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Abstract 

Background/Aim:  

Contrast-enhanced mammography (CEM) is a relatively novel imaging technique that 

enables both anatomical and functional breast imaging, with improved diagnostic 

performance compared to standard 2D mammography. The aim of this study is to 

systematically review the literature on deep learning (DL) applications for CEM, exploring 

how these models can further enhance CEM diagnostic potential. 

Methods:  

This systematic review was reported according to the PRISMA guidelines. We searched for 

studies published up to April 2024. MEDLINE, Scopus and Google Scholar were used as 

search databases. Two reviewers independently implemented the search strategy. 

Results:  

Sixteen relevant studies published between 2018 and 2024 were identified. All studies but 

one used convolutional neural network models. All studies evaluated DL algorithms for 

classification of lesions at CEM, while six studies also assessed lesion detection or 

segmentation. In three studies segmentation was performed manually, two studies evaluated 

both manual and automatic segmentation, and ten studies automatically segmented the 

lesions. 

Conclusion:  

While still at an early research stage, DL can improve CEM diagnostic precision. However, 

there is a relatively small number of studies evaluating different DL algorithms, and most 

studies are retrospective. Further prospective testing to assess performance of applications at 

actual clinical setting is warranted.  
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Introduction 

Despite being the cornerstone of breast imaging, 2D standard mammography faces well-

known diagnostic challenges (1-3). Contrast-enhanced mammography (CEM) is an advanced 

imaging technique that enables both anatomical and functional breast imaging (4). The 

technique enhances the visibility of neo-vascularity in breast cancer. It illustrates pathologic 

enhancement in breast malignancies, sometimes even before the development of a distinct 

breast mass (5). Comparative studies have demonstrated CEM’s superior diagnostic 

performance over conventional mammography and a comparable sensitivity to breast 

MRI(6).  

Recent advancements in deep learning (DL) have revolutionized computer vision in 

radiology (7). DL algorithms are increasingly applied to enhance the segmentation, detection, 

and classification of pathologies across various imaging modalities, including CEM (8). 

However, the integration of DL in CEM is still nascent, with significant potential to improve 

diagnostic accuracy, and enhance radiologists’ workflow. 

Our study aims to systematically review the literature on DL applications for CEM, exploring 

how these models can further enhance its diagnostic potential. 

 

Methods 

Literature Search  

We systematically searched for papers published up to April 9, 2024. MEDLINE, Scopus and 

Google Scholar were used as databases. The search query was: ”((deep 

learning[Title/Abstract]) OR (CNN[Title/Abstract]) OR (AI[Title/Abstract]) OR (artificial 

intelligence[Title/Abstract]) OR (neural network[Title/Abstract])) AND 



((CEM[Title/Abstract]) OR (CESM[Title/Abstract]) OR (contrast enhanced 

mammography[Title/Abstract]) OR (contrast mammography[Title/Abstract]) OR 

(DEM[Title/Abstract]))”.  

Eligibility Criteria 

We included full publications indexed in PubMed, evaluating DL for automatic analysis of 

CEM images. We excluded non-English papers, non-original manuscripts, and papers that did 

not evaluate DL algorithms. Figure 1 presents a flow diagram of the screening and inclusion 

process. 

Screening and Synthesis 

This review was reported according to the PRISMA (Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses) guidelines. Two reviewers (VS, EK) independently 

implemented the search strategy. The reviewers screened the titles and reviewed the abstracts 

of the articles identified in the search. The reviewers then assessed the full text of the relevant 

studies. Results of the studies included were summarized in a table format and included the 

title, journal, year of publication, study design, size of dataset, and performance metrics.   

Performance Characteristics 

Performance characteristics for DL algorithms are evaluated based on sensitivity (also called 

recall), specificity, area under receiver operating characteristic curve (AUC), precision (also 

positive predictive value), accuracy and F1 score. The reported performance metrics from 

each study were summarized in a Table. 

The quality of the studies was evaluated based on the Quality Assessment of Diagnostic 

Accuracy Studies (QUADAS-2) criteria(9). 

  



Fundamental Concepts 

Contrast-Enhanced Mammography (CEM) 

CEM is an advanced breast imaging modality that combines the use of iodine-based contrast 

agent with conventional digital mammography (4). With CEM, dual energy for 

mammographic acquisition after IV administration of iodine-based contrast agent, is used. 

Two sets of images are obtained: images with low-energy exposures, and images at high-

energy exposures, just above the kVp of iodine. The two exposures are subtracted, and two 

images are generated for each projection: low-energy images that are analogues to standard 

2D mammography, and subtracted contrast-enhanced images displaying areas of contrast 

enhancement (Figure 2) (10).  

Background parenchymal enhancement (BPE) refers to the normal enhancement of breast 

glandular elements and is graded on a BI-RADS scale from 0 to 3, indicating minimal, mild, 

moderate, or marked enhancement (Figure 3) (11). BPE at CEM correlates with age, 

menopausal status, breast density, and with BPE seen at MRI (12, 13). It is also associated 

with increased risk for breast cancer (13). More importantly, it may affect the diagnostic 

accuracy of CEM, as small abnormalities may blend with BPE when it is increased (11).   

Models and Techniques 

Deep Learning represents a subset of machine learning (Figure 4) that employs neural 

networks with multiple layers to analyze complex relationships in data. It excels in 

identifying patterns and making decisions with minimal human intervention. In the domain of 

medical imaging, DL algorithms process extensive imaging data, learning to analyze 

pathological findings with precision that often matches or exceeds that of expert radiologists. 

For instance, a DL model can identify malignant tumors in CEM images. This capability may 



not only enhance diagnostic accuracy, but also streamline the workflow, thus impacting 

patient outcomes through appropriate intervention (7, 14).  

Multi-Layer Perceptron (MLP) is a neural network model that consists of at least three layers 

of artificial neurons: an input layer, hidden layers and an output layer (15). MLP utilizes 

backpropagation with supervised learning for training. With supervised learning the 

algorithm is provided with examples of inputs with correct outputs. During backpropagation 

the network adjusts its internal parameters whenever it makes an error. That way, it improves 

its accuracy over time (15).  

Convolutional Neural Networks (CNNs) are a cornerstone of deep learning in image analysis 

(7). These models are designed to automatically and adaptively learn spatial hierarchies of 

features from images. CNNs consist of multiple layers of convolutions with learnable filters, 

and fully connected layers, making them adept at processing 2D and 3D images. In breast 

imaging, CNNs can analyze CEM images to identify patterns associated with breast cancer. 

The architecture of CNNs enables them to focus on local features within an image, such as 

the shape, size, and margins of lesions, facilitating detailed analyses (7).  

Attention is a relatively novel technology that was widely evaluated in DL natural language 

processing (NLP) (16). In fact, the novel large language models (LLMs) such as GPT are 

based exactly on this mechanism (17). With image analysis algorithms, attention can improve 

their performance by allowing the models to focus on the most relevant features within an 

image (18). This is similar to the way that humans focus on specific parts of an image to 

extract information.  

Multimodal Networks integrate and process data from multiple sources or types, for example 

text and images (Figure 5) (19). This approach is highly relevant with medical data analysis, 

as patient care relies on diverse data sources such as clinical history, lab tests, imaging etc.  



Transfer Learning is a technique used widely in DL models training. With this approach, a 

model developed for a specific task is reused as the starting point for a model applied for a 

different task. It transfers knowledge from the previously learned context to the new 

application, potentially enabling to achieve better performance with less data (Figure 6) (20).  

Generative Adversarial Network (GAN) is a type of DL model that is aimed at generating 

new images (21). The model is composed of a generator creating fake images from input 

data, and a discriminator attempting to distinguish between fake and real images. The process 

enables both networks to improve over time through a competitive process where the 

generator aims to fool the discriminator (Figure 7) (21).  

Computer Vision Tasks 

In medical imaging three foundational computer vision tasks play pivotal roles: classification, 

detection, and segmentation (Figure 8). Each of these tasks leverages DL algorithms to 

enhance diagnostic accuracy (7, 14).  

Detection refers to the identification and localization of lesions within the images. For 

example, using DL algorithms to mark any abnormalities at CEM images with a circle or a 

box region of interest (ROI). This may aid radiologists in focusing their examination on areas 

of interest, potentially revealing lesions that may have been overlooked. 

Segmentation is the process of delineating the exact boundaries of a lesion, separating it from 

the surrounding tissue. With manual segmentation, a radiologist traces the contours of a 

lesion in a CEM image, a time-consuming task with variability between observers. 

Automated segmentation on the other hand, uses DL to precisely outline the lesion, 

facilitating a more consistent and efficient analysis. This is also valuable in assessing the size 

and shape of a tumor, which are critical factors in diagnosis and treatment planning. U-Net is 

a commonly used CNN segmentation network in the medical domain (22). 



Classification involves the categorization of lesions into predefined classes, such as benign or 

malignant. For instance, in CEM, a DL model might analyze an image to classify a detected 

lesion as BI-RADS 2 (benign, requires routine screening), BI-RADS 3 (probably benign, 

requires short-term follow-up) or as BI-RADS 4 (potentially malignant, and requires tissue 

sampling).  

By integrating DL algorithms into these computer vision tasks, researchers and clinicians can 

significantly improve the diagnostic process in breast imaging. 

Results 

Sixteen studies have been included in this review, published between 2018 and 2024. While 

all the studies but one used CNN models, two of the CNN studies augmented the algorithm 

with attention layers.  

All studies evaluated DL algorithms for classification of lesions at CEM, while six studies 

also assessed lesion detection or segmentation (Figure 8). In three studies segmentation was 

performed manually, two studies evaluated both manual and automatic segmentation, and 

nine studies automatically segmented the lesions. The objective assessment of the risk of bias 

based on QUADAS-2 is reported in Table 1. The results of the studies are summarized in 

Table 2.  

Segmentation 

Danala et al. (23) were the first to publish on DL analysis of CEM images. They developed 

MLP for lesion segmentation at CEM, and classification between malignant and benign 

lesions. They were the first to use automatic segmentation of lesions based on lesion 

enhancement in the subtracted contrast images. Then, based on these segmentations they 

analyzed both the subtracted and the low-energy images for lesion classification (23).   



Wu et al. (24) combined DL models with a radiomics model. Radiomics involves the 

extraction of a large number of quantitative features from images. The authors first used a U-

Net, which is a supervised DL network, for image segmentation. Training was performed on 

manually segmented images. Then, using another DL network (ResNet-18) they extracted 

features from the segmented tumor regions of interest in both the low-energy and the 

subtracted contrast images. They’ve also incorporated radiomics features to predict non-

sentinel lymph node metastases. The radiomics model without DL overperformed the DL, 

and the combined model (24). Beuque et al. (25) developed a full-workflow model for 

automatic lesion identification, segmentation, and classification. A radiomics model was also 

trained to classify both manual and automatically segmented lesions. The DL model had the 

highest sensitivity for cancer classification, while the combined DL with radiomics model 

had higher specificity with the highest AUC (25). 

Detection and classification 

Gao et al. (26) developed a CNN model that classifies breast lesions based on features from 

both low-energy and recombined contrast-enhanced images. They have also applied a CNN 

model that learned the mapping between the low-energy and recombined images, to generate 

“virtual” contrast-enhanced images from standard digital mammography images. Using 

features from these “virtual” recombined images, the performance of the model in lesion 

classification improved, compared to incorporating only features from standard digital 

mammography (26). Qian et al. (27) have developed a multi-feature fusion neural network to 

combine information from both the low-energy and the contrast-enhanced images, for breast 

cancer detection.  

In a recently published study, Helal et al. (28) also developed a Multiview DL model 

analyzing both low-energy and subtracted contrast images for breast lesions classification at 



CEM studies and compared its performance to radiologists. The DL model had lower 

sensitivity for breast cancer detection compared to radiologists, while specificity for the 

model was higher (28).  In 2021 Song et al. (29) evaluated a CNN that analyzed both the low-

energy images and the subtracted contrast-enhanced images simultaneously to classify 

lesions. Later, in 2022, they’ve developed a model that applies GAN (Figure 3) used for 

fusion of the subtracted contrast-enhanced images and the low-energy images, and the 

classification model for lesion classification (30).  

Perek et al. (31) applied a multimodal network for lesion classification in the subtracted CEM 

images, combining textual features with image analysis. They compared fine-tuning a 

pretrained neural network (AlexNet) and fully training a CNN. Their multimodal network 

resulted in a theoretical reduction in benign biopsies by up to 66% (31).  

Dominique et al. (32) fine-tuned an existing CNN model that was used for chest X-rays 

analysis, on CEM dataset. They applied the model to predict histopathological characteristics 

of breast cancer from CEM images. For example, receptor status, grade and proliferative 

index. The model achieved the best results for estrogen receptor status prediction from the 

subtracted contrast-enhanced images (32).  

Two studies that assessed the combination of an attention mechanism with CNN (33, 34). 

First, Li et al. (33) incorporated a CNN algorithm with attention for CEM images 

classification. Their network extracts information from all four images acquired for each 

breast (low energy and subtracted contrast images). In their study they report that this method 

significantly improved the accuracy of cancer classification and reduced false-positive cases 

compared to other DL models previously reported. Later, Mao et al. (34) also developed an 

attention-based DL model to discriminate benign from malignant breast lesions on CEM 

images. They’ve evaluated and compared between three CNNs with attention, and the same 



models without attention. The attention-based models outperformed those without attention 

mechanism. They have also compared the best model performance to that of a radiomics 

model, as well as to radiologists. They show that the radiologists’ performance improved 

with the algorithm’s support (34).  

Prospective data analysis validates the performance of DL models in real-world scenarios. It 

ensures these models are robust and applicable to future, unseen cases, beyond retrospective 

data. We found only two studies that evaluated their model on prospective data. Zheng et al. 

(35) developed a fully automated pipeline system based on CEM images for segmentation 

and classification of breast lesions. They assessed the algorithm as a support tool for breast 

radiologists, demonstrating improved sensitivity and specificity in a prospective testing 

cohort (35). Chen et al. (36) also developed a multi-process model for detection and 

classification of breast lesions at CEM. They have assessed their model in a retrospective 

external testing set as well as a prospective dataset. The model outperformed senior breast 

radiologists in lesion classification metrics (36).  

Jailin et al. (37) developed a DL algorithm for detection and classification of breast lesions 

using data from both the low-energy and subtracted contrast images. They then evaluated 

their algorithm’s performance at different levels of BPE (Supplemental Figure 3), showing 

increased false positive rates in cases with increased BPE (37). 

Discussion 

CEM is a novel imaging technique that has higher sensitivity compared to standard 2D 

mammography for detecting breast cancer, albeit with a decrease in specificity. We 

demonstrated that DL algorithms can be used for CEM lesion detection, segmentation and 

classification. Notably, some of the models have showed superior accuracy compared to 

radiologists’ evaluations. Furthermore, integrating models as supportive tools for CEM 



interpretation has refined specificity while keeping high sensitivity, and decreased the false-

positive rate.  

While the integration of DL for CEM analysis is still at a relatively early stage, there are 

studies that developed full-process applications that are able to detect, segment and classify 

breast lesions (25, 28, 35-37). Despite the promising results, currently, there is an absence of 

FDA-approved AI algorithms available for CEM (38).  

Integrating DL algorithms into clinical workflows has the potential to enhance breast cancer 

screening and diagnosis. The algorithms can enable more accurate study interpretations in 

less time. Notably, the increased specificity reported for some algorithms highlights their 

utility in using these models as support tools for CEM studies interpretation. This could 

diminish the frequency of recalls and biopsies, while maintaining high sensitivity. Large, 

prospective clinical trials are necessary to assess the clinical value and real-world 

effectiveness of utilizing DL algorithms as a support tool for reading CEM studies. The 

ongoing prospective MASAI trial in Sweden is an example, assessing the application of DL 

in the interpretation of standard screening mammography (39).  

The integration of AI into clinical workflows is anticipated to affect the role of breast 

radiologists. It may enable radiologists to dedicate more attention to complex cases, while 

spending less time on straightforward examinations. Radiologists may have higher 

availability for involvement in multidisciplinary teams. Initial automatic analysis of cases 

may allow triage and prioritization of examinations based on urgency. The transformation 

ultimately may streamline patient management, enhance the timeline of medical 

interventions, and promote a patient-focused approach in breast cancer care. Ultimately, 

implementation of these algorithms in everyday clinical use could improve patient outcomes 

and overall efficiency of healthcare delivery.  



This review has several limitations. First, heterogeneity of studies and variability in measures 

between studies prevented a meta-analysis. Second, DL in radiology and CEM are both 

rapidly expanding topics. Thus, there may be relevant studies published after our review was 

performed. Finally, this review did not fully account for the variation in clinical settings and 

patient populations across the studies analyzed. This variability can affect the generalizability 

of the findings, as the performance of the algorithms could differ based on the study 

indications and patient demographics. Such differences might influence the algorithms’ 

effectiveness and applicability in diverse contexts. 

In conclusion, CEM is an emerging modality in breast imaging with a high diagnostic 

performance, outperforming standard 2D mammography and comparable to breast MRI. At 

present, the application of DL to CEM is at its beginning but showing promising 

performance. When used as a support tool, DL can potentially improve radiologists’ accuracy 

and efficiency in the interpretation of CEM examinations, improving specificity while 

keeping high sensitivity for cancer detection. Further research is needed to validate DL 

models across different practices and CEM vendors, and prospectively assess their impact on 

real-world clinical practice. 

  



References 

 

1. Yankaskas BC, Cleveland RJ, Schell MJ, Kozar R. Association of Recall Rates with 

Sensitivity and Positive Predictive Values of Screening Mammography. American Journal of 

Roentgenology. 2001;177(3):543-9. 

2. Kerlikowske K, Grady D, Barclay J, Sickles EA, Ernster V. Effect of age, breast 

density, and family history on the sensitivity of first screening mammography. Jama. 

1996;276(1):33-8. 

3. Kriege M, Brekelmans CTM, Obdeijn IM, Boetes C, Zonderland HM, Muller SH, et 

al. Factors Affecting Sensitivity and Specificity of Screening Mammography and MRI in 

Women with an Inherited Risk for Breast Cancer. Breast Cancer Research and Treatment. 

2006;100(1):109-19. 

4. Jochelson MS, Lobbes MBI. Contrast-enhanced Mammography: State of the Art. 

Radiology. 2021;299(1):36-48. 

5. Ghaderi KF, Phillips J, Perry H, Lotfi P, Mehta TS. Contrast-enhanced 

Mammography: Current Applications and Future Directions. RadioGraphics. 

2019;39(7):1907-20. 

6. Patel BK, Lobbes MBI, Lewin J. Contrast Enhanced Spectral Mammography: A 

Review. Seminars in Ultrasound, CT and MRI. 2018;39(1):70-9. 

7. Soffer S, Ben-Cohen A, Shimon O, Amitai MM, Greenspan H, Klang E. 

Convolutional Neural Networks for Radiologic Images: A Radiologist's Guide. Radiology. 

2019;290(3):590-606. 

8. Kinkar KK, Fields BKK, Yamashita MW, Varghese BA. Empowering breast cancer 

diagnosis and radiology practice: advances in artificial intelligence for contrast-enhanced 

mammography. Frontiers in Radiology. 2024;3. 



9. Whiting PF. QUADAS-2: A Revised Tool for the Quality Assessment of Diagnostic 

Accuracy Studies. Annals of Internal Medicine. 2011;155(8):529. 

10. Sorin V, Yagil Y, Yosepovich A, Shalmon A, Gotlieb M, Neiman OH, et al. Contrast-

Enhanced Spectral Mammography in Women With Intermediate Breast Cancer Risk and 

Dense Breasts. American Journal of Roentgenology. 2018;211(5):W267-W74. 

11. Lee C, Phillips J, Sung J. ACR BI-RADS® In: ACR BI-RADS® CONTRAST 

ENHANCED MAMMOGRAPHY (CEM) A supplement to ACR BI-RADS® 

Mammography 2013 Atlas, Breast Imaging Reporting and Data System. American College of 

Radiology, Reston, VA, USA. 2022. 

12. Karimi Z, Phillips J, Slanetz P, Lotfi P, Dialani V, Karimova J, et al. Factors 

Associated With Background Parenchymal Enhancement on Contrast-Enhanced 

Mammography. American Journal of Roentgenology. 2021;216(2):340-8. 

13. Sorin V, Yagil Y, Shalmon A, Gotlieb M, Faermann R, Halshtok-Neiman O, et al. 

Background Parenchymal Enhancement at Contrast-Enhanced Spectral Mammography 

(CESM) as a Breast Cancer Risk Factor. Academic Radiology. 2020;27(9):1234-40. 

14. Klang E. Deep learning and medical imaging. J Thorac Dis. 2018;10(3):1325-8. 

15. Popescu M-C, Balas VE, Perescu-Popescu L, Mastorakis N. Multilayer perceptron 

and neural networks. WSEAS Transactions on Circuits and Systems. 2009;8(7):579-88. 

16. Sorin V, Barash Y, Konen E, Klang E. Deep Learning for Natural Language 

Processing in Radiology—Fundamentals and a Systematic Review. Journal of the American 

College of Radiology. 2020;17(5):639-48. 

17. Sorin V, Barash Y, Konen E, Klang E. Large language models for oncological 

applications. Journal of Cancer Research and Clinical Oncology. 2023;149(11):9505-8. 

18. Guo M-H, Xu T-X, Liu J-J, Liu Z-N, Jiang P-T, Mu T-J, et al. Attention mechanisms 

in computer vision: A survey. Computational Visual Media. 2022;8(3):331-68. 



19. Sorin V, Kapelushnik N, Hecht I, Zloto O, Glicksberg BS, Bufman H, et al. GPT-4 

Multimodal Analysis on Ophthalmology Clinical Cases Including Text and Images. 

medRxiv. 2023:2023.11.24.23298953. 

20. Kim HE, Cosa-Linan A, Santhanam N, Jannesari M, Maros ME, Ganslandt T. 

Transfer learning for medical image classification: a literature review. BMC Medical 

Imaging. 2022;22(1). 

21. Sorin V, Barash Y, Konen E, Klang E. Creating Artificial Images for Radiology 

Applications Using Generative Adversarial Networks (GANs) – A Systematic Review. 

Academic Radiology. 2020;27(8):1175-85. 

22. Zhou Z, Rahman Siddiquee MM, Tajbakhsh N, Liang J. UNet++: A Nested U-Net 

Architecture for Medical Image Segmentation. 2018;11045:3-11. 

23. Danala G, Patel B, Aghaei F, Heidari M, Li J, Wu T, et al. Classification of Breast 

Masses Using a Computer-Aided Diagnosis Scheme of Contrast Enhanced Digital 

Mammograms. Annals of Biomedical Engineering. 2018;46(9):1419-31. 

24. Wu X, Guo Y, Sa Y, Song Y, Li X, Lv Y, et al. Contrast-Enhanced Spectral 

Mammography-Based Prediction of Non-Sentinel Lymph Node Metastasis and Axillary 

Tumor Burden in Patients With Breast Cancer. Frontiers in Oncology. 2022;12. 

25. Beuque MPL, Lobbes MBI, van Wijk Y, Widaatalla Y, Primakov S, Majer M, et al. 

Combining Deep Learning and Handcrafted Radiomics for Classification of Suspicious 

Lesions on Contrast-enhanced Mammograms. Radiology. 2023;307(5). 

26. Gao F, Wu T, Li J, Zheng B, Ruan L, Shang D, et al. SD-CNN: A shallow-deep CNN 

for improved breast cancer diagnosis. Computerized Medical Imaging and Graphics. 

2018;70:53-62. 



27. Qian N, Jiang W, Guo Y, Zhu J, Qiu J, Yu H, et al. Breast cancer diagnosis from 

contrast-enhanced mammography using multi-feature fusion neural network. European 

Radiology. 2023;34(2):917-27. 

28. Helal M, Khaled R, Alfarghaly O, Mokhtar O, Elkorany A, Fahmy A, et al. 

Validation of artificial intelligence contrast mammography in diagnosis of breast cancer: 

Relationship to histopathological results. European Journal of Radiology. 2024;173:111392. 

29. Song J, Zheng Y, Zakir Ullah M, Wang J, Jiang Y, Xu C, et al. Multiview multimodal 

network for breast cancer diagnosis in contrast-enhanced spectral mammography images. 

International Journal of Computer Assisted Radiology and Surgery. 2021;16(6):979-88. 

30. Song J, Zheng Y, Xu C, Zou Z, Ding G, Huang W. Improving the classification 

ability of network utilizing fusion technique in contrast�enhanced spectral mammography. 

Medical Physics. 2021;49(2):966-77. 

31. Perek S, Kiryati N, Zimmerman-Moreno G, Sklair-Levy M, Konen E, Mayer A. 

Classification of contrast-enhanced spectral mammography (CESM) images. International 

Journal of Computer Assisted Radiology and Surgery. 2018;14(2):249-57. 

32. Dominique C, Callonnec F, Berghian A, Defta D, Vera P, Modzelewski R, et al. Deep 

learning analysis of contrast-enhanced spectral mammography to determine histoprognostic 

factors of malignant breast tumours. European Radiology. 2022;32(7):4834-44. 

33. Li X, Cui J, Song J, Jia M, Zou Z, Ding G, et al. Contextual Features and Information 

Bottleneck-Based Multi-Input Network for Breast Cancer Classification from Contrast-

Enhanced Spectral Mammography. Diagnostics. 2022;12(12):3133. 

34. Mao N, Zhang H, Dai Y, Li Q, Lin F, Gao J, et al. Attention-based deep learning for 

breast lesions classification on contrast enhanced spectral mammography: a multicentre 

study. British Journal of Cancer. 2022;128(5):793-804. 



35. Zheng T, Lin F, Li X, Chu T, Gao J, Zhang S, et al. Deep learning-enabled fully 

automated pipeline system for segmentation and classification of single-mass breast lesions 

using contrast-enhanced mammography: a prospective, multicentre study. eClinicalMedicine. 

2023;58:101913. 

36. Chen Y, Hua Z, Lin F, Zheng T, Zhou H, Zhang S, et al. Detection and classification 

of breast lesions using multiple information on contrast-enhanced mammography by a 

multiprocess deep-learning system: A multicenter study. Chinese Journal of Cancer Research. 

2023;35(4):408-23. 

37. Jailin C, Mohamed S, Iordache R, Milioni De Carvalho P, Ahmed SY, Abdel Sattar 

EA, et al. AI-Based Cancer Detection Model for Contrast-Enhanced Mammography. 

Bioengineering. 2023;10(8):974. 

38. AI Central. American College of Radiology Data Science Institute. 

https://aicentral.acrdsi.org. Accessed April 12, 2024. 

39. Lång K, Josefsson V, Larsson A-M, Larsson S, Högberg C, Sartor H, et al. Artificial 

intelligence-supported screen reading versus standard double reading in the Mammography 

Screening with Artificial Intelligence trial (MASAI): a clinical safety analysis of a 

randomised, controlled, non-inferiority, single-blinded, screening accuracy study. The Lancet 

Oncology. 2023;24(8):936-44. 

40. Khaled R, Helal M, Alfarghaly O, Mokhtar O, Elkorany A, El Kassas H, et al. 

Categorized contrast enhanced mammography dataset for diagnostic and artificial 

intelligence research. Scientific Data. 2022;9(1). 

 

  



Figure 1. Flow Diagram of the inclusion process 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Flow diagram of the search and inclusion process based on the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) guidelines. 
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Figure 2. Contrast-enhanced mammography. An example of a contrast-enhanced 
mammography examination in a 45-year old woman. Mediolateral oblique low-energy (A) 
and subtracted contrast-enhanced (B) images of both breasts show multiple enhancing masses 
in her left breast. Ultrasound-guided biopsies were performed, confirming multifocal invasive 
ductal carcinoma (IDC).  

 

 

 

  



Figure 3. Background parenchymal enhancement (BPE) at contrast-enhanced 
mammography. Examples illustrating BPE grading at contrast-enhanced mammography: (a) 
Minimal BPE, < 25%; (b) Mild BPE, 25-50%; (c) Moderate BPE, 50-75%; (d) Marked BPE, 
> 75%.  

 
Reprinted with permission from Sorin et al. Background Parenchymal Enhancement at 
Contrast-Enhanced Spectral Mammography (CESM) as a Breast Cancer Risk Factor. 
Academic Radiology, 2020. 

  



Figure 4. Venn diagram of artificial intelligence frameworks. This diagram illustrates that 
artificial intelligence (AI) is the broadest category, encompassing machine learning and deep 
learning as its subsets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Figure 5. An illustration of a multimodal deep learning model. This diagram 
demonstrates the integration of a clinical note (textual data) and contrast-enhanced 
mammography images (visual data) within a neural network architecture. These are 
processed through distinct pathways before being merged in a unified framework, facilitating 
a comprehensive analysis in the context of patient diagnosis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 6. Illustration of transfer learning. This diagram displays the application of transfer 
learning between two neural network models. Initially, a chest X-ray image is processed by 
the first model, which is used for lung cancer classification. An arrow then signifies the 
transfer of learned features (in purple) to a second model, which processes a contrast-
enhanced mammography (CEM) image. This second model is adapted to the characteristics 
of the CEM data, utilizing modified or additional components (in pink) for cancer 
classification at CEM. 

 

 

 

 

 

 

 

 

 



Figure 7. Schematic model of a generative adversarial network (GAN). The diagram 
illustrates how the generator and discriminator components are trained simultaneously. 
Starting with random noise as input, the generator produces synthetic images. These images, 
along with actual images, are supplied to the discriminator. The discriminator assigns a 
probability indicating whether the image is real. Based on feedback from the discriminator 
the generator then adjusts its parameters to enhance the realism of the synthetic images.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 8. Image analysis tasks in medical imaging. This figure illustrates three tasks 
applied to contrast-enhanced mammography (CEM) images: lesion detection, classification, 
and segmentation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Table 1: Quality Assessment of Diagnostic Accuracy Studies-2 (QUADS-2) 
� = high risk of bias; � = low risk of bias. ? = unclear risk. N/A – not applicable 

 RISK OF BIAS APPLICABILITY CONCERNS 

First 
Author 

Patient 
Selection 

Index  
Test 

Reference 
Standard 

Flow and 
Timing 

Patient 
Selection 

Index  
Test 

Reference 
Standard 

Helal et al. � � � � � � � 

Chen et al. � � � � � � � 

Jailin et al. � � � � ? � � 

Qian et al. � � � � � � � 

Beuque et 
al. 

� � � � � � � 

Zheng et 
al. 

� � � � � � � 

Li et al. � � � � ? � � 

Mao et al. � � � � � � � 

Wu et al. � � � � � � � 

Dominique 
et al. 

� � � � � � � 

Khaled et 
al. 

� � � � ? ? � 

Song et al. � � � � ? � � 

Song et al. � � � � ? ? � 

Perek et al. � � � � ? ? � 

Gao et al. � � � � ? ? � 

Danala et 
al. 

� � � � ? ? � 

 



 Study (Ref) Year Study Design Neural 

Network 

Application Training 

Dataset (n = 

patients) 

Testing Dataset 

(n=patients) 

Segmentation Performance 

Metrics 

1 Helal et al. 

(28) 

2024 Retrospective CNN Lesion 

detection and 

classification 

326 (training) 37 Automatic AUC-ROC 0.936; 

(95% CI: 0.898, 

0.973). Sensitivity 

75%, specificity 

96.3%, total 

accuracy of 90.1%, 

PPV 87.1 %, and 

NPV 92% 

2 Chen et al. 

(36) 

2023 Retrospective 

and 

prospective 

CNN Lesions 

detection and 

classification 

1355 (training) 

and 352 

(validation) 

95 

(retrospective) 

and 101 

(prospective) 

Automatic Lesion detection: 

AFROC 0.953 

(external) and 

0.963 

(prospective). 

Lesion 

classification: 

AUC 0.909 

(external, 95% CI: 

0.822−0.996), and 

0.912 

(prospective, 95% 

CI: 0.840−0.985). 

3 Jailin et al. 

(37) 

2023 Retrospective YOLOv5 

(CNN) 

Lesions 

detection and 

classification 

787 (training) 

and 150 

(validation) 

150 Automatic Lesion detection: 

AUFROC 0.891 

and 0.712 for low 

and high BPE, 

respectively.  

Lesion 

classification: 

AUC 0.986 (95% 

CI: 0.976–0.995) 



and 0.919 (95% 

CI: 0.866–0.962) 

for low and high 

BPE, respectively. 

4 Qian et al. 

(27) 

2023 Retrospective CNN Classification 1718 (training) 

and 255 

(validation) 

523 No 

segmentation 

was performed 

AUC of 0.92 (95% 

CI: 0.89, 0.95) 

5 Beuque et 

al. (25) 

2023 Retrospective CNN Lesion 

detection, 

segmentation, 

and 

classification 

850 (training) 

and 212 

(validation) 

279 Manual and 

automatic 

Lesion detection: 

Accuracy 88%, 

sensitivity 99%. 

Segmentation: 

Dice coefficient 

0.80 

Classification: 

Manual 

segmentation: 

AUC 0.88 (95% CI: 

0.84-0.93). 

Sensitivity 89% 

(95%CI 85-93%), 

specificity 73% 

(95% CI 64-81%). 

Automatic 

segmentation: 

AUC 0.87 (95% CI: 

0.82-0.92). 

Sensitivity 100% 

6(95%CI 100-

100%), specificity 

45% (95% CI 34-

57%). 

6 Zheng et al. 

(35) 

2023 Retrospective 

and 

CNN Segmentation 

and 

1538 172 (internal 

testing), 37 

Automatic Segmentation: 

Dice coefficient 



prospective classification (external 

testing), 105 

(prospective) 

0.820 ± 0.148 

(external 

retrospective) and 

0.837 ± 0.132 

(prospective). 

Classification: 

AUC: 0.940 

(external 

retrospective, 95% 

CI: 0.894–0.987) 

and 0.891 

(prospective, 95% 

CI: 0.816–0.945). 

7 Li et al. (33) 2022 Retrospective CNN + 

Attention 

Classification 98 (training) 

and 12 

(validation) 

12 Automatic Accuracy 88.06%, 

Precision 88.03%, 

Sensitivity 88.1%, 

specificity 88.01%, 

F1-score 0.88 

8 Mao et al. 

(34) 

2023 Retrospective CNN + 

Attention 

Classification 1093 146 Manual and 

automatic 

AUC of 0.970, an 

AUPRC of 0.988, 

F1 score 0.918, 

accuracy 0.891, 

sensitivity 0.848, 

specificity 1.000, 

PPV 1.000, and 

NPV 0.722  

9 Wu et al. 

(24) 

2022 Retrospective CNN  Lesion 

segmentation 

and lymph 

nodes 

classification 

For 

segmentation 

177, for 

classification 

120 

For 

segmentation 

20, for 

classification 31 

Automatic Segmentation: 

Dice coefficient 

0.84 ± 0.10 

Classification: 

Deep learning 

model: AUC 0.53 

(95% CI 0.31-



0.75), deep 

learning model 

with radiomics 

features score: 

AUC 0.76 (95% CI 

0.59-0.93). 

10 Dominique 

et al. (32) 

2022 Retrospective CNN Tumor 

characteristics 

prediction 

(classification) 

1574 images 

for training 

and 390 

images for 

validation (no 

details on the 

number of 

patients in 

each group) 

496 images (no 

details on the 

number of 

patients in the 

testing group) 

Manual Tumor grade AUC 

0.611, sensitivity 

60.34%, specificity 

60.26%, accuracy 

60.28%; ER AUC 

0.858, sensitivity 

80.23%, specificity 

80.3%, accuracy 

80.24%; PR AUC 

0.615, sensitivity 

80.23%, specificity 

80.3%, accuracy 

80.24%;  HER2 

AUC 0.62, 

sensitivity 60%, 

specificity 54.82%, 

accuracy 55.44%; 

Ki67 AUC 0.593, 

sensitivity 55.97%, 

specificity 56.14%, 

accuracy 56.05%; 

TN AUC 0.876, 

sensitivity 72.22%, 

specificity 73.26%, 

accuracy 73.19% 

11 Khaled et al. 

(40)  

2022 Retrospective CNN Segmentation Overall 2006 images from 326 

patients 

Automatic IOU 0.65, F1 0.71 



12 Song et al. 

(30) 

2022 Retrospective CNN Classification 

(per image, 

benign vs. 

malignant) 

Overall images from 95 patients 

were included. Each breast was 

included as a single case and 66 

benign cases were excluded. In 

the preprocessing of images, 

images were flipped, and noise 

were added, resulting ultimately 

in 17,360 images that were 

divided randomly to 80% training, 

15% validation and 5% testing.  

Automatic Accuracy 96.6%, 

sensitivity 96.4%, 

specificity 96.4%, 

precision 96.8%, 

F1 score 0.966, 

AUC 0.966 

13 Song et al. 

(29) 

2021 Retrospective CNN Classification 95 patients Automatic Accuracy 94.78%, 

precision 95.02@, 

recall 95.91%, 

specificity 94.5%, 

F1 score 0.955, 

AUC 0.947 

14 Perek et al. 

(31) 

2019 Retrospective CNN  Classification 54 patients with 129 images used 

for validation.  

Manual For 100% 

sensitivity 

specificity was up 

to 66%, 

depending on the 

model 

15 Gao et al. 

(26) 

2018 Retrospective CNN Classification 49 patients (training and testing 

unclear). 

Manual Accuracy 89%, 

sensitivity 93%, 

specificity 86%, 

and AUC 0.91 

16 Danala et al. 

(23) 

2018 Retrospective MLP Classification 111 patients Automatic  Accuracy 68.5%, 

PPV 82.1%, NPV 

47.7%, AUC 

0.737±0.048 

Table 2. Studies Evaluating Deep Learning Applications for Contrast Enhanced Mammography 



 

 


