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Auxiliary and supporting analyses 

We provide additional simulations supporting the results presented in the main text. In Fig S1 

we repeat the analyses from Fig 2 but for a larger large-scale reproduction number limit. We 

observe much more appreciable inversion (the rank of blue to red from heterogeneous to more 

homogeneous dispersion levels) between the means and variance to mean ratios (VM) of both 

event reproduction numbers and the numbers of infections occurring due to the event. The 

skew of the peak in the mean number of infections is now substantial and the finite size effects 

from the available susceptible individuals to infect (panel B) is more limiting. 

In Fig S2 we repeat the analyses from Fig 2 and verify that the importation rate of infections 

at the event remains a key driver of superspreading risk. This point is striking since the tail 

probabilities for extreme event reproduction numbers decrease with rising prevalence (panel 

B), whereas the tail probabilities for realised infections at the event increase with prevalence 

(panel A). This inversion in ranking (from blue to red) suggests that importation rates into a 

finite event can overpower the expected influence of more traditional drivers of superspreading 

(in this case heterogeneity in transmissibility, defined by tail reproduction numbers). 

Given the observed importance of the importation rate into an event, human behaviour may 

be expected to play a critical role if it alters that rate. As detailed in the main text, risk averse 

behaviour can precisely do this, potentially increasing the proportion of attendees at larger 

events that are already infected (i.e., the import rate). Figs S3-S4 confirm this intuition. In Fig 
4 of the main text, we demonstrated that risk aversion can substantially elevate likely numbers 

of new infections at larger events. Fig S3 verifies that the variance and variance to mean of 

numbers of infections and small-scale reproduction numbers also increase with risk aversion 

(for fixed overall transmission levels), increasing the chance of superspreading.  

In Fig S4, we repeat the simulations from Fig 4 but consider homogeneous transmission with 

a dispersion parameter that is 100 times larger. While this causes the variance of the number 
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of infections to be much smaller (panel C), the trends in relative risk and relative variation at 

different risk awareness strengths remain consistent with Fig 4. Elevating risk sensitivity 

(decreasing the risk aware parameter) consistently and strongly increases the realised risk of 

superspreading at larger events, beyond some critical event size. The dependence of this risk 

on import rates into events evidence a need for collecting data on those introductions if we 

are to accurately measure and respond to the chances of superspreading. 

 

Fig S1: Risk statistics for an event with heterogeneous transmission. We replicate Fig 2 

of the main text but at a tenfold larger large-scale reproduction number. We plot the mean 

(E[. ], top subfigures) and variance to mean ratio (VM[. ], bottom subfigures) of the small-scale 

event reproduction number 𝑅(𝑥) (panel A) and the mean count of new infections E[𝑦|𝑥, 𝑛] 

(panel B) as a function of the number of imports 𝑥. We compute these via Eqs. (4)-(6) and 

compile statistics over 10! samples from heterogeneous offspring distributions with dispersion 

level parameter 𝑘 ranging from 0.1 to 10 (increasing from blue to red with grey depicting all 



intermediate values). For comparison, we show the large-scale reproduction number /"
#
0𝑅$ 

and the number of initial susceptible individuals at the event, 𝑛 − 𝑥.  

 

Fig S2: The importation rate can magnify the chances of superspreading. We repeat the 

simulations of Fig 3 of the main text but for a larger event of size 𝑛 = 100.  We plot the log 

survival probabilities for the number of new infections	𝑦 (panel A) and the associated event 

reproduction numbers 𝑅 (panel B). We account for the probability of 𝑥 imports (distributed 

according to Bin(𝑥; 𝑛, 𝜌)) with the population prevalence as 𝜌 (increasing from blue to red 

with grey intermediate values). Larger P(𝑦 ≥ 𝑐) signifies more realised heterogeneity (higher 

likelihoods that disproportionate numbers of infections result from the event), while larger 



P(𝑅 ≥ 𝑐) signifies more heterogeneity in transmissibility (higher potential for superspreading 

events). In panels A-B dashed curves are at 𝑘 = 10	(spread is mostly homogeneous) and 

solid curves at 𝑘 = 0.1 (spread is heterogeneous). We compute these quantities from Eqs. 

(4)-(8). Panel C shows histograms of 10! samples of 𝑦 at two 𝜌 values underpinning panels 

A-B. Thicker 𝑦 tails indicate more heterogeneity and occur as 𝜌 increases. 

 

Fig S3:  Risk awareness increases the variability in transmission. We analyse statistics 

underpinning Fig 4 of the main text. We compute variability in the risk of acquiring infection at 

an event under models with size-biased imports emerging from risk awareness (with a smaller 

𝑟 indicating stronger risk awareness) and compare these to a null model (black dashed) with 

constant importation rate. We fix the prevalence 𝜌 and the dispersion level 𝑘. Panel A plots 



the variance to mean ratios VM[. ] as well as the underlying variances and means of our small-

scale reproduction numbers 𝑅. Panel B shows equivalent statistics for the new infections 𝑦 

occurring due to the event with those characteristics. All subfigures plot medians with 95% 

credible intervals, are computed from Eqs. (7)-(10) and marginalise over 10% samples from 

the distributions of transmission heterogeneity and importations. 

 

Fig S4: Event size bias substantially elevates the risk of infection at events even under 
homogeneous transmission. We repeat the simulations from Fig 4 of the main text but for 

more homogeneous transmission by increasing the dispersion parameter by 100 times to 𝑘 =

10. We compare the risk of acquiring infection at an event under models with size-biased 



introductions emerging from risk awareness to a null model with constant importation rate at 

the prevalence 𝜌. Panel A shows the size-biased rates 𝜖(𝑛), parametrised by 𝑟, for 𝑚 = 46 

events with sizes spanning 5: 50. Smaller 𝑟, decreasing from blue to green to red, indicates 

more skewed 𝜖(𝑛) distributions but conserves the overall transmission level. Critical event 

size 𝑛∗ demarcates when 𝜖(𝑛) is closest to 𝜌 (risk neutral event sizes). Panels B-C illustrate 

the resulting mean and variance of infections at an event (E[𝑦|𝜖], V[𝑦|𝜖]) relative to that from 

the null model (E[𝑦|𝜌], V[𝑦|𝜌]). Panels A-C plot medians with 95% credible intervals and are 

computed from Eqs. (7)-(10). These marginalise over 10% samples from the distributions of 

transmission heterogeneity (controlled by 𝑘) and importations (controlled by 𝜌 and 𝜖(𝑛)). We 

also provide ratios of the means of these plots for panels B-C as insets. Panel D shows the 

total mean infections over all events, which is mostly fixed due to constraints on 𝜖(𝑛). 

Data availability  

All data and code to reproduce the analyses and figures of this work and to compute formulae 

from the Methods are freely available (in MATLAB) at: https://github.com/kpzoo/smallscaleR. 

https://github.com/kpzoo/smallscaleR

