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 31 

Abstract 32 

Introduction 33 

Electronic Health Records (EHRs) are vital repositories of patient information for medical research, 34 

but the prevalence of missing data presents an obstacle to the validity and reliability of research. This 35 

study aimed to review and category ise methods for handling missing data in EHRs, to help 36 

researchers better understand and address the challenges related to missing data in EHRs. 37 

Materials and Methods 38 

This study employed scoping review methodology. Through systematic searches on EMBASE up to 39 

October 2023, including review articles and original studies, relevant literature was identified. After 40 

removing duplicates, titles and abstracts were screened against inclusion criteria, followed by full-41 

text assessment. Additional manual searches and reference list screenings were conducted. Data 42 

extraction focused on imputation techniques, dataset characteristics, assumptions about missing 43 

data, and article types. Additionally, we explored the availability of code within widely used software 44 

applications. 45 

Results 46 

We reviewed 101 articles, with two exclusions as duplicates. Of the 99 remaining documents, 21 47 

underwent full-text screening, with nine deemed eligible for data extraction. These articles 48 

introduced 31 imputation approaches classified into ten distinct methods, ranging from simple 49 

techniques like Complete Case Analysis to more complex methods like Multiple Imputation, 50 

Maximum Likelihood, and Expectation-Maximization algorithm. Additionally, machine learning 51 

methods were explored. The different imputation methods, present varying reliability. We identified 52 

a total of 32 packages across the four software platforms (R, Python, SAS, and Stata) for imputation 53 

methods. However, it's significant that machine learning methods for imputation were not found in 54 
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specific packages for SAS and Stata. Out of the 9 imputation methods we investigated, package 55 

implementations were available for 7 methods in all four software platforms. 56 

Conclusions 57 

Several methods to handle missing data in EHRs are available. These methods range in complexity 58 

and make different assumptions about the missing data mechanisms. Knowledge gaps remain, 59 

notably in handling non-monotone missing data patterns and implementing imputation methods in 60 

real-world healthcare settings under the Missing Not at Random assumption. Future research should 61 

prioritize refining and directly comparing existing methods.  62 

 63 
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Introduction 70 

Electronic Health Records (EHRs) have firmly established themselves as essential repositories of 71 

patient data, serving pivotal roles in medical statistics and diverse research objectives (1). These data 72 

offer a wealth of information, enabling researchers to investigate various health-related phenomena 73 

(2). However, one pressing challenge researchers face when utilising EHRs is the issue of missing 74 

data, which can introduce bias and affect the validity of their findings (3, 4). Real-world EHR data 75 

often have high levels of missingness, presenting a challenge for statistical analyses (5). Imputing 76 

missing data in EHRs is crucial for ensuring data integrity and facilitating reliable healthcare decisions 77 

(3, 4). When it comes to handling missing data in EHR, it is a critical aspect that can significantly 78 

enhance the precision of research and reduce bias. Missing data, if not addressed properly, can lead 79 

to skewed results and unreliable conclusions (3, 6). An Electronic Health Record (EHR) is 80 

characterized as a digital archive of patient information, accessible to authorized users across various 81 

healthcare settings, primarily aimed at facilitating comprehensive healthcare delivery (7). Data that 82 

was not initially gathered for research purposes often exhibits missing values, a common occurrence 83 

in EHR datasets. Consequently, effective management of missing data holds significant importance 84 

within the realm EHRs (8). 85 

Missing data is commonly classified into three distinct types, determined by the underlying reasons 86 

for its absence. Missing completely at random (MCAR) is a term used to describe a situation where 87 

the occurrence of missing data is purely random and is independent of both observed and 88 

unobserved variables (9). Missing values in the specific variable don't show any clear differences 89 

compared to the values that were observed (10). E.g. if a blood pressure is missing from a dataset, it 90 

could be because someone accidentally forgot to record it. In such cases, the randomness of the 91 

missing data implies that the calculations made using the available data should ideally be free from 92 

any bias (11). When data are MCAR, the resulting parameter estimates are ideally entirely free from 93 

bias. However, a significant limitation of conducting an analysis solely on complete cases, which 94 
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essentially overlooks the missing data issue, is the resultant loss of statistical power. This loss is not 95 

negligible in many cases, particularly in multiple regression analyses with a high number of 96 

predictors. Even minimal missing data in individual variables can lead to excluding a significant 97 

portion of the dataset from the study [14]. 98 

Shifting focus to the missing at random (MAR) category, here, the absence of data is influenced by 99 

the information that is available and recorded in the dataset (12). Unlike MCAR, in MAR, there is a 100 

connection between what we see and what's missing. However, this link is only with the observed 101 

data, not with the missing values themselves (13). For example, in a large dataset, there is 102 

missingness regarding blood pressure data. Upon further analysis, it was found that other variables 103 

systematically differ between observed and unobserved values of blood pressure, particularly when 104 

considering cardiovascular disease and age. Patients without cardiovascular disease and younger 105 

patients had more missing blood pressure data compared to older patients with cardiovascular 106 

disease (11). The term 'informative missingness' is sometimes preferred over MAR, and its presence 107 

can be evaluated using logistic regression to explore the relationship between predictor values and 108 

outcome missingness [14]. 109 

In the most complex scenario, when data is missing not at random (MNAR), the variable's 110 

unobserved value is associated with its absence's underlying cause. This unobserved value can serve 111 

as a predictor or, more concerning, as an outcome. In this case, producing valid results is challenging 112 

due to the absence of straightforward methods. One approach is to conduct multiple sensitivity 113 

analyses to examine the impact of missing data on the outcomes of the study (14). One example is 114 

how Body Mass Index (BMI) data is recorded. BMI is more often collected for people who are 115 

overweight or obese than for those who are not, because health professionals are aware of the link 116 

between weight and various health conditions. Sometimes, when patients are not obese, their 117 

records might be left blank, and it is hard to tell if the data is missing or if the person just isn't obese. 118 
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Figuring out this kind of missing data, called Missing Not at Random (MNAR), is tough because it's 119 

hard to know why the data is missing (15, 16). 120 

Despite the significance of this methodological concern, there is a noticeable gap in the literature 121 

regarding a comprehensive examination of the various approaches and strategies for handling 122 

missing data in EHR-based observational studies. While there are existing reviews on this topic, they 123 

often focus on narrower aspects or specific methods (16-18). Therefore, there is a compelling need 124 

for a scoping review that can offer a broad overview of the methodological approaches used in 125 

addressing missing data within the context of EHR-based observational studies.  126 

Methods 127 

This analysis was conducted using the scoping review methodology defined by Arksey and O'Malley 128 

(19). A scoping review approach is beneficial for identifying existing peer-reviewed research and 129 

pinpointing key evidence. Scoping reviews are designed to chart the evidence landscape rather than 130 

deliver critically evaluated and synthesised findings, eliminating the need for quality assessment of 131 

the included studies.  Literature published and accessible in full text on EMBASE by October 2023, 132 

focusing on missing data imputation in EHRs and presented either as a review article or through a 133 

novel approach, was considered eligible for inclusion.  134 

We employed a customised systematic search strategy that combined keywords pertinent to missing 135 

data imputation and electronic health records (Table. 1) (20, 21). Eligible for inclusion were both 136 

review articles and original studies proposing approaches to managing missing data in EHRs. 137 
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Table 1. A search strategy was developed by combining relevant keywords related to imputing missing data and electronic 138 

health records, utilizing Boolean operators. 139 

 140 

After removing duplicates, we began by systematically reviewing titles and abstracts against the 141 

inclusion criteria to exclude any that were clearly ineligible, followed by screening the remaining full 142 

texts to identify relevant papers. We also searched the publication lists of the final pool of included 143 

papers for relevant references. Data extraction focused on imputation techniques, the characteristics 144 

of datasets, assumptions about missing data and the type of article.  145 

Results 146 

A total of 101 articles were found, and two of them were excluded as duplicates, as indicated in the 147 

PRISMA scoping review flowchart (Figure.1). The remaining 99 documents were screened by title and 148 

abstract. 21 studies were selected for full-text screening. Five studies were eligible for data 149 
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extraction. Four articles were also found through a manual search, which brings the total number of 150 

studies that will be screened for full text to nine. 151 

 152 

Figure 1. Prisma flowchart of literature search 153 

Within the nine articles, thirty-one imputation approaches were identified, classified into 10 distinct 154 

imputation methods, each applied under specific assumptions, using simple or more complex 155 

imputation methods (Figure. 2).  156 

 157 

Figure 2.  Imputation methods  158 

The screened articles encompassed various contributions to the field: three papers provided reviews 159 

of existing imputation methods, two engaged in simulation studies, two introduced novel 160 

methodologies, one established a general framework for imputing missing data, and one conducted 161 

a comparative analysis of different autoencoder methods. 162 

Certain studies proposed imputation methods suitable for a broad spectrum of EHRs (16, 22, 23), 163 

while others focused on specific data types such as time series (17), marginal structural models (18), 164 

and longitudinal datasets (15, 24, 25). Additionally, a unique study employed a simulation study for 165 

comparing different imputation methods (26). The following synthesis provides a comprehensive 166 

overview of the diverse landscape of imputation methodologies applied to address missing data in 167 

EHRs (Table 2).  168 

Table 2. Characteristics of Included Studies.  169 

 Authors Year Imputation method Data Assumptions Study type 

1 Carpenter et 

al. 

2020 Maximum 

Likelihood, 

- MAR Practical 

guideline 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 13, 2024. ; https://doi.org/10.1101/2024.05.13.24307268doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.13.24307268
http://creativecommons.org/licenses/by/4.0/


9 
 

Bayesian 

approach, 

Expectation 

maximisation 

algorithm, 

Mean-score 

estimation, 

Multiple 

imputation, 

IPW. 

 

 

2 Kazijevs et al. 2023 Machin learning 

method 

Time series 

data 

MCAR 

MAR 

MNAR 

Review and 

benchmarking 

3 Leyrat et al. 2020 Complete case 

analysis, 

The last 

observation 

carried forward, 

Multiple 

imputation, 

 

Inverse-

probability-of-

Simulation 

study 

MCAR 

MAR 

Constant 

Differential 

Review and 

simulation study 
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missingness 

weighting 

(IPMW), 

4 Tsiampalis et 

al. 

2023 Deep learning 

unsupervised 

method, Sub-

datasets with 

complete 

information, 

Mean-values of 

attributes 

combined 

autoencoder, 

Data-driven 

approach 

(Denser EHR to 

Spares EHR), 

Use of 

informative 

observations 

 

- - Review 

5 Kontopantelis 2017 Longitudinal 

multiple 

imputation 

approaches for 

 

CPRD 

 

MNAR 

Method 

development 

study 
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variables 

with very low 

individual-level 

variability: the 

mibmi 

command 

in Stata 

6 Welch 2013 Two-fold fully 

conditional 

specification 

multiple 

imputation 

Simulation 

study 

MCAR Simulation 

study 

7 Cesare  Multi-step 

approach to 

managing 

missing data in 

time and 

patient variant 

electronic 

health records 

AMPATH 

Academic Model 

Providing Access 

to Healthcare 

MAR Method 

development 

study 

8 Beaulieu-

Jones 

2016 Autoencoder, 

IterativeSVD 

(Singular Value 

Decomposition), 

K-nearest 

Pro-Act 

dataset 

MCAR 

MNAR 

Compare 

imputation 

methods 
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neighbours 

imputation 

(KNN 

imputation), 

Soft Impute, 

Column Mean 

Filling, 

Column Median 

Filling 

 

9 Blankers 2010 Multiple 

imputation 

 

Prospective 

cohort 

study 

MAR, MCAR Simulation study 

 170 

A combined count of 32 software packages dedicated to imputation methods was discovered across 171 

the four statistical software: R, Python, SAS, and Stata. Notably, machine learning techniques for 172 

imputation were absent from devoted packages in SAS and Stata. Among the 9 imputation methods 173 

searched, implementations were accessible for 7 methods across all four software platforms (Table 174 

3). 175 

Table 3. Imputation methods package 176 

Category Method Software Package 

 

 

CCA R tidyr 

Python Pandas 
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Simple 

 

 

 

 

 

 

 

 

Complex 

SAS DATA step/ PROC IML 

Stata rmiss2 

LOCF R tidyr/ imputeTS 

Python pandas 

SAS MACRO 

Stata ssc 

Maximum Likelihood R maxLik, univariateML 

 

Python Mvem, mle, statsmodels 

SAS sas-twophase-package 

Stata Cquad  

Expectation maximisation R library(dplyr)/ 

library(ggplot2) 

Python mixem 

SAS SAS/IML 

Stata mi (mi impute mvn)  

IPW R Ipw 

Python CausalInference, balance 

SAS eAppendix 
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Stata PSWEIGHT 

Iterative SVD R svd 

Python Scratch, SciPy, NumPy, 

scikit-learn, PyTorch 

SAS IML  

Stata LAPACK  

Multiple imputation R rMIDAS, MICE, Amelia 

Python Autoimpute, MIDASpy 

SAS MIANALYZE  

Stata Mi 

Soft impute R Softimpute, CRAN 

Python Fancyimpute,  

SAS - 

Stata - 

Unsupervised deep learning R rMIDAS, ruta,  

Python MIDASpy 

SAS - 

Stata - 

 177 
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A. Simple methods: 178 

A.1 Complete case analysis 179 

Complete-case analysis (CCA), or listwise deletion, exclusively employs the data records that keep no 180 

missing values for any pertinent variable required for analysis, hence excluding observations that 181 

have a missing value for any of the variables included in the analysis (27). CCA can produce estimates 182 

of effect size that are biased, inefficient and/or underpowered. These issues become more 183 

pronounced when there is a high level of missing data, with loss of power and also higher levels of 184 

bias if the data missingness mechanism is MAR or MNAR. (28). The fundamental assumption 185 

underlying CCA is that the data are MCAR. 186 

A.2. Last observation carried forward (LOCF) 187 

The LOCF method is a historically popular statistical tool in longitudinal studies involving repeated 188 

measurements (29). In this approach, when a value is missing from a later visit, it is filled in with the 189 

previously recorded value of the participant. This leads to an analysis where through a simple form of 190 

imputation, the affected variables can be regarded as complete (18). However, a critical shortcoming 191 

of LOCF is its inclination to provide inaccurate estimates for missing values, notably when the 192 

dependent variable is on an upward (or downward) trajectory over time. LOCF is prone to bias, 193 

potentially leading to either an underestimation or overestimation of the actual effects of the 194 

treatment. The method's suitability is questionable even in situations where the missing data is 195 

purely random (30).  196 

B. Complex imputation methods 197 

B.1. Multiple Imputation (MI)  198 

Multiple imputation is a commonly used method that replaces missing values by creating plausible 199 

numbers based on the distributions and connections of observed variables in the dataset (31). MI 200 

utilises this technique to estimate the missing values, resulting in multiple datasets considered 'full'. 201 

We use the observed data to evaluate the distribution of the partially observed variables, given the 202 
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fully known variables (32). Subsequently, we employ this estimation to fill in the missing data. The 203 

rationale behind using multiple imputations is that the imputed data can never possess the identical 204 

characteristics as the observed data. Instead, they are generated from the predicted distribution of 205 

the missing data, given the observed data under the assumption of MAR. This process operates 206 

under a specific Bayes model that accurately represents both the observed data and the mechanism 207 

responsible for missing data (32). 208 

Two steps are involved in multiple imputations: 1) Creating replacement values, or "imputations," for 209 

missing data and repeatedly doing so to develop numerous data sets with the missing information 210 

replaced. Multiple Imputation (MI) fills in the missing values using statistical properties of the data, 211 

such as the relationships and distributions of variables in the dataset. 2) Analysing and integrating 212 

the many imputed data sets (33, 34). Following the execution of the planned statistical analysis (such 213 

as regression or t-test) on each imputed data set individually (stage 2), the desired estimates (e.g., 214 

the average difference in outcome between a treatment group and a control group) from all the 215 

imputed data sets are merged into a single estimate using standard combining methods. The benefit 216 

of using MI in statistical analysis is that it may handle problems other than traditional missing data 217 

problems. MI is a widely used method for managing missing data, and it is offered in many software 218 

programmes (35, 36).  219 

Further refinement in data imputation is achieved using Multiple Imputation by Chained Equations 220 

(MICE, also called Fully Conditional Specification (FCS)), a sophisticated technique crucial for datasets 221 

with complex variable relationships (37). MICE works by creating multiple dataset copies, filling 222 

missing values with placeholders, and then employing regression models to predict these values (38). 223 

The pooled predictions from these multiple imputed datasets lead to the selection of final values, 224 

effectively handling both categorical and continuous data. Even after employing MICE, some values, 225 

especially dates, might be inaccurate. The subsequent step involves selecting representative values 226 

for each patient to minimise outlier impacts and manually adjusting date variables to ensure 227 
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accuracy (25). The primary limitations of this approach involve the time-invariant nature of the MICE 228 

imputation model and the lack of consideration for spatial autocorrelation among nearby clinics. 229 

A Bayesian multiple imputation method is introduced to handle left-censored multivariate data 230 

commonly found in environmental and biomedical research (39). This approach addresses the 231 

difficulty of assigning explicit values for observations below the limit of detection (LOD), especially in 232 

longitudinal data settings.  233 

Also, k-nearest neighbours (KNN) can be used with bootstrap and sequential imputation to get 234 

multiply imputed data (40). The idea behind utilising KNN for missing values is that a point value may 235 

be estimated by the values of the points nearest to it, depending on other factors. For categorical 236 

variables, the mode of the nearest neighbours is utilised, whereas for numeric data, the mean of the 237 

nearest neighbours is employed. The k-nearest neighbours algorithm requires searching through all 238 

complete cases and selecting the k examples most relevant to a particular missing information 239 

(Nearest neighbour selection for iteratively KNN imputation). The KNN imputation technique 240 

encounters two significant hurdles: firstly, determining the optimal value of k in advance, and 241 

secondly, selecting the most appropriate k nearest neighbours [53]. 242 

B.2. Maximum likelihood  243 

Maximum likelihood imputation is a theoretically robust approach for estimating parameters in 244 

regression models when dealing with missing data (41). This technique includes estimating a set of 245 

parameters that maximise the chance of obtaining the observed data (42). The method is 246 

characterised by the explicit articulation of the likelihood of the intended data, integration over 247 

missing values to ascertain the likelihood of observed data, and the subsequent maximisation of this 248 

likelihood to derive maximum likelihood estimates. This methodological rigour ensures a principled 249 

and statistically sound treatment of missing data, especially in complex and unbalanced study 250 

designs (22, 43). A limitation of maximum likelihood methods is the need for relatively large data sets 251 

(44).   252 
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Maximum likelihood and MI procedures have been methodically developed with a foundational 253 

assumption of MAR (45). Note that if the missingness mechanism strays from the MAR assumption, 254 

as observed in MNAR scenarios, methods such as maximum likelihood and multiple imputation 255 

might produce biased results, especially in small longitudinal samples exhibiting non-normality (43). 256 

In instances of varying population distributions, Maximum Likelihood is preferred over MI when the 257 

distribution is non-normal (46).  258 

B.3. Expectation-Maximisation (EM) algorithm  259 

Expectation maximisation offers an iterative approach to maximising the likelihood estimation by 260 

using latent variables (47). This algorithm is designed to maximise the likelihood of observed data by 261 

iteratively refining parameter estimates. The EM algorithm consists of two distinct phases: 262 

Expectation and Maximization. In the Expectation phase, the algorithm begins by imposing a value 263 

for the missing or latent variables based on the current estimates of the parameters. This step 264 

involves calculating the expected values of the missing data given the observed data and the current 265 

parameter estimates. Essentially, it estimates the posterior distribution of the missing variables. This 266 

imputation process is crucial for establishing a foundation for subsequent parameter refinement. 267 

Following the Expectation step, the Maximization phase comes into play. In this step, the algorithm 268 

evaluates the parameters that maximise the expected log-likelihood obtained from the first step. It 269 

involves adjusting the parameter values to enhance the fit between the observed and imputed data. 270 

The Maximisation step essentially serves as a parameter update based on the newly imputed values, 271 

optimising the likelihood function. The iterative nature of the EM algorithm involves repeating these 272 

two steps until a convergence criterion is met, indicating that the algorithm has reached a stable 273 

solution. Convergence is often achieved when there is minimal change in the parameter estimates 274 

between successive iterations. One notable advantage of the EM algorithm is its ability to provide 275 

consistent estimates of means and covariance matrices, which are essential for characterising the 276 

underlying distribution of the data. However, EM may be computationally intensive and requires a 277 

sufficiently large sample size to ensure the reliability of the parameter estimates (48-50).  278 
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B.4. Inverse probability weighting (IPW) 279 

In this method, complete cases are weighted by the inverse of their probability of being complete 280 

cases. Table four illustrates a basic idea. Because the likelihood of missing data being dependent on 281 

its value introduces bias, the observed mean is 13/6 instead of the whole dataset's mean of 2 (i.e., 282 

the actual values of the nine observations). The third row of table four displays the estimated chance 283 

of observing the data when considering the group variable and assuming MAR given the group. This 284 

assumption was validated by cross-referencing with the entire data (22). 285 

Table 4. Example for inverse probability weighting imputation technique 286 

Group A B C 

Full data 1 1 1 2 2 2 3 3 3 

Observed data 1 ? ? 2 2 2 ? 3 3 

Probability of observation given 

group 

1/3 - - 1 1 1 - 2/3 2/3 

 287 

The weights, which are the inverses of the observation probabilities, are used to compute a weighted 288 

mean using this estimate. Therefore, to make up for the three observations in group A, we give each 289 

observation a weight of 3. Next, we compute the weighted mean:  290 

���
�

�
� � ������� � � � ���� � 

�

�
�

�

�
������� 

�

�
� 
�

�

 = 2 291 

Since the IPW analysis relies on estimated weights from observed data, it only applies under MAR 292 

(51). Statistical analysis is complicated by IPW. To begin, it considers only complete records when re-293 

weighting them, which results in the elimination of any data point that is lacking values. As a result, 294 

the study may not be as comprehensive or representative as it could have been because data from 295 

these missing variables cannot be recovered (52). If covariates are not MAR given the dependent 296 
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variable, a complete records analysis might be more suitable, necessitating the inclusion of the 297 

dependent variable in the weight model. It can be challenging to estimate weights precisely when 298 

relevant variables in the weight model have missing values, further complicating the inclusion of 299 

these variables. Lastly, IPW results can be affected by big weights and the weight model chosen, 300 

which can make it hard to choose. Finding a suitable weight model becomes much more of a 301 

challenge when there is no explicit documentation on handling these problems (22).  302 

There is a modified method of IPW called Inverse Probability of Missingness Weighting (IPMW). In 303 

studies with time-varying confounding and data gaps, IPMW is used. While effective in monotone 304 

missing data scenarios, like participant dropout, IPMW becomes complex with non-monotone 305 

missing patterns, where data intermittently lacks in various variables. This complexity increases with 306 

multiple time points and incomplete variables. Additionally, the broader inverse probability 307 

weighting (IPW) method, which combines weights for each missing variable, can lead to variable 308 

weights and less accurate treatment effect estimates. "IPW" refers to the general approach, with 309 

"IPMW" denoting its specific uses for missing data (53). IPMW is used in Marginal Structural Model 310 

(MSM) for dealing with missing confounder in non-randomised longitudinal studies (18). Marginal 311 

structural models (MSMs) are commonly used to estimate causal intervention effects in longitudinal 312 

nonrandomized studies (54). 313 

B.5. Iterative SVD (Singular Value Decomposition) 314 

To understand Iterative SVD, it is essential first to grasp the concept of standard SVD. Singular Value 315 

Decomposition is a matrix factorisation technique used in many fields, including signal processing, 316 

statistics, and machine learning (55). SVD is a mathematical technique that decomposes a matrix into 317 

its constituent elements, providing insight into its structure. It decomposes a matrix Ā into three 318 

other matrices U, Σ and ��  where U and Σ and ��  are orthogonal matrices, and Σ is a diagonal matrix 319 

containing singular values. This decomposition can capture the underlying structure of the 320 

���� � ���� ��������
�

. 321 
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Iterative Singular Value Decomposition (SVD) addresses missing values in the initial data matrix. 322 

Given that SVD necessitates an entirely populated matrix, an initial imputation is performed by 323 

substituting missing values with mean or median values or utilising row/column averages. After the 324 

initial imputation, standard SVD is performed on the modified data matrix. This yields the matrices U 325 

and Σ and �
�
 , providing a lower-dimensional representation of the data. The missing values are 326 

subsequently recalculated utilising the knowledge acquired from the SVD decomposition. This entails 327 

utilising the singular value decomposition (SVD) components to restore the data matrix and replacing 328 

the previously imputed values with new estimations. The final two steps are performed iteratively. 329 

During each iteration, the Singular Value Decomposition (SVD) is performed on the matrix that has 330 

been updated with imputed values. Subsequently, these values are adjusted depending on the new 331 

decomposition (56, 57).  332 

Singular Value Decomposition (SVD) offers notable advantages, including significantly higher 333 

accuracy compared to simple row averages across diverse datasets (58). It excels in analysing time-334 

series data with low noise levels, effectively estimating gene expression based on temporal 335 

regulation patterns (57). However, SVD has limitations, requiring complete matrices for operation. 336 

Imputation strategies, such as substituting row averages for missing values, are necessary. 337 

Additionally, SVD's performance is sensitive to data type, exhibiting potential challenges in non-time 338 

series datasets lacking clear expression patterns (59). Its linear regression nature in lower-339 

dimensional space may result in diminished performance for non-time series data, where expression 340 

patterns are often less distinct (57). Despite these considerations, SVD remains a powerful tool, 341 

particularly suited for specific data characteristics and applications.  342 

B.6. Longitudinal imputation approach: 343 

The two-fold fully conditional specification (FCS) technique is an adaptation of FCS as multiple 344 

imputation technique, that takes account of the temporal structure of longitudinal data (60, 61). 345 
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The method commences by selecting a time window width, for instance, 1-, 2-, or 3-time blocks, 346 

establishing the range of time blocks around the target time point for imputation. During this stage, 347 

the typical FCS imputation technique is utilised to fill in missing values for each variable at a 348 

particular time (61). This is done by employing regression models incorporating values from adjacent 349 

time points within the designated time window (61, 62). This method enables the inclusion of 350 

temporal dependencies within the imputation model. Once the within-time imputation for a time 351 

block is finished, the same process is done for all time blocks in the dataset. This step guarantees 352 

that the imputation model considers the longitudinal evolution of the data (61, 62). 353 

The two-fold FCS method improves the collection of temporal correlations in longitudinal EHR data 354 

by considering adjacent time blocks throughout the imputation process. This simplifies the process 355 

of imputation models and minimises the likelihood of collinearity and overfitting (61). The system 356 

enables the utilisation of several modelling approaches tailored to specific variable types, thus 357 

accommodating the wide range of data types commonly encountered in EHRs. The two-fold 358 

technique can result in more accurate estimates compared to traditional FCS/MICE when there are 359 

longitudinal and time-dependent patterns present, reducing bias.  360 

Like other multiple imputation approaches, the two-fold FCS functions assume that data are MAR. 361 

The algorithm can be computationally intensive, especially with large datasets and comprehensive 362 

time windows (24). Bespoke longitudinal imputation algorithms, like the mibmi code in STATA, are 363 

customized for specific parameters such as BMI over time. These algorithms start with outlier 364 

detection and employ standard and regression-based cleaning methods for BMI computation. While 365 

effective in generating multiple imputed datasets, they come with drawbacks including high 366 

computational costs, exclusion of patients with limited BMI records, and the necessity for careful 367 

extrapolation to avoid inaccuracies. 368 
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C. Machine learning methods 369 

Machine learning methods for imputing missing data operate by dividing datasets into training and 370 

test sets and learning from observed variables. There are several methods, using supervised, semi-371 

supervised, or unsupervised machine learning techniques [59].  Like other imputation methods, 372 

machine learning methods do not work with all kinds of data [60]. Their performance could change 373 

depending on the value type, which include numeric, non-numeric, text, graph, etc. So, it is essential 374 

to fully understand the underlying data patterns before doing data imputation to ensure that the 375 

best machine learning method is chosen for handling missing data situations correctly and effectively 376 

[61]. Selecting the proper machine learning imputation method depends on the dataset and analysis 377 

aim [61]. When compared to standard imputation methods, the use of machine learning for 378 

imputing missing values has shown improved performance in prediction and data analysis [62]. Non 379 

machine learning techniques may result in a smaller sample size and more bias since they limit 380 

variability [63]. Nevertheless, due to recent technological progress, machine learning capitalises on 381 

substantial computational resources to tackle these obstacles efficiently through precise estimation 382 

of absent values, thus enhancing the performance of data analysis [64]. Current method proposals 383 

that use machine learning techniques can have their crucial improvements in accuracy, performance, 384 

and time consumption brought to light through research and analysis [24]. Different machine 385 

learning methods have been used in EHRs for imputing missing data in the screened articles. We will 386 

introduce them more. 387 

C.1. Deep learning unsupervised method  388 

Deep learning unsupervised is an imputation technique specifically tailored to handle longitudinal 389 

patient data, defined by the progression of the disease over time (63). This strategy primarily 390 

involves collecting data by grouping essential clinical variables that an expert physician has 391 

determined. The data, characterised by missing values denoted as "NA," is structured into records 392 

associated with patients via unique identifiers. The methodology entails an initial preprocessing 393 

stage in which the data is converted into a matrix structure. The matrix has n rows (records) and m 394 
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columns (variables) and is subjected to z-score normalisation for numeric variables and one-hot 395 

encoding for categorical variables. The approach's critical element resides in utilising a deep 396 

autoencoder framework. This system consists of two distinct encoders: Encoder1, which is dedicated 397 

to creating embeddings at the record level, and Encoder2, which captures the heterogeneity at the 398 

patient level. These encoders operate by projecting the input into a hidden space, and then a 399 

decoder combines these embeddings and processes them through numerous layers that include 400 

nonlinear transformations. The parameters are adjusted in the last stage of the process, and the 401 

patient data is re-entered to provide comprehensive datasets. The utilisation of a deep learning 402 

architecture in this method enables the modelling of intricate inter-variable interactions, which is 403 

crucial for effectively filling in missing values in cardiovascular patient data. The strategy effectively 404 

minimises imputation mistakes and biases in cardiovascular patient care by utilising patient-level 405 

heterogeneity and temporal patterns, representing a significant development in data processing (64). 406 

The deep autoencoder framework, with multiple layers and non-linear transformations, can be 407 

computationally intensive (65). Training and fine-tuning such models may require significant 408 

computing resources and time, which could be a practical limitation in certain healthcare settings. 409 

Deep learning models, particularly intricate ones such as autoencoders, frequently suffer from a lack 410 

of transparency and interpretability (66, 67). The comprehension of the model's process in 411 

determining imputed values or the rationale behind its conclusions might be difficult, which can 412 

cause apprehension in clinical environments where interpretability is essential. 413 

C.2. Soft-Impute   414 

This technique is especially relevant in fields such as machine learning and data science, where 415 

dealing with incomplete data is a common challenge. Soft-Impute is grounded in spectral 416 

regularisation, using convex relaxation techniques to fill in missing values in large matrices. The core 417 

of this method lies in its use of the nuclear norm as a regularise. The nuclear norm, essentially the 418 

sum of the singular values of a matrix, helps maintain the low-rank structure of the solution and 419 

avoids overfitting, which is crucial when dealing with large datasets. The process of Soft-Impute is 420 
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iterative. It employs a soft-threshold Singular Value Decomposition (SVD) in each iteration to update 421 

the missing elements of the matrix (68). Through iterative updates using SVD, Soft-Impute efficiently 422 

replaces missing values, gradually improving the matrix's completeness. One of the critical strengths 423 

of Soft-Impute is its ability to compute a regularisation path, offering a series of solutions 424 

corresponding to different values of the regularisation parameter. This capability allows the method 425 

to find the optimal balance between the complexity of the model and it’s fit to the data, making it 426 

highly effective for practical applications. In terms of scalability and efficiency, Soft-Impute stands 427 

out. With high computational efficiency, it can handle huge matrices, such as those encountered in 428 

the Netflix challenge for predicting user movie ratings. This efficiency stems from its fast 429 

computation of a low-rank SVD of a dense matrix. Furthermore, the method has shown impressive 430 

performance, achieving good training and test errors compared to other state-of-the-art techniques 431 

[70]. 432 

Discussion 433 

The comprehensive review conducted in this study provides a valuable summary of imputation 434 

methods for addressing missing data in EHRs. With the increasing digitization of healthcare data, the 435 

issue of missing data has become a significant concern, as it can impact the reliability and validity of 436 

analyses derived from such data. In this study, we identified a total of 101 articles and chose nine 437 

studies for data extraction, which described 31 imputation approaches. These methods were divided 438 

into two primary groups: simple imputation methods and complex imputation methods. Simple 439 

methods included CCA and LOCF, while complex methods comprised MI, Maximum Likelihood, EM 440 

algorithm, IPW, Iterative SVD, longitudinal imputation approach, deep learning unsupervised 441 

method, and Soft-Impute. Researchers should carefully consider the characteristics of their data, the 442 

assumptions of each method, and the specific context of their study when selecting an imputation 443 

method. The choice of imputation method should align with the goals of the analysis and the nature 444 

of the missing data mechanism. 445 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 13, 2024. ; https://doi.org/10.1101/2024.05.13.24307268doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.13.24307268
http://creativecommons.org/licenses/by/4.0/


26 
 

The performance of different imputation methods has been assessed in various studies. A 446 

comparison of eight imputation methods under different missing data mechanisms (MI, CCA, mean 447 

imputation, LOCF, HOT deck imputation, regression imputation, KNN, EM algorithm) suggested that 448 

MI exhibits the least standard errors compared to other methods, indicating its effectiveness in 449 

handling missing data (69). Simulation studies offer valuable insights, but it is crucial to validate 450 

these findings with real-world datasets to determine the practical applicability and reliability of 451 

multiple imputation (MI) in comparison to other imputation methods. 452 

Comparison of multiple imputation methods, including chained equations, random forests, and 453 

denoising autoencoders, revealed distinct patterns across different missing data mechanisms. 454 

Chained equations and random forests showed reduced bias and comparable standard errors under 455 

MCAR. However, denoising autoencoders exhibited elevated bias in cases of MAR. Furthermore, all 456 

methods demonstrated increased bias proportional to the extent of missing data under MNAR 457 

conditions (70).  458 

Assessing the performance of FCS and Two-Fold FCS methods in managing missing variables within 459 

longitudinal studies, particularly in estimating regression coefficients via a linear regression model, 460 

reveals that Two-fold FCS methods yield estimates that are slightly more biased and less precise 461 

compared to FCS (71, 72).  Two-Fold FCS was specially adapted from FCS to deal with missing data in 462 

longitudinal studies, so it seems surprising that FCS would perform better than two-fold FCS in 463 

longitudinal data. This observed bias likely stems from the inherent limitation of these approaches in 464 

restricting variables within the univariate imputation models, consequently risking the omission of 465 

crucial information of the missing data (71). One study suggests that, in longitudinal data, imputation 466 

of data from patients with a similar pattern of data may outperform traditional MI methods (73). 467 

Multiple imputation (MI) is an effective method for dealing with bias caused by missing data in 468 

longitudinal studies, resulting in accurate parameter estimates.  469 
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A comparison of eight common statistical and machine learning imputation methods (simple 470 

imputation, regression, EM, MICE, KNN, clustering imputation, random forest, and decision tree) 471 

showed that KNN and RF were the most effective imputation methods in the cohort study dataset 472 

under the MAR assumption (74). Machine learning methods attempt to explore the relationship 473 

between variables and predict missing data more precisely. This superior performance of machine 474 

learning methods suggests their potential for handling complex data patterns and nonlinear 475 

relationships, thereby offering more accurate imputations in challenging datasets. 476 

Understanding the assumptions behind each imputation method is essential for choosing the best 477 

one based on the dataset and missing data mechanism. Also, one should evaluate the computational 478 

complexity and resource needs when choosing imputation algorithms. Deep learning unsupervised 479 

methods can handle complex data patterns better but take a lot of processing power and time to 480 

train and fine-tune models. Although simpler algorithms like CCA and LOCF are more 481 

computationally efficient, they can be biased and inefficient. Existing methods address monotone 482 

missing patterns, temporal correlations in longitudinal data, and complex model interpretability, but 483 

they can be improved. The software available to researchers may influence their choice of method as 484 

not every method is available in each software. 485 

Regarding knowledge gaps, firstly there is a lack of consensus regarding the superiority of certain 486 

imputation methods over others, particularly in scenarios involving complex missing data patterns. 487 

This discrepancy underscores the need for further comparative studies to evaluate the strengths and 488 

limitations of different imputation techniques comprehensively. Secondly, existing imputation 489 

methods may not adequately address the challenges posed by non-monotone missing data patterns, 490 

where missingness occurs sporadically or irregularly across the dataset. While methods like MI and 491 

machine learning algorithms have been proposed for handling monotone missing data, there is 492 

limited research on techniques specifically designed for non-monotone missingness. Developing 493 

robust imputation strategies tailored to these complex missing data patterns is crucial for improving 494 
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the accuracy and reliability of analyses conducted on longitudinal datasets. Furthermore, there is a 495 

need for more research on the practical implementation of imputation methods in real-world 496 

healthcare settings. Many existing studies focus on theoretical comparisons of imputation techniques 497 

using simulated datasets or controlled experiments. While current approaches such as MI and other 498 

techniques have shown promise in dealing with missing data, further research is required to build 499 

viable solutions suited particularly to MNAR circumstances. 500 

Imputation strategies for addressing missing data are often underutilized due to a prevalent practice 501 

of not explicitly reporting missing data (75, 76). This reporting failure adds to the knowledge gap on 502 

the kind and amount of missing data in epidemiological studies. Because of this, chances to use 503 

imputation techniques efficiently to solve problems with missing data are often missed or 504 

underutilized. The absence of imputation procedures in this study might potentially undermine the 505 

validity and reliability of the results. This highlights the need of thorough reporting and the use of 506 

suitable approaches to address missing data in research projects.  507 

Conclusion 508 

Addressing missing data is an important aspect of the analysis of EHRs and various imputation 509 

methods are available to researchers. These methods range from simple to complex, each relying on 510 

assumptions that have been discussed in this paper.   511 

When selecting imputation methods, key considerations include understanding the assumptions 512 

underlying each method, evaluating computational complexity, and effectively addressing monotone 513 

missing data patterns. Further research is needed to establish method superiority, especially in 514 

complex missing data scenarios, and to develop robust strategies for real-world healthcare 515 

applications. 516 

 517 
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