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Abstract

Population-level waning of protection following immunising exposures is an
important determinant of susceptibility to COVID-19 outbreaks. This work
outlines an individual-based model (IBM) for the transmission and clinical impact
of SARS-CoV-2 that explicitly represents the immunological response to
vaccination and infection of each individual. The IBM evaluates waning of
immunity to inform risk of infection and related clinical outcomes across a large
freely mixing population over time by age and prior exposure status. Modelling
immunological responses allows us to investigate the likely impact of immune
escape variants based on the landscape in which they emerge. The model
described in this paper was motivated by the need to anticipate health and societal
impacts of COVID-19 in Australia following emergence of the Omicron variant, in
the context of high national vaccine uptake but low infection exposure. It provides
a flexible framework for modelling policy-relevant scenarios to inform preparedness
and response actions as immunity in a population changes through time.
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1 Introduction 1

Understanding population-level immunity against COVID-19 is important for 2

proportionate public health and policy decision making about the imposition of public 3

health and social measures, and vaccine prioritisation and timing, to prevent future 4

surges of infection and disease. Whilst vaccination and prior exposure provide some 5

measure of sustained protection against the clinical consequences of SARS-CoV-2, it is 6

now well established that immunity against infection acquisition wanes over several 7

months [1, 2]. Moreover, variants such as those of the Omicron lineage demonstrate 8

ongoing risks associated with selection for immune escape, reducing effective protection 9

gained from prior vaccine and infection exposures. 10

Neutralising antibody (NAb) titres provide a measure of functional immune 11

responses induced by SARS-CoV-2 vaccination and infection against sequentially 12

emerging variants. An immunological model has been developed to correlate NAb titres 13

with clinical outcome measures from vaccine efficacy studies to define proxies of 14

protection against a range of infection and disease endpoints [3–5]. The model assumes 15

that NAb titres following vaccination or infection exposure are log-normally distributed 16

in the population and decay exponentially over time, resulting in a loss of efficacy. 17

While it is thought that other immune mechanisms such as T cells and memory B cells 18

may contribute to defence [6], there remains insufficient evidence to incorporate these 19

mechanisms into a quantitative immunological model. 20

This immunological model was previously embedded within an existing 21

individual-based model framework that assumed static immune responses [7, 8]. The 22

model presented in this paper extends previous work by explicitly tracking the 23

dynamics of each individual’s NAb titre following vaccination. In this way, it enables 24

exploration of likely transmission and related clinical outcomes of SARS-CoV-2 variants 25

under different vaccination and epidemic scenarios over time. The work was initiated in 26

late-2021, motivated by the need to investigate population-level consequences for 27

Australia of waning vaccine immunity and emergence of immune escape variants, 28

lowering effective protection against COVID-19. 29

As of early December 2021, Australia had experienced limited and localised 30

SARS-CoV-2 transmission, due to strict inter- and intra-national migration controls and 31

a proactive strong suppression policy. Only 211,000 cases (less than 1% of the 32

population) had been reported nationally, meaning that the vast majority of immunity 33

was derived from vaccination alone, with completed primary course (two dose) coverage 34

of approximately 84% of the eligible population. The country was well advanced on a 35

national reopening plan based on vaccine coverage thresholds deemed sufficient to 36

mitigate impact of the Delta variant predominant at that time [8]. By using a flexible 37

modelling framework that incorporated both immune waning and evasion, we were able 38

to address policy relevant questions about the likely impacts of SARS-CoV-2 Delta and 39

Omicron variants in the early months of 2022 given existing vaccine uptake, and 40

optimal timing of booster vaccine administration to mitigate disease burden. 41

2 Methods 42

The model framework is comprised of multiple interleaving elements to determine the 43

immune status over time of a modelled population of approximately 8 million 44

individuals, representing a large Australian jurisdiction. Figure 1 provides a schematic 45

of the model framework. First, a data-driven model representing logistics of the 46

Australian vaccination roll-out was used to simulate real world vaccine delivery, 47

including the age-dependent prioritisation over time. Second, viruses with the 48

properties of SARS-CoV-2 Delta and Omicron variants were introduced into the 49
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Fig 1. Schematic demonstrating how each component of the model is linked together.
First the vaccination allocation is determined and the immunity model is calibrated to
real world data. This information is linked into the transmission model, which simulates
the spread of COVID-19. Finally, the infections from the epidemic model are linked to
the Clinical Pathways model. Created with BioRender.com

immunised population, and their transmission simulated over time. Each individual’s 50

immune status was tracked following vaccine or SARS-CoV-2 exposure. This immune 51

status influenced whether each new infection exposure would lead to infection 52

acquisition. Finally, a line-list of infections is output from the dynamic transmission 53

model and used as input to a model that captured each individual’s likely clinical 54

pathway based on their age and immune status. By categorising these consequences in 55

relation to distinct clinical presentations we were able to anticipate the likely impact of 56

COVID-19 on the healthcare system. Both the vaccine and clinical pathways models 57

accounted for capacity constraints in health service delivery, allowing simulation of 58

feasible scenarios relevant to public health and policy decision making in context. 59

2.1 Vaccination Model 60

The model of vaccine roll-out in the Australian population has been developed in house 61

by the Australian Government [8]. In brief, an individual-based model using location 62

and allocation data on vaccine sites around Australia is used to administer available 63

stocks to the seeking population, within supply and delivery constraints [8]. In earlier 64

work, the model was used to investigate alternative primary course allocation strategies, 65

but on this occasion data recorded in the Australian Immunisation Register informed 66

the population’s vaccination status, including the timing of doses and vaccines received. 67

We then explored future roll-out scenarios that included different time windows to 68

booster dose eligibility following completion of the primary series (6 months versus 3 69

months) and final achieved uptake (80% versus 60%). The model outputs the vaccine 70

type and time vaccination, including primary and booster doses, for each individual in 71

the Australian population. Note that although this study has focused on scenarios 72

directly relevant to Australia, any user defined vaccine roll-out can be simulated and 73

implemented within this framework. 74
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2.2 Transmission model 75

To model the transmission of COVID-19 throughout the population of interest we 76

extended a previous individual-based model [8] to account for loss of protection over 77

time since vaccination. Waning of immunity is accounted for by explicitly modelling the 78

boosting and decay of each individual’s neutralising antibody titre [3, 4]. 79

Each individual within the simulation is assigned an age and corresponding contact 80

profile within an age-based matrix, a predetermined vaccination schedule (using the 81

model described in Section 2.1), and related decay rate of NAbs. Because the 82

vaccination schedule is set elsewhere, we can quickly and efficiently switch out different 83

vaccination scenarios. 84

The simulation is initialised at a known date, with each individual assumed to be 85

susceptible and to have a neutralising antibody level consistent with their vaccination 86

schedule. This is done by explicitly simulating their previous vaccinations backwards in 87

time, ensuring appropriate initial conditions for population-level immunity. Once an 88

individual is constructed, they are dynamically stored within a vector. 89

The spread of infection is modelled by directly simulating contact between infectious 90

and susceptible individuals. Since the initial model development, [8], we have updated 91

our model to include over-dispersion in the number of contacts an individual makes. 92

Therefore, for an infectious individual i in age bracket n, we sample the number of 93

contacts that they make in age bracket m from a negative binomial (NB) distribution, 94

such that, 95

Cm ∼ NB

(
rδt,

Λn,m

r + Λn,m

)
, (1)

where Cm is the number of contacts made this timestep by the individual in age bracket 96

m (in units of contacts per day), r is the dispersion parameter, δt (day) is the size of 97

the current time step and Λn,m is the mean number of daily contacts between age 98

bracket n and m. The matrix form of Λn,m used in this work is provided in Section 6.1. 99

Note that we have used the definition of the negative binomial distribution where 100

NB(r, p) corresponds to probability density function f(k) =
(
k+r−1

r

)
pk(1− p)r. We then 101

sample Cm contacts uniformly from individuals within the m-th age bracket. If contact 102

j is susceptible we determine if infection occurred using, 103

I ∼ Bernoulli(τiξj), (2)

where I is an indicator variable for successful infection, τi (dimensionless) is the 104

infectiousness of the infectious individual i and ξj (dimensionless) is the susceptibility of 105

the contact j. We note that τi is calibrated against a known transmission potential for 106

the population of interest, ensuring that we simulate the appropriate level of disease 107

transmission [8]. The transmission potential encapsulates the intrinsic transmissibility 108

of the circulating virus and the public health and social measures being observed within 109

the population. We also note that both τi and ξj depend upon the underlying 110

immunological model, which is described in Section 2.4, and the heterogeneous 111

characteristics of the individual of interest (for example, τi will be altered depending on 112

the symptom status of the infectious individual and both τi and ξj will depend upon 113

age). This process of generating contacts and the resulting infections is repeated over all 114

age brackets. 115

At the point of infection, whether an individual will be asymptomatic or 116

symptomatic is sampled from, 117

Q ∼ Bernoulli(qi), (3)

where Q is an indicator variable for symptomatic infection and qi is the probability that 118

individual i will be symptomatic, which depends on the age and neutralising antibody 119
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titre of individual i. We also sample the time that the newly exposed individual 120

becomes infectious, the time for the onset of symptoms and the time that the individual 121

will recover. Given that isolation of COVID-19 cases was mandated in Australia at the 122

time of study, we further simulate the time of isolation in relation to symptom onset, 123

which reduces the individual’s duration of infectiousness. Note that each of these times 124

are sampled from known distributions based on local case data [9]. These data have also 125

been used to estimate the likely constraining impact on transmission of active case and 126

contact finding and management, collectively termed test, trace, isolate, quarantine 127

(TTIQ). We include a factor to account for a ‘partial TTIQ’ effect under high case loads 128

as estimated from local data in earlier work [8]. 129

When an infectious individual recovers, we store the individual’s age, time of 130

symptom onset, neutralising antibody titre at exposure, symptom status (Q), the 131

number of individuals they infected, their vaccine status (what was the latest vaccine 132

they received) at exposure, the time they were isolated from the community and the 133

number of times that they have been infected. This generates a line-list of infections 134

that is used to model clinical outcomes (Section 2.3). 135

2.3 Clinical outcomes model 136

Fig 2. Diagram representing the transitions an individual can make in the clinical
pathways model. Transitions resulting in discharge and death are represented with
green and orange arrows.

The clinical outcomes model is based on and extends the previously described 137

clinical model [7, 8, 10]. This implementation extends on previous work by restructuring 138

the model as a continuous-time, stochastic, IBM, where the NAb titre and age of the 139

individual determines their transition probabilities. The full compartmental structure of 140

the clinical outcomes model is depicted in Figure 2. 141

All parameters governing the pathway each individual takes through the health 142

system are altered depending upon their individual NAb titre. The evaluation of these 143

transition probabilities are explained in full in Section 2.4 and baseline parameters 144

associated with Delta severity in unvaccinated individuals are given in Section 6.6. 145

For symptomatic individual i in the line-list output from the transmission model, we 146

determine if they are hospitalised by sampling, 147

H ∼ Bernoulli(piH|I), (4)

where H is an indicator variable for hospitalisation and piH|I is the probability that 148

individual i is hospitalised given symptomatic infection. 149
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There are three initial pathways for hospitalised individual i. Individual i will either 150

recover and be discharged from a ward bed, die in a ward bed, or move to an ICU bed; 151

as the three pathways have different length of stay distributions they are modelled as 152

three separate compartments HR, HD and ICUpre. To determine which pathway 153

individual i will follow, we sample from, 154

Xh ∼ Categorical(pi
1), (5)

where Xh is the sampled hospital pathway,

pi
1 =

[
piICU|H , (1− piICU|H)piHD|ICUc , (1− piICU)(1− piHD|ICUc)

]
is a vector containing the probability of transitioning into ICUpre, HD, or HR 155

respectively, piICU|H is the probability that individual i is admitted to ICU given they 156

are hospitalised and piHD|ICUc is the probability that individual i dies on ward given 157

that they are in hospital and are not going to ICU. If individual i requires the ICU, 158

they follow a further ICU pathway to determine their final outcome. 159

There are three possible pathways for an individual in the ICU. The individual will 160

either die in the ICU (ICUD), die in a ward bed after leaving the ICU (ICUWD), or 161

recover and be discharged from a ward bed after leaving the ICU (ICUWR). We sample 162

which pathway is taken within the ICU from, 163

XICU ∼ Categorical(pi
2), (6)

where XICU is the sampled ICU pathway,

pi
2 =

[
piICUD|ICU, (1− piICUD|ICU)p

i
WD|ICUc

D
, (1− piICUD|ICU)(1− piWD|ICUc

D
)
]

which is a vector containing the probability of transitioning into the ICUD, ICUWD or 164

ICUWR compartments respectively, piICUD|ICU is the probability that individual i dies 165

in the ICU given they were admitted to ICU and piWD|ICUc
D

is the probability that 166

individual i dies in a ward bed after leaving ICU without dying. For an individual that 167

transitions into ICUWR or ICUWD, they will move into a post-ICU ward compartment, 168

WR or WD, where they will either recover or die respectively. 169

Finally, the length of stay for individual i in each compartment is sampled such that, 170

τc ∼ Gamma(κc, θc), (7)

where τc is the time spent in compartment c, and κc and θc are the shape and rate 171

parameter for compartment c respectively. Uncertainty is incorporated by sampling rate 172

and shape parameters from the posterior estimated for the Australian Delta wave [11]. 173

The mean lengths of stay in each compartment by age are given in Supplementary 174

Table 3. Note that we assume that neutralising antibody titre levels do not change the 175

distribution of time spent in any compartment. 176

By generating a clinical timeline for every symptomatic individual, we can calculate 177

hospital admissions, ICU occupancy, ward occupancy and deaths by age in 178

continuous-time. Furthermore, by explicitly incorporating the effects of neutralising 179

antibodies on protection against each outcome, we are able to account for individual 180

level immune responses. 181

2.4 Immunological model 182

Within both the transmission model (Section 2.2) and the clinical outcomes model 183

(Section 2.3) we include an immunological response to COVID-19. This immunological 184
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response is handled by directly modelling each individual’s neutralising antibody (NAb) 185

titre. By using the model of [3] and [4] we can relate an individual’s NAb titre to their 186

protection against all outcomes of interest: infection, symptomatic disease, onward 187

transmission given breakthrough infection, hospitalisation and death. The fact that 188

each individual is assigned their own NAb titre results in inter-individual variation that 189

leads to varying distributions of protection throughout the community, subsequently 190

impacting the transmission dynamics. In the Australian context, by the time Delta and 191

Omicron outbreaks occurred almost all immunity was vaccine-derived, therefore the 192

model was initialised by making the plausible simplifying assumption that NAb titres 193

were derived from the vaccine roll out alone. 194

An individual’s NAb titre can be increased by a variety of exposures. The processes 195

that we consider are: the first, second and booster dose of a vaccine, or infection 196

occurring in an unvaccinated or vaccinated individual. Note that for simplicity we 197

assume that infection prior to or following vaccination results in the same titre of NAb. 198

Immune responses are stratified by the type of vaccine product, AstraZeneca (AZ) or 199

mRNA vaccine (Pfizer or Moderna), that the individual has received based on the 200

model from Section 2.1. 201

At the time of a boosting process, the level of NAb titre that is acquired is sampled 202

from, 203

log10(a
0
i ) ∼ N (µx

j , σ
2), (8)

where a0i is the NAb titre that individual i is boosted to, µx
j is the mean NAb titre 204

against strain x of the population after boosting process j and σ2 is the variance of 205

NAbs across the population at the time of boosting. 206

The mean NAb titre, µx
j , is specified using the following rules based upon the 207

infection and vaccination history of the individual. In this work it is assumed that an 208

unvaccinated individual will have an average NAb titre of 0.0 on the log10-scale after 209

exposure. This is our baseline measurement and is used to calibrate across multiple 210

neutralising antibody studies. For an individual that has no prior exposure to 211

COVID-19, their vaccination induces an antibody response such that, 212

µx
j = µ0

j + log10(fx), (9)

where µ0
j is the mean level of NAb titre for vaccine j against a base strain of COVID-19 213

(for us this is Delta) and fx is the fold change in NAb titre between the base strain and 214

strain x. To account for the effect of exposure to COVID-19 prior or post vaccination, 215

we use an altered form of Equation 9. For brevity, we have used Table 1 to list the 216

equations used to obtain µx
j with infection. 217

Table 1. Exposed individuals:Assumed relationships within the immunological
model for NAb titre for individuals that have been exposed to COVID-19. The
extended subscript with an E represents prior or current exposure to the circulating
strain of COVID-19.

Processes Average titre formula
Unvaccinated (U∩E) µx

U∩E = µ0
U

AZ dose 1 (AZ1∩E) µx
AZ1∩E = µ0

P2

AZ dose 2 (AZ2∩E) µx
AZ2∩E = µ0

B

Pfizer dose 1 (P1∩E) µx
P1∩E = µ0

P2

Pfizer dose 2 (P2∩E) µx
P2∩E = µ0

B

mRNA booster (B∩E) µx
B∩E = µ0

B

It is assumed that an individual’s titre of neutralising antibodies will decay after 218
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boosting. This decay is assumed to be exponential, therefore, 219

log10(ai) = log10(a
0
i )−

ka
log(10.0)

t, (10)

where ai is the time dependent NAb titre of individual i, ka is the decay rate of 220

neutralising antibodies and t is the time from the last boosting process. In this work we 221

have assumed that ka is constant for all time. 222

An individual’s protection against disease outcome α, denoted by ρα, is a function of 223

their current antibody titre. The functional form of ρα is assumed to be logistic and is 224

governed by, 225

ρα =
1

1 + exp(−k(log10(ai)− cα))
, (11)

where k is governs the steepness of the logistic curve (logistic growth rate), and cα 226

defines the midpoint of the logistic function for disease outcome α. 227

The immunological model interacts with the transmission model by altering the 228

probability that an individual develops symptoms, qi, their rate of onward transmission 229

given breakthrough infection, τi, and the contact’s level of susceptibility, ξj . 230

The susceptibility of contact j is, 231

ξj = (1− ρξ)ξ
0
i , (12)

where ρξ is the protection against infection and ξ0i is the susceptibility of the ith 232

individual if they were completely COVID naive. The probability that individual i 233

develops symptoms is governed by, 234

qi =
1− ρq
1− ρξ

q0i , (13)

where ρq is the protection against symptomatic infection and q0i is the probability of 235

symptomatic infection for individual i if they were completely COVID näıve, i.e., have 236

zero NAb titre. 237

The expressions for onward transmission rate are more complex. It is assumed that 238

asymptomatic individuals are 50% less likely to infect their contacts when compared to 239

their symptomatic counterpart [8]. However, this reduction in transmission due to 240

asymptomatic infections is not accounted for in the clinical trial data used to calibrate 241

the protection against onward transmission. To avoid double counting the effect of the 242

NAbs we alter the functional form for the rate of onward transmission to, 243

τi =
s(1− ρτ )(1 + q0i )

1 + qi
βi, (14)

where s is either 0.5 or 1 depending upon whether the individual is asymptomatic or 244

symptomatic respectively, ρτ is the protection against onward transmission and βi is the 245

baseline (i.e., zero NAb titre) infectiousness of the infector. For a full derivation of 246

Equation 13 and Equation 14, see Section 6.3. 247

The clinical outcomes model uses the transmission model as an intermediary 248

between the immunological response of each infected individual and their corresponding 249

clinical outcome. This is done by outputting each infected individual’s NAb titre at the 250

point of exposure, a symptom indicator and their time of symptom onset for use within 251

the clinical pathways model. 252

The immunological model determines the probability of hospitalisation, ICU 253

requirement and death based on observed relationships between NAb titres and clinical 254
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endpoint outcomes from efficacy studies [3–5]. For a symptomatic individual i, the 255

probability of hospitalisation is given by, 256

piH|I =
OR

(
p0H|E , ρh(ai)

)
qi

, (15)

where p0H|E is the baseline probability of hospitalisation given infection, ρh(ai) is the 257

protection against hospitalisation, ai is individual i’s NAb titre at the point of exposure, 258

and, 259

OR(p, r) =

rp
p−1

1 + rp
1−p

, (16)

is the function that uses odds ratio r and baseline probability p to compute an adjusted 260

probability. 261

If individual i is hospitalised, the probabilities governing which hospital pathway is 262

chosen are altered such that, 263

piICU|H =
OR

(
p0ICU|E , ρh(ai)

)
piH|Iqi

, (17)

and, 264

piHD|ICUc =
OR

(
p0HD|E , ρD(ai)

)
(1− piICU|H)piH|Iqi

, (18)

where p0ICU|E is the baseline probability of requiring the ICU given infection, p0HD|E is 265

the probability of death on ward (without visiting ICU) given infection and ρD(ai) is 266

the protection against death given infection. 267

If individual i is in the ICU, then their probabilities of death in the ICU, piICUD|ICU, 268

and death on the ward given they left ICU without dying, piWD|ICUc
D
, are altered such 269

that, 270

piICUD|ICU =
OR

(
p0ICUD|E , ρD(ai)

)
piICU|HpiH|Iqi

, (19)

and, 271

piWD|ICUc
D
=

OR
(
p0WD|E , ρD(ai)

)
(1− piICUD|ICU)p

i
ICU|HpiH|Iqi

, (20)

where p0ICUD|E is the baseline probability of dying in the ICU and p0WD|E is the baseline 272

probability of dying in the ward after returning from the ICU. Note that we assume no 273

difference between the protection from hospitalisation given infection and the protection 274

from ICU given infection here. 275

To determine all parameters in Equation 10 and Equation 11, we use a 276

re-implementation of [3] and [4] in a Bayesian framework [12]. This allows us to calibrate 277

the level of protection, which is analogous to vaccine efficacy for individuals with no 278

exposure to COVID-19, to real-world vaccine effectiveness studies. The model fit in [12] 279

takes in a range of data relating NAb levels to efficacy, and estimates of vaccine 280

effectiveness from a range of studies to estimate effectiveness over time against the 281

Delta variant. To estimate the effectiveness against the Omicron variant, Golding and 282

colleagues estimate an ‘escape’ parameter for the Omicron variant relative to the Delta 283

variant. This was done by using the relative rates of infection in Danish households 284

between Omicron and Delta to estimate the the relative R0 between the variants [13], 285
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Fig 3. Estimated levels of protection for all outcomes of interest against the Delta
strain (modified from [12]). The bands correspond to the 90% confidence interval.

and early evidence of vaccine effectiveness against Omicron from the UK to understand 286

the level of vaccine escape [14]. This was then combined with the information fit on the 287

Delta variant to model waning over time for both the Delta and Omicron variants. 288

Figures 3 and 4 show the levels of protection against all outcomes of interest for 289

both the Delta and Omicron strain, using parameters in Table 2. Notably, the lowest 290

protection results from vaccination with AZ, which was the initially recommended 291

vaccine for older individuals in Australia. 292

Table 2. Estimated parameter values from the immunological model.

Parameter Value
cτ 0.02953683449343693
cξ -0.47195962651907175
cq -0.6442020773907903
ch −1.2161786725147814
cd −1.1753151405677293

log(k) 1.686059432639791
σ 0.4647092
ka 0.008235096361537353

Parameter Value
log10(fDelta) 0.0

log10(fOmicron) -0.6923808174384031
µ0
U 0.0

µ0
AZ1 -0.5299522095755013

µ0
AZ2 -0.12031713312180076
µ0
P1 -0.23154132545543396

µ0
P2 0.1540166902000597
µ0
B 0.3225538899068383

3 Results 293

3.1 Vaccination Scenarios 294

The initial immune status of the population was determined by the data-driven model 295

of the Australian COVID-19 vaccine roll-out, as described in Section 2.1. The vaccine 296

program was initially targeted at older age groups who were at higher risk of severe 297
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Fig 4. Estimated levels of protection for all outcomes of interest against the Omicron
strain (modified from [12]). The bands correspond to the 90% confidence interval.

Fig 5. Daily number of booster doses administered in four representative age groups.
Due to the age structured administration of the primary course, we can see that
younger individuals receive their booster doses after older individuals.
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Fig 6. Daily incidence of all infections for the Delta variant only under alternative
immunisation scenarios. We compare no boosting as a baseline with 80% of the primed
(vaccinated) population for either the (initial) 6 or (proposed) 3 month delay to booster
eligibility.

outcomes, with later phases opened to peak transmitting populations with a focus on 298

reducing transmission towards reopening goals [8]. Presented in Figure 5 are the four 299

future booster implementation scenarios determined in consultation with the Australian 300

Department of Health. These were chosen to assess the impact of reducing time 301

between completion of the primary series and booster dose administration — from the 302

then recommended six months, to three months — with either 60% or 80% final uptake 303

achieved in eligible cohorts. Given the age staggered implementation of the initial 304

vaccine program, eligibility for the booster dose followed the same staggered order of 305

administration, meaning that individuals at highest risk of disease were immunised first 306

in all scenarios. 307

3.2 Waning immunity and booster requirement 308

We hypothesised that due to the waning of immunity, the Australian population was 309

prone to resurgence of COVID-19 infections even if Delta remained the predominant 310

circulating variant. To investigate the possible impact of waning immunity through the 311

national reopening phase, we seeded 1,000 exposures of the Delta variant on 22nd 312

November 2021, reflecting known circulation in Australia’s Eastern states at that time. 313

Finally, we set the transmission potential to 6.32, corresponding to a reproduction 314

number estimated for the Delta variant in the Australian context under minimal public 315

health and social measures and assuming no impact of TTIQ on transmission [8]. 316

Our model anticipates that loss of primary course protection over early 2022 would 317

drive an early autumn resurgence of infections Figure 6. This wave could be ameliorated 318

to some extent by boosting with a 6 month delay, but strongly suppressed by reducing 319

the interval between second and third doses to 3 months. Similar benefits of accelerating 320

the booster program are observed in Figure 7 when achieved booster uptake is only 60%, 321

however the peak number of daily cases exceeds those for the 80% coverage case. 322

The projected impacts of the Delta variant on the health care system are shown in 323

Figure 8. As would be anticipated from the corresponding infection curves (Figure 6), 324

both hospitalisations and deaths are decreased as the booster interval shortens. 325

Substantive health benefits are still observed if booster uptake in the eligible 326
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Fig 7. Direct comparison of the simulated daily incidence of infections for the scenarios
with no boosters, a 3 month interval at 60% coverage, and a 6 month interval at 60%
coverage.

Fig 8. Simulated Ward and ICU occupancy as well as the daily and cumulative deaths
for each Delta scenario.
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Fig 9. Simulated daily incidence of infections for the Omicron variant only under
alternative immunisation scenarios. We compare no boosting as a baseline with 80% of
the primed (vaccinated) population for either the 6 or 3 month delay to booster
eligibility.

populations reaches only 60% (see Supplementary Figure 11, with timeliness being a 327

more critical determinant of outcomes than coverage. 328

3.3 Emergence of Omicron variant 329

Due to the reported immune escape and transmissibility of the Omicron variant in late 330

2021, we modelled the potential impacts of an Omicron outbreak in Australia. Using 331

the model of [12], we estimated a 4.924-fold reduction (f−1
Omicron) in neutralising 332

antibodies and an increase in intrinsic transmissibility of the Omicron variant of 1.113 333

times compared to the Delta variant. Importation of the variant through international 334

arrivals was accounted for by seeding 30 exposures on 22 November 2021 into the 335

modelled population. The population’s immunity status was configured according to the 336

same vaccine priming and boosting scenarios explored for the Delta variant Section 3. 337

For all scenarios considered, Omicron spreads rapidly throughout the population (see 338

Figure 9), resulting in a peak incidence of daily infections far beyond those anticipated 339

for Delta. For these results, we assume 80% booster vaccination uptake (for 6 and 3 340

month eligibility intervals) compared with the base case of no booster program. This 341

finding reflects the predicted level of immune escape of the Omicron variant, enabling 342

acquisition and onward transmission of infection. Bringing forward the booster program 343

has only marginal impact on epidemic dynamics. 344

At the time of investigation the likely clinical impact of Omicron in the Australian 345

population was highly uncertain. Initial observations from South Africa [] indicated that 346

the intrinsic severity of Omicron was greatly reduced in a population with a high level 347

of exposure to SARS-CoV-2 across multiple infection waves [], but there was no prior 348

experience of the virus in settings where immunity was principally vaccine-derived. To 349

explore this critical uncertainty in the model we investigated four possible levels of 350

severity for Omicron within the clinical outcomes model for the 80% uptake within 351

three month scenario, the results of which are shown in Figure 10. These levels of 352

severity were explored by multiplying the baseline hospitalisation, ICU and death 353

probabilities pH|E , pICU |E , pHD|E , pHD|E and pWD|E (as defined in 6.6) by various 354

values. The worst case scenario assumed severity equivalent to the Delta variant, 355
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Fig 10. The effect of reduced levels of severity on the clinical outcomes pathways.

ranging down to a best-case of only one tenth that severity, with markedly different 356

impacts for health sector capacity. 357

4 Discussion 358

This work demonstrates the utility of a flexible model framework to consider the likely 359

impact of emerging SARS-CoV-2 variants of concern in the context of a given 360

population’s immune landscape. In this example, we estimated the impact of the 361

Omicron variant in a highly immunised population and used these results to support 362

policy decision making for the Australian COVID-19 booster vaccination program. The 363

findings presented in this work informed the Australian Government response to 364

accelerate administration of (third) booster doses nationally from late-December 2021. 365

Due to extremely high vaccination coverage Australia had started implementing its 366

re-opening strategy, with a shifted focus from minimising transmission to the mitigation 367

of severe disease in line with recommendations endorsed by SAGE and WHO [15,16]. 368

This necessitated the need to focus on control measures that were not strict mobility 369

restrictions and stringent public health and social measures. As such, booster doses 370

were seen as an integral component in the re-opening strategy. Our results indicated 371

that the booster dose eligibility interval should be shortened to three months, 372

maximising the population level of protection against transmission and severe disease. 373

In doing so, the spread of the Delta variant was greatly diminished and the population 374

had high levels of protection against severe clinical outcomes. We note that our results 375

for the daily number of infections indicated that booster doses, irrespective of the 376

booster dose eligibility interval, cannot control the spread of Omicron. This is due to 377

the immune escape component of the Omicron variant. However, by shortening the 378

booster eligibility interval there will be a boost in protection that minimised potential 379

severe clinical outcomes. 380

The large estimated impact of accelerating the booster roll out on clinical outcomes 381

was partly due to the age-based prioritisation of the primary course of vaccination in 382

Australia. Australia’s initial COVID-19 vaccine roll out was focused on those at most 383

risk of severe disease, including older individuals and the immune compromised. 384

Consequently, we anticipated substantial waning of vaccine-derived immunity in these 385

groups by the end of 2021. Given that individuals were only eligible for a booster dose 386
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after a finite minimum interval from the primary vaccine series, these same high risk 387

groups were once again the first eligible for the third dose. This priority order resulted 388

in the greatest achievable impact on clinical outcomes in the early stages of the roll out, 389

as initial delivery was to those at most risk of severe disease. 390

A strength of our work is the flexibility of combining multiple interleaving models to 391

accurately characterise the spread of COVID-19 in the population of interest. 392

Throughout the COVID-19 pandemic, multiple research groups were working on 393

separate mathematical models for projects that were being used to help inform 394

Australian Government policy. This enabled the compartmentalisation of approaches, 395

with each group able to work concurrently. However, this limits the ability of answering 396

broad questions that requires modelling results from across a range of working groups. 397

This work provided a unified framework that incorporated all necessary models to 398

accurately simulate the transmission of COVID-19. Importantly, this framework can 399

quickly adapt to changes in any component of the model, providing the flexibility and 400

speed that is essential to answer policy relevant questions. 401

To date, there is ongoing uncertainty about the durability of vaccine protection 402

against severe outcomes and optimal dosing intervals. As such it is important to remain 403

alert to the potential of more severe variants arising and spreading rapidly through the 404

population, and to understand which immunisation strategies could minimise the 405

impact of these variants. Due to the flexibility of the immunity model used within our 406

model framework, we are easily able to adapt our approach to such considerations, even 407

applying the model to other countries. 408

A limitation of the framework presented in this paper is that the epidemic model 409

dynamics are independent from the clinical pathways model and vaccine roll out. This 410

independence allows for greater flexibility, so that other epidemic models for different 411

purposes could feed into the clinical pathways model. The main drawback from this 412

flexible approach is that the clinical pathways model does not update the status of 413

people in the epidemic model: as a result, people can die in the clinical pathways model 414

and continue to be counted as infectious or reinfected in the epidemic model. We 415

confirmed numerically that this double counting did not impact substantively on 416

transmission given the small numbers of deaths relative to the overall population size. 417

A further limitation of this work is the application of TTIQ. Within our 418

transmission model, we assumed consistent TTIQ capacity over time, irrespective of the 419

total number of infections. In reality, the effectiveness of such system declines as the 420

number of infections increases and exceeds public health capacity. If TTIQ effectiveness 421

were to decline over time, the interval between infection and isolation would increase, 422

resulting in a higher effective reproduction number. Individuals may also change their 423

behaviour when the perceived risk of infection is increased, for example, when case 424

numbers are high. This behaviour change may take the form of voluntary isolation or 425

social distancing. We do not investigate either of these effects in this work. 426

This work was based on the population of Australia around the time of the first 427

Omicron wave, so only a small proportion of the population had infection-derived 428

immunity. Thus, we initialised the model with a population immunity determined solely 429

by the vaccine roll out. This paper has not presented a method for initialising the 430

model in a context with a more complex history of vaccination and waves of infection. 431

The complex history of vaccination and waves of infection will be a topic of future 432

investigations [17]. 433

5 Conclusions 434

We present an efficient implementation of a model which captures epidemic dynamics at 435

both the individual immunity level and the population-level. This allows the 436
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population-level infectious disease dynamics to be governed by immune-history and 437

therefore is appropriate for understanding varied experiences of outbreaks in different 438

locations. For example, in Australia, immunity prior to the Omicron outbreak was 439

almost entirely governed by the vaccine roll out, whereas in many other countries, 440

population-level immunity to BA.1 may have largely been determined by recent large 441

outbreaks of ancestral strains. 442

This study incorporated a continuous waning model of neutralising antibodies, which 443

allows protection against different end points to change through time. As a result, this 444

study was able to consider both infection and clinical endpoints to answer 445

policy-relevant questions, such as the importance of the timing of booster eligibility. 446

Our study indicates that reducing the time between the primary and booster dose from 447

six months to three months in Australia was an effective way of reducing morbidity and 448

mortality of the Omicron wave. This is because the immunity from the primary dose 449

had waned significantly by the time Omicron emerged, and the three month scenario 450

provided the greatest population-level protection through the first quarter of 2022. 451

This study shows that although booster doses are a highly effective protection 452

against transmission and clinical outcomes for the Delta variant, vaccines are a less 453

viable strategy against the Omicron variant. Our scenario analyses shows that a 454

hypothetical strain with the immune-evasion characteristics of the Omicron variant and 455

the severity characteristics of the Delta variant would have had catastrophic clinical 456

impacts. Omicron proved to have a greatly reduced severity compared with ancestral 457

strains [18–20], but its high inherent transmissibility and ability to evade immunity still 458

resulted in a substantive burden on public health and clinical systems. 459

Lastly, this study captures an example of real, rapid, innovative research done by a 460

large interdisciplinary team in response to a public health crisis, providing a record of 461

the methods and results used to advise and public health policy governing tens of 462

millions of people. 463
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6.2 60% uptake results 544

Fig 11. Above: Daily deaths and cumulative deaths for the projected Delta scenarios
at 60% uptake. Below: Daily deaths and cumulative deaths for the projected Delta
scenarios at 60% uptake.

6.3 Sensitivity analysis public health and social measures 545

6.4 Derivation of qi and τi 546

To determine the functional form of qi and τi, we need to reconcile the differences 547

between the vaccine efficacy calculated in the immunological model and the conditional 548

protection estimates required within the transmission model. 549

6.4.1 Protection against acquisition 550

Protection against acquisition is arguably the simplest to measure using a 551

sero-prevalence survey. It is possible to detect all asymptomatic and symptomatic 552

infections in your cohort using only observations at the start and end of the study. 553

Given the known vaccine status of each individual it is then trivial to calculate the 554

protection against infection. Therefore, we can express the probability of being infected 555

given you are vaccinated as 556

p(I|V ) = (1− V EI)p(I|U), (22)
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Fig 12. The ward and ICU occupancy levels for the projected Omicron wave, assuming
the same severity as the delta strain.

Fig 13. The daily and cumulative deaths for the projected Omicron wave.
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where V EI is the vaccine efficacy against infection and p(I|U) is the probability of 557

infection given you are unvaccinated. 558

6.4.2 Protection against symptoms given infection 559

A typical study to measure vaccine efficacy against symptoms will be a test negative 560

control, comparing those who were symptomatic and positive to those that were 561

symptomatic and negative. Therefore, instead of measuring probability of symptoms 562

given infection, the study is indirectly measuring the probability of symptoms and 563

infection. In reality, the study would need to consider asymptomatic infections to get 564

the desired probability of symptoms given infection. 565

After the study is finished, we can relate the probability of symptomatic infections 566

given vaccine product, p(S ∩ I|V ), to that of an unvaccinated individual through, 567

p(S ∩ I|V ) = (1− V ES∩I)p(S ∩ I|U). (23)

where p(S ∩ I|U) is the probability of symptomatic infection given you are unvaccinated. 568

We also know that 569

p(S|I, V ) =
p(S ∩ I|V )

p(I|V )
(24)

from the laws of probability. Therefore, we should be able to use the probability of 570

infection given vaccination from another study to arrive at the correct probability, 571

p(S|I, V ). 572

Combining Equation 22, Equation 23 and Equation 24 we obtain, 573

p(S|I, V ) =
(1− V ES∩I)p(S ∩ I|U)

(1− V EI)p(I|U)
. (25)

Note that, 574

p(S ∩ I|U) = p(I|U)p(S|I, U) (26)

where p(S|I, U) is the probability of developing symptoms given infection in an 575

unvaccinated individual. This is the baseline clinical fraction, which we denote as q0. 576

Therefore, 577

p(S|I, V ) =
(1− V ES∩I)p(I|U)q0
(1− V EI)p(I|U)

, (27)

which simplifies to 578

p(S|I, V ) =
(1− V ES∩I)

(1− V EI)
q0. (28)

6.4.3 Protection against onward transmission 579

It is typical to assume that asymptomatic individuals are less infectious when compared 580

to their symptomatic counterpart. However, the measured vaccine efficacy against 581

onward transmission does not account for the vaccine’s impact on reducing the 582

symptomatic fraction. If the vaccine reduces the probability of developing symptoms, 583

which in turn reduces the rate of onward transmission from the infected individual, than 584

a naive implementation of vaccine efficacy against onward transmission will result in the 585

“double counting” of vaccine efficacy. This double counting will result in increased 586

overall efficacy of the vaccine. 587

The probability of transmission given that you are infected and vaccinated is given 588

by 589

p(T |V, I) = (1− V ET )p(T |U, I), (29)
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Age [0, 40) [40, 70) 70+
I 3.28 3.35 2.89
HR 3.61 5.79 12.33
HD 12.11 12.11 12.11

ICUpre 1.66 2.07 2.92
ICUD 17.94 17.94 17.94
ICUWR

8.91 8.91 9.06
ICUWD

8.91 8.91 9.06
WR 7.35 10.07 14.28
WD 5.67 5.67 5.67

Table 3. Mean length of stay in model compartments by age group.

where V ET is the vaccine efficacy for onwards transmission and p(T |U, I) is the
probability of transmission given you are infectious and unvaccinated. We now assume
that asymptomatic individuals are α times infectious as symptomatic individuals.
Therefore, we can expand either side of Equation 29 as

p(T |S, V, I)p(S|I, V ) + αp(T |S, V, I)p(A|V, I) = (1− V ET )
(
p(T |S,U, I)p(S|I, U)+

αp(T |S,U, I)p(A|U, I)
)
(30)

where p(A|V, I) and p(A|U, I) are the probability of being asymptomatic given infection 590

if you are vaccinated or unvaccinated respectively. Defining q = p(S|V, I) (see Eq.(28)) 591

and q0 = p(S|U, I) we obtain, 592

p(T |S, V, I)(q + α(1− q)) = (1− V ET )(q0 + α(1− q0))p(T |S,U, I) (31)

which can be simplified to 593

p(T |S, V, I) = (1− V ET )(q0 + α(1− q0))

(q + α(1− q))
p(T |S,U, I). (32)

Note that if being asymptomatic does not reduce your infectivity (α = 1) then we do
not have to correct V ET . On the other hand, if α = 0.5 (typical assumption),

p(T |S, V, I) = (1− V ET )(1 + q0)

(1 + q)
p(T |S,U, I)

which is the expression that is implemented in our IBM to ensure we do not double 594

count the effect of the vaccine. 595

6.5 Length of stay distributions 596

Length of stay in each model compartment were assumed to be Gamma distributed. 597

Uncertainty was incorporated by sampling rate and shape parameters for each 598

simulation from the posterior samples estimated from the Australian Delta wave [11], 599

individual lengths of stay in each compartment were then sampled from the 600

corresponding Gamma distributions. The mean lengths of stay in each compartment by 601

age are given in Table 3. 602

6.6 Clinical probabilities given Delta infection in immune naive 603

individuals 604

Transition probabilities for the wild-type strain in immune naive individuals from [10] 605

and [21] are presented in Supplementary Table 4. We adjust these wildtype probabilities 606
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to account for the increased odds of severe outcomes for the Delta strain, these are 607

adjusted again to account for the protection from past vaccination and infection 608

(according to individual neutralisation titres).

Table 4. Transition probabilities by age for unvaccinated individuals with the
wild-type strain.

age pwI|E pwH|I pwICU |H pwHD|ICUc pwICUD|ICU pwWD|ICUc
D

[0, 5) 0.28 0.029 0.058 0.018 0.189 0.032
[5, 10) 0.28 0.001 0.069 0.017 0.192 0.029
[10, 15) 0.2 0.005 0.081 0.016 0.195 0.027
[15, 20) 0.2 0.007 0.093 0.016 0.200 0.026
[20, 25) 0.26 0.020 0.106 0.017 0.208 0.026
[25, 30) 0.26 0.030 0.121 0.018 0.220 0.027
[30, 35) 0.33 0.032 0.137 0.021 0.237 0.028
[35, 40) 0.33 0.034 0.157 0.025 0.261 0.030
[40, 45) 0.4 0.038 0.181 0.034 0.299 0.033
[45, 50) 0.4 0.056 0.208 0.049 0.348 0.036
[50, 55) 0.49 0.104 0.229 0.072 0.405 0.041
[55, 60) 0.49 0.149 0.240 0.110 0.472 0.052
[60, 65) 0.63 0.185 0.233 0.162 0.540 0.074
[65, 70) 0.63 0.311 0.205 0.231 0.602 0.116
[70, 75) 0.69 0.479 0.155 0.311 0.649 0.184
[75, 80) 0.69 0.750 0.097 0.383 0.670 0.264
80+ 0.69 0.655 0.026 0.460 0.615 0.350

609

The odds ratio of Delta strain compared to wild-type for hospitalisation (∆h), ICU
(∆ICU ) and death (∆d) given infection are 2.08, 3.35, 2.33 respectively [22]. To apply
these odds ratios we first combine marginal probabilities and then apply the odds ratio.
For example, we could multiply probability of symptoms (pwI|E) and probability of

hospitalisation given symptoms (pwH|I) to get the probability of hospitalisation given

infection (pwH|E) and apply the odds ratio of 2.08 to get the probability of

hospitalisation given a Delta infection (pH|E). Let OR(p, r) denote the function that
applied odds ratio r to probability p. We compute the following:

pH|E = OR
(
pwH|Ip

w
I|E ,∆h

)
,

pICU |E = OR
(
pwICU |HpwH|Ip

w
I|E ,∆ICU

)
,

pHD|E = OR
(
pwHD|ICUc(1− pwICU |H)pwH|Ip

w
I|E ,∆d

)
,

pICUD|E = OR
(
pwICUD|ICUp

w
ICU |HpwH|Ip

w
I|E ,∆d

)
, and

pWD|E = OR
(
pwWD|ICUc

D
(1− pwICUD|ICU )p

w
ICU |HpwH|Ip

w
I|E ,∆d

)
,

where

OR(p, r) =

rp
p−1

1 + rp
1−p

.

Note that we assume that the odds ratio relating to death given infection can be applied 610

separately to all three death related components of the model. These baseline 611

probabilities allow us to account for neutralisation titres and then marginalise the 612

probabilities to obtain model transition probabilities. 613
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6.7 Emergency Department Capacity Queue 614

Code for the clinical pathways model also allows for modelling of queues to the 615

emergency department (ED). This was incorporated as it has been noted that limited 616

ED consult capacity can cause a bottleneck that prevents admission to hospital [23]. 617

However, this functionality was been omitted from the main text (by setting the ED 618

queue to be infinite) so as to show pure hospital resource demand without considering 619

capacity constraints. 620

The ED queue model is incorporated once it is determined that individual i requires 621

hospital (via the random variable, H), and before the individual is admitted to hospital. 622

If individual i requires hospitalisation they will present to the ED, where they may not 623

be seen due to capacity limitations. ED consult capacity is modelled by admitting only 624

the first CED presentations to ED each day. If individual i is not seen, they enter a 625

state EDQ they will present again to the ED with probability 1− pL|ED after τL|ED 626

days sampled from 627

τL|ED ∼ Gamma(κL|ED, θL|ED), (33)

where pL|ED is the probability that an individual does not present again to the ED and
κL|ED and θL|ED are the shape and rate parameters of the gamma distribution
respectively. For individuals that do not return to ED and are therefore not admitted to
hospital, their age, neutralisation titre upon exposure and number of presentations to
ED are recorded such that these can be used to understand possible excess mortality
due to ED capacity limits. If individual i is admitted to hospital we determine what
hospital pathway they will follow.
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