport Hospital (BH), Green 
in Greenwich Hospital (GH), and purple is Lawrence and Memorial Hospital (LMH).  
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Figure 3:  Distribution of individualized hazard ratios of EHR cohort and Kaplan-Meier 
curve of EHR patients with high predicted spironolactone benefit. (A) Distribution of log of 
individualized hazard ratios of time to cardiovascular event stratified by spironolactone use 
predicted for the EHR outcome cohort. The vertical line represents an individualized hazard ratio 
of 1, and values to the left of the dotted line represent high predicted benefit of spironolactone 
use. Red represents patients on spironolactone, orange represents patients not on spironolactone. 
(B) Survival probability versus time to event of composite cardiovascular outcome in EHR 
patients predicted to have high benefit with spironolactone stratified by being on spironolactone 
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(blue) or not on spironolactone (purple). Text below each plot represents number at risk for the 
specified group. Abbreviations: Spiro. stands for spironolactone, iHR stands for individualized 
hazard ratio for time to cardiovascular event stratified by spironolactone use, High-Pred stands 
for High Predictive. 
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TABLES 

Table 1: Selected Population Characteristics of the TOPCAT participants compared with 
EHR patients with HFpEF in 5 different hospital sites. 
Covariate TOPCAT 

(N=3445) 
YNHH 

YSC 
(N=3588) 

YNHH 
SRC 

(N=3435) 

BH 
(N=2637) 

LMH 
(N=1461) 

GH 
(N=591) 

P-value 

Age—median years (25-
75% IQR) 

69 [61,76] 76 [65,85] 80 [69,88] 79 [68,87] 79 [69,87] 84 [76,90] <0.001 

Female sex N (%) 1775 (52) 1947 (54) 2102 (61) 1530 (58) 798 (55) 327 (55) <0.001 

Race or ethnicity N (%)        

    Asian 19 (0.6) 36 (1.0) 30 (0.9) 30 (1.1) 11 (0.8) 11 (1.9) 0.021 

    Black 302 (8.8) 664 (19) 538 (15) 493 (19) 100 (6.8) 23 (3.9) <0.001 

    Other 70 (2.0) 235 (6.5) 198 (5.8) 327 (12) 109 (7.5) 57 (9.6) <0.001 

    White 3062 (90) 2802 (78) 2562 (75) 1806 (68) 1245 (85) 502 (85) <0.001 

    Hispanic or Latino 321 (9.3) 232 (6.8) 232 (6.8) 349 (13.2) 87 (6.0) 38 (6.4) <0.001 

Left Ventricular Ejection 
Fraction median % (25-
75% IQR) 

56 [51,61] 62 [56,67] 62 [56,67] 61 [57,65] 62 [58,68] 59 [55,64] 
<0.001 

Selected Vital Signs        

Systolic Blood Pressure 
median mmHg (25-75% 
IQR) 

130 
[120,140] 

127 
[112,144] 

127 
[114,144] 

133 
[119,149] 

131 
[118,145] 

129 
[113,146] <0.001 

BMI median kg/m2 (25-
75% IQR 

31 [27,36] 29 [24,35] 29 [24,36] 29 [25,35] 29 [25,36] 26 [23,31] 
<0.001 

Selected Conditions and 
Procedures 

      
 

  Atrial Fibrillation 
1214 (35.2) 1882 (52.5) 1788 (52.1) 1365 (51.8) 856 (58.6) 

375 (63.5) <0.001 
 

  Atrial Fibrillation 500 (14.5) 
 

1882 (52.5) 1788 (52.1) 1365 (51.8) 856 (58.6) 375 (63.5) <0.001 
 

    Percutaneous Coronary 
Intervention 

500 (14.5) 
 

333 (9.3) 
 

211 (6.1) 
 

221 (8.4) 
 

116 (7.9) 
 

33 (5.6) <0.001 
 

Selected Medications        

    Anti-hypertensives 
3419 (99.2) 3257 (90.8) 3125 (91.0) 2394 (90.8) 1315 (90.0) 

 <0.001 
 

    Beta Blocker 
2679 (77.8) 2028 (56.5) 1871 (54.5) 1600 (60.7) 759 (52.0) 

 <0.001 
 

P-value was based on Kruskal-Wallis test for the continuous variables and chi-square test for 
categorical variables across groups. Vital signs of EHR patients were either taken during an 
outpatient visit or were at discharge from hospitalization if outpatient values were missing. Left 
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Ventricular Ejection Fraction of EHR patients were measured during an echocardiogram within 6 
months of a hospital admission, similar to TOPCAT. Abbreviations: N: number of patients, 
bpm:beats per minute, IQR: interquartile range, BMI: body mass index, and mmHg: millimeters 
of mercury. 
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Table 2: Median of Median Phenotypic Distance and Median Phenotypic Distance Metric 
Across Cohorts 
A. Comparis

on 
Cohort 
(Right) 

Median Phenotypic Distance (IQR 25-75%) 

Baseline 
Cohort 
(Below) 

TOPCAT 
S. Arm 

TOPCAT P. 
Arm 

YNHH YSC YNHH SRC BH GH LMH 

TOPCAT S. Arm 0.20 (0.18-
0.23) 

0.20 (0.018-
0.23) 

0.23 (0.21-
0.27) 

0.24 (0.21-
0.27) 

0.24 (0.22-
0.27) 

0.23 (0.20-
0.26) 

0.23 (0.20-
0.26) 

TOPCAT P. Arm  0.20 (0.18-
0.23) 

0.23 (0.21-
0.26) 

0.23 (0.21-
0.26) 

0.24 (0.22-
0.27) 

0.23 (0.21-
0.25) 

0.23 (0.20-
0.26) 

YNHH YSC   0.20 (0.18-
0.22) 

0.20 (0.18-
0.23) 

0.21 (0.19-
0.23) 

0.19 (0.17-
0.22) 

0.19 (0.17-
0.22) 

YNHH SRC    0.21 (0.19-
0.24) 

0.20 (0.19-
0.23) 

0.19 (0.17-
0.23) 

0.19 (0.17-
0.22) 

BH     0.21 (0.19-
0.25) 

0.20 (0.18-
0.24) 

0.20 (0.18-
0.24) 

GH      0.20 (0.18-
0.22) 

0.18 (0.17-
0.21) 

LMH       0.19 (0.17-
0.21) 

B.  Baseline Cohort Phenotypic Distance Metric (IQR 25-75%) 

TOPCAT S. Arm  0.99 (0.98, 
1.0) 

1.1 (1.0,1.2) 1.2 (1.1,1.2) 1.2 
(1.1,1.3) 

1.1 (1.0-
1.2) 

1.1 (1.0-1.2) 

TOPCAT C. Arm   1.2 (1.1, 1.2) 1.2 (1.1, 1.2) 1.2 (1.1-
1.3) 

1.2 (1.1-
1.3) 

1.1 (1.0-1.2) 

YNHH YSC    0.99 (0.98, 
1.0) 

1.0 (1.0-
1.0) 

0.96 (0.92-
1.0) 

0.98 (0.96-
1.0) 

YNHH SRC     1.0 (1.0-
1.1) 

0.96 (0.91-
1.0) 

0.97 (0.96-
1.0) 

BH      0.95 (0.88-
1.0) 

0.94 (0.91-
0.99) 

GH       0.98 (0.95-
1.0) 

(A) Median of Median Phenotypic Distance- Median of median phenotypic distance between 
baseline cohort (first column) and comparator cohort (first row). (B) Median phenotypic distance 
metric. The ratio of the median phenotypic distance between the baseline and comparator cohort 
and the median phenotypic distance within the baseline cohort. Abbreviations: BH: Bridgeport 
Hospital, GH: Greenwich Hospital, and LMH: Lawrence and Memorial Hospital, IQR: 
interquartile range, YNHH YSC: York Street Campus, and YNHH SRC: St. Raphael’s Campus. 
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