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Abstract 

Background 

The effects of habitual physical activity on physiology and disease prevention are not fully understood. We 

examined the associations between physical activity, metabolites in systemic circulation, and breast cancer 

risk. 

Methods 

Total physical activity levels were assessed using doubly labeled water, accelerometers, and previous day 

recalls in the IDATA study (N=707 participants, ages 50-74 years, 51% women). Assessments occurred 1-

6 times over a 12-month period and blood samples were collected twice. Partial Spearman correlations were 

used to estimate associations between physical activity and 843 serum metabolites, corrected for multiple 

testing using the false discovery rate (p-adj<0.05). Associations between physical activity-associated 

metabolites and breast cancer were explored in a prospective cohort (621 cases, 621 controls) using 

conditional logistic regression. 

Results 

Physical activity was associated with 164 metabolites, spanning a wide range of pathways, including many 

amino acid pathways, glucose homeostasis, and bile acid metabolism. Nine physical activity-associated 

metabolites were also associated with postmenopausal breast cancer risk. Key metabolites were N-

acetylthreonine, isovalerylglycine, 2-methylbutyroylcarnitine (amino acids and derivatives), androsteroid 

monosulfate C19H28O6S (1), and X-21310. These metabolites were consistent with a protective role of 

physical activity on breast cancer prevention and particularly implicated a role for branched chain amino 

acid catabolism. Sphingomyelin (d18:1/20:1, d18:2/20:0) levels were lower in participants with higher 

physical activity energy expenditure and were also associated with lower breast cancer risk.  

Conclusion 

Physical activity is associated with a broad range of metabolites, some of which are also associated with 

reduced breast cancer risk, highlighting potential metabolic pathways for cancer prevention. 
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Introduction 

Higher doses of physical activity are associated with a lower risk of thirteen cancers including breast 

cancer[1, 2]. This protective effect is mediated through several key biological mechanisms: weight 

maintenance, lower sex steroid hormones, reduced low-grade inflammation, and improved immune 

function and insulin sensitivity[2-4]. The impact of physical activity on other metabolic factors, such as 

carbohydrate, amino acid, and lipid metabolism, are also likely to be important for cancer prevention[4-6], 

but have not been extensively explored. Metabolomics, the detailed characterization of many small 

molecule metabolites, presents an opportunity to systematically explore the complex biological 

underpinnings of physical activity and its role in disease prevention. 

Physical activity, defined as bodily movement by skeletal muscles resulting in energy expenditure, 

encompasses multiple dimensions including energy used, movements, and specific types of activities[7]. 

Studies to date of physical activity and metabolite associations have generally highlighted relationships for 

lipoproteins and amino acids, particularly branched chain amino acids (BCAAs)[8-10]. However, the 

limited scope of physical activity and metabolites measured have restricted our understanding. For example, 

the doubly labeled water (DLW) method, considered the gold-standard for measuring energy expenditure 

under free-living conditions[11], has been explored in one prior study that analyzed 17 metabolic syndrome-

associated metabolites in 82 participants[12]. Accelerometers, devices that capture movement, movement 

intensity, and activity type (e.g., stepping), are commonly used in large-scale epidemiological studies. 

Higher accelerometer-measured activity is consistently associated with lower breast cancer risk[13]. The 

range of metabolites investigated in studies exploring the relationships between accelerometer-measured 

activity and the metabolome is also limited. The most extensive study to date analyzed 328 metabolites, 

highlighting associations with BCAA pathways and carbohydrate metabolism[10]. No study has 

investigated the relationship between step counts and metabolites, despite increasing recognition of step 

count as an important indicator of total activity relevant to cancer[13, 14].  

We investigated the associations of 836 serum metabolites with physical activity using DLW, two different 

accelerometers, and previous day recalls in 700 participants from the Interactive Diet and Activity Tracking 

in AARP (IDATA) Study. We also explored the associations of the physical activity associated metabolites 

with breast cancer risk in a nested case control study in the Prostate, Lung, Colorectal and Ovarian (PLCO) 

Cancer Screening Trial.  

Methods 

The IDATA Study 

Study design 

The IDATA study was designed to evaluate various diet and physical activity measures for their suitability 

in epidemiologic research. Participants comprised a sample of AARP members (age 50–74 years) from 

Pittsburgh, Pennsylvania who spoke English, had internet access, were not on a weight-loss diet, had a body 

mass index (BMI) <40 kg/m2, and the absence of major medical conditions and mobility limitations. The 

study was approved by the NCI Special Studies Institutional Review Board and all participants signed 

informed consent. 

Participants attended the study center up to three times over 12 months between 2012-2013 and completed 

several diet and physical activity measurements. Participant characteristics, including age and race were 

obtained from the telephone screen administered prior to the first clinic visit. Body fat mass was measured 

using deuterium dilution at the DLW assessment; height and weight was measured at each clinical visit. 
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Smoking information was not directly collected, therefore current smoking intensity was estimated using 

cotinine, a biological marker of recent smoking[15]. A study timeline for each assessment is available from 

Supplementary Table 1. 

A total of 1,082 participants attended the IDATA clinical assessment center and provided specimen consent. 

We excluded 364 participants who did not have serum metabolite measurements, of which 236 did not 

complete all biospecimen collections, and 11 participants with missing covariate data (physical activity and 

age) (Supplementary Figure 1).   

Physical activity assessments 

DLW: Total energy expenditure (TEE) was measured via DLW for 14 days[16], following established 

protocols[17, 18]. Resting energy expenditure (REEpred) was estimated using the Mifflin-St Jeor 

equation[19]. To minimize the influence of body size on activity measures, we calculated the physical 

activity level metric (PAL)=TEE/REEpred[11]. Within our analytic sample, 556 participants had one PAL 

measurement and 29 had two measurements. 

Accelerometers: Two accelerometers were used to assess overall activity: activPAL 3D and ActiGraph 

(model GT3X). Both accelerometers were worn twice for 7 days, 6 months apart.  

1. activPAL: measured step count, the device was worn on the mid-right thigh continuously (24-hr). 

Participants recorded the date/time they got out of bed in the morning and into bed each night. Overall, 

707 participants had one step count measure and 582 had both measures. 

2. ActiGraph: measured physically active metabolic equivalent of task (aMET) hrs/day, using the Sojourn 

3x hybrid machine-learning method which estimates intensity via measured energy expenditure in 

about 30 different activities[20], and we excluded contributions from sedentary time. The device was 

worn on the right hip from time out of bed until bed for the night. On/off logs were used to estimate the 

waking day[21]. Overall, 704 participants had one measure of aMET and 613 had both measures.  

Questionnaire: ACT24 is an internet based previous-day recall instrument, which asks participants to report 

their time use the previous day using a list of >200 individual activities, including follow-up questions that 

specify the posture associated with each activity[21]. MET hours/day estimates were derived from linkage 

with the Physical Activity Compendium[21].  Participants were invited by email to complete up to six 

ACT24s over the study duration; aMET hrs/day were calculated based on time allocation to each non-

sedentary activity. Overall, 706 completed at least one questionnaire and 493 completed all six. 

Metabolite assessment 

For all participants, blood samples were drawn twice six months apart. Blood was cooled, and centrifuged 

within two hours of collection and stored at -70°C.  Metabolites were measured by Metabolon Inc., using 

ultra-high-performance liquid chromatography with tandem mass spectrometry to separate compounds and 

measure spectral peaks[22]. Values below the limit of detection were assigned the minimum observed value 

for each metabolite and normalized by run day. Metabolites levels were log-transformed and standardized 

to mean 0, standard deviation 1. Metabolites with values below the limit of detection in >80% of participants 

across the two visits (N=172) and metabolites with a coefficient of variation >25% (N=456) were excluded, 

leaving a total of 836 metabolites included in the analysis. The median intraclass correlation (ICC) for 

technical reliability was 0.9. Median temporal ICCs were 0.74, based on linear mixed-effects model to 

estimate the variance across all measurements[23]. Metabolite descriptors, unique identifiers and 

Metabolon-assigned pathways are available from the Supplementary Data. 

Population for evaluating breast cancer associations 
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The Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO) study is a population-based 

multicenter randomized screening trial of people aged 55-74 years at baseline with no history of prostate, 

lung, colorectal, or ovarian cancer[24, 25]. This study was approved by institutional review boards at the 

US National Cancer Institute and the 10 study centers. 

Participants were selected from a previous nested case-control study of 621 incident invasive primary breast 

cancer cases (ICD-9 174.0-174.9) in women who were not using hormone therapy at study baseline or who 

had an estrogen receptor and/or progesterone receptor negative status[26]. Cases were matched to controls 

using incidence density sampling based on age at randomization, date of blood collection, and menopausal 

hormone therapy use. All controls were alive and had no history of cancer at the date of diagnosis for the 

matched case. The median time from blood collection to breast cancer diagnosis was 6.7 years[26]. 

At study baseline, participants completed questionnaires to report their smoking, physical activity, weight, 

and height. Serum samples were collected at the first follow-up visit, approximately one-year after baseline. 

Metabolites were quantified by Metabolon, using the procedures described above, and the median ICC was 

0.94[26].  

Statistical methods 

I. Physical activity and metabolites 

We calculated mean physical activity measures, if ≥2 measurements were available, and mean metabolite 

levels for all participants. The associations between metabolites and physical activity were estimated using 

Spearman’s partial correlation, adjusted for age at study enrollment, sex, race, smoking status, and body fat 

index (body fat (kg)/height(m)2). Confidence intervals were estimated by bootstrap (1,000 samples with 

replacement). Body fat measurements were missing for 150 participants, who did not have DLW measures; 

this data was imputed using multiple imputation by chained equations (MICE), based on anthropometric 

measures, age, race, and sex. Multiple testing was controlled for using the false discovery rate within each 

physical activity measure using the Benjamini-Hochberg procedure (p-adjusted<0.05).  

To explore the mechanistic pathways influenced by physical activity, we combined p-values from partial 

correlation models across pathways using Fisher’s method. This method relies on a null distribution 

generated from pseudo replicates to estimate the variance-covariance matrix of the test statistics, based on 

the correlation matrix of relevant metabolites[27]. These pathways, defined by Metabolon, have the 

limitation of assigning each metabolite to only one pathway. To address this and achieve a broader analysis, 

we also employed clustered pathway enrichment through RaMP, which integrates annotations from various 

metabolomic databases and conducts overrepresentation analysis via Fisher’s test[28]. 

Further analysis 

We performed subgroup analyses for each metabolite by sex, and tested for heterogeneity in the associations 

using Cochran’s Q[28], using the p-value set at the same level that was the statistic for significance in the 

primary analysis (p-unadjusted<0.005). To summarize overall agreement, we calculated Spearman’s 

pairwise correlation of the physical activity-metabolite correlations between each group (i.e., the correlation 

of correlations). 

The calculation of PAL includes predicted REE, which may lead to a small amount of measurement 

error[29]. Therefore, we also estimated associations of TEE from DLW with additional adjustment for total 

fat mass (kg) and fat-free mass (kg) estimated using deuterium dilution. 

II. Exploratory analysis of physical activity-associated metabolites and breast cancer risk in serum 
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We explored the associations of each physical activity-associated metabolite with breast cancer risk in the 

PLCO cohort. Odds ratios (OR) were estimated using conditional logistic regression, conditioned on the 

matching factors, and adjusted for age at blood draw, age at menarche, age at first live birth and number of 

live births, type of menopause and age at menopause, menopausal hormone therapy, history of benign breast 

disease, first-degree family history of breast cancer, race/ethnicity, education, smoking history, diabetes 

history, Healthy Eating Index 2015 score, alcohol consumption and BMI[26, 30]. Missing covariate data 

was imputed using MICE, for a small quantity of missing data (≤8%, Supplementary Table 2). To identify 

the key metabolites in the physical activity-breast cancer relationship, we used bidirectional stepwise 

selection, based on the Akaike Information Criterion[31, 32].  

Results 

Participants with higher PAL were younger, had lower body fat index, and were more likely to be female 

(Table 1). Measures of overall physical activity were positively correlated. For instance, PAL was 

positively correlated with step count, aMET hrs/day (ActiGraph) and aMET hrs/day (ACT24) (r=0.47, 0.53, 

and 0.36, respectively) (Supplementary Figure 2).  

Association of physical activity with metabolites 

Physical activity-metabolite associations 

We identified 164 serum metabolites associated with one or more of the physical activity measures. aMET 

hrs/day, assessed by ActiGraph, was associated with the highest number of metabolites (N=85), followed 

by PAL (DLW, N=72), steps/day (activPAL, N=71), and aMET hrs/day (ACT24, N=5) (Figure 1 and 

Supplementary Table 3). One metabolite, 1-methylnicotinamide, was associated with all four physical 

activity measures.  

For PAL, associations were identified for 13 sub-pathways, notably relating to amino acid metabolism, 

lipid (sphingomyelin and ceramide phosphoethanolamine, and fatty acid metabolism), and pyrimidine 

metabolism (Figure 2 and Supplementary Figure 3). Most metabolites associated with PAL (80%) were 

not associated with any other physical activity measure (Figure 3). This was most notable for 

sphingomyelins, which were a distinct and highly correlated group (Figure 4).  

For step count and aMET hrs/day assessed by accelerometers, 27 sub-pathways were identified, which were 

highly similar between measures. These pathways encompassed a broad range of functions including amino 

acid metabolism, glucose homeostasis and tricarboxylic acid (TCA) cycle, as well as bile acid, fatty acid, 

pyrimidine, and purine metabolism (Figure 2 and Supplementary Figures 4-5). Choline metabolites 

formed a distinct and highly correlated group across both measures (Supplementary Figures 6-7). In total, 

46 metabolites were associated with both step count and aMET hrs/day (Figure 3) and the overall 

agreement (i.e., the correlation of correlations) was high (r=0.87) (Supplementary Figure 8). 

For aMET hrs/day assessed by ACT24, five sub-pathways were identified: nicotinate, and nicotinamide, 

phospholipid, glycerolipid, fatty acid metabolism (acyl glycine), and cardiovascular drugs (Figure 2 and 

Supplementary Figure 9). Significant metabolites were not strongly correlated with each other 

(Supplementary Figure 10). Agreement between ACT24 and the accelerometers was moderate (r=0.66, 

Supplementary Figure 8).  

Further analyses 

Agreement of metabolite associations by sex was low-to-moderate (agreement=0.21-0.60, Supplementary 

Figure 11) and we observed significant heterogeneity in the associations of four metabolites 
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(Supplementary Table 4). Associations for each metabolite by sex are available from Supplementary 

Data 2. The associations of TEE with metabolites, adjusted for fat mass and fat-free mass, were broadly 

similar to the associations for PAL (Supplementary Table 5).  

Analysis of physical activity associated metabolites in serum with breast cancer 

Participants in the nested PLCO study were mean 64 years old, had a mean BMI 27 kg/m2 and 90% non-

Hispanic White (Supplementary Table 2). Of the 164 physical activity-associated metabolites identified 

in IDATA, 97 were available in our PLCO dataset, and nine were nominally associated with breast cancer 

risk. Six of these metabolites were consistent with a protective effect of physical activity on breast cancer, 

of which five metabolites were lower in participants with higher activity levels and were also associated 

with an increased risk of breast cancer: 2-methylbutyroylcarnitine (OR per 1 SD=1.17, 95% CI 1.03-1.32), 

N-acetylthreonine (1.18, 1.05-1.33), androsteroid monosulfate C19H28O6S (1) (1.14, 1.00-1.29), N-

acetyltaurine (1.15, 1.02-1.29) and X-21310 (1.14, 1.01-1.28). Isovalerylglycine was higher in participants 

with higher aMET hr/day (ACT24) and was inversely associated with cancer (0.86, 076-0.98). Three 

metabolites were not consistent with a protective effect. Two metabolites, beta-hydroxyisovaleroylcarnitine 

and epiandrosterone sulfate, were positively associated with aMET hrs/day (actiGraph) and cancer risk 

(1.13, 1.01-1.26 and 1.13, 1.00-1.27, respectively). Sphingomyelin (d18:1/20:1, d18:2/20:0) was inversely 

associated with both PAL and cancer (0.82, 0.73-0.93) (Figure 5).  

Using stepwise logistic regression, N-acetylthreonine, isovalerylglycine, 2-methylbutyroylcarnitine, 

androsteroid monosulfate C19H28O6S (1), X-21310, and sphingomyelin (d18:1/20:1, d18:2/20:0) were 

retained in the model (Table 2).  

The correlations of these nine metabolites with physical activity were not appreciably different between 

men and women (Supplementary Table 6). The associations for each metabolite with breast cancer risk 

are available from Supplementary Data 3.  

Discussion 

This is among the most comprehensive study of physical activity and metabolomics available. We identified 

164 distinct metabolites associated with activity, stemming from a broad range of biological pathways. 

Notably, different physical activity measures were associated with different metabolites, possibly 

suggesting distinct biological effects. In exploratory analyses in a separate prospective study, nine of the 

physical activity-associated metabolites were also associated with breast cancer risk, with six demonstrating 

associations that align with the known protective role of physical activity.  

Consistent with previous research, we found inverse associations between physical activity and certain 

amino acids and their derivatives, including isoleucine[9, 10, 33, 34], 3-methyl-2-oxovalerate[10], 

alanine[34], proline[34], glutamate[10, 34, 35], and creatinine[8]. Additionally, we observed associations 

with metabolites involved in energy metabolism, protein synthesis and amino acid transport, including 

pyruvate[33], lactate[34], N1-methyladenosine[36], and gamma-glutamylvaline[10]. In line with prior 

studies, we observed positive associations with the amino acids and their derivatives, including betaine[10, 

34], lysine[12], tiglylcarnitine[35] and with choline[34] and creatine[12]. The wide range of metabolites 

and physical activity measures in our study also allowed us to identify novel associations, particularly the 

association of expenditure-based activity, measured by DLW, with lower levels of many sphingomyelin 

metabolites.  

Step count and aMET hrs/day assessed by accelerometer were associated with a broad range of metabolites, 

though aMET hrs/day identified slightly more metabolites. Strongly implicated pathways include a broad 
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range of amino acid pathways, glucose homeostasis, and fatty acid and bile acid metabolism, and molecular 

transport systems, which is in line with previous studies[9, 10, 33-38]. However, the breadth of associations 

across many biological pathways are much wider than previously reported, particularly for energy, 

nucleotide, and peptide metabolites, likely relating to greater scope of metabolites measured. 

We observed notable differences in the associations between physical activity measures and specific 

metabolites, particularly for PAL. Metabolites associated with PAL, particularly cell membrane lipids such 

as sphingomyelins, plasmalogens, lysophospholipids, and lysoplasmalogens, were generally not associated 

with other activity measures. The biological mechanisms underlying these associations remain unclear, but 

these metabolites may be markers of increased cell turnover associated with higher energy expenditure. 

Differences between measurements could relate to the distinct dimensions of physical activity each measure 

captures. For example, DLW measures of energy expenditure are a consequence of bodily movement, but 

they do not directly capture information about movement associated with distinct behaviors. In contrast, 

accelerometers, which measure ambulatory activity, might detect short durations of high-intensity activity 

or be more sensitive to variations in activity patterns. These short durations and variations might contribute 

minimally to average energy expenditure yet might significantly affect metabolic pathways. We also 

observed weaker associations for aMET hrs/day, as estimated through up to six days of recall 

questionnaires. This may relate to the greater intra-individual variability in activity when comparing 6-days 

of assessment (recalls) vs. 14-days of assessment for DLW and the accelerometers, likely attenuating 

metabolite associations[21, 39]. These findings underscore the complexity of capturing and interpreting the 

metabolic associations of physical activity across different activity measures. 

We identified nine metabolites associated with both physical activity and breast cancer, three of which are 

involved in BCAA signaling. Associations with breast cancer appeared to be driven by isovalerylglycine 

and 2-methylbutyrylcarnitine, byproducts of BCAA catabolism. BCAAs are postulated to affect cancer risk 

through activation of the mTOR signaling pathway, which regulates cell survival and proliferation[40-43]. 

Previous studies have reported inconsistent associations between BCAAs and breast cancer, with less 

understood about their downstream metabolites[44, 45]. Our results suggest that physical activity may 

modulate BCAA downstream signaling pathways and associate with cancer risk, and we did not observe 

associations with BCAAs. We also observed associations with androgenic steroids, particularly 

androsteroid monosulfate C19H28O6S (1). Previous studies have also reported associations between higher 

physical activity and lower androgen levels[3], and the positive association androgen levels and higher 

breast cancer risk is well-characterized[46-49]. Conversely, the associations of N-acetylthreonine. X-21310 

and sphingomyelin are less understood. Speculatively, the association of N-acetylthreonine might suggest 

a role for physical activity in modulating acetylation processes (notably 11 of the amino acids associated 

with physical activity had N-acetyl modifications)[50]. While specific sphingomyelins have been reported 

to associate with both increased and decreased risks of cardiometabolic diseases and possibly cancer[45, 

51-53], these associations warrant further investigation.  

The greatest strength of this study is the comprehensive measurements of physical activity, capturing a 

broad spectrum of activity dimensions with high precision[21]. Physical activity was measured using three 

validated measures that capture multiple dimensions of physical activity and serum metabolites were 

measured twice. Therefore, our findings are more likely to reflect usual activity and metabolite 

relationships, minimizing intra-individual and seasonal variability[39]. Furthermore, deuterium dilution to 

measure body fat reduces the potential for confounding by adiposity.  

Limitations include the observational study design, meaning that we cannot eliminate the possibility of 

residual confounding both in identifying metabolite associations with physical activity and breast cancer 

risk, such as from chronic disease. Additionally, 40% of physical activity-associated metabolites were not 
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available in the PLCO breast cancer study, limiting investigation into breast cancer implications. Physical 

activity was assessed over one year, therefore associations with long-term activity are unknown. 

Additionally, DLW and ACT24 was administered over different durations than the accelerometers, so it is 

difficult to directly compare associations. Participants of the IDATA and PLCO studies were >90% non-

Hispanic White, which may limit the generalizability of our findings to other populations.  

In conclusion, physical activity is associated with a broad range of metabolites and underlying biological 

pathways, including many amino acid pathways, glucose homeostasis, protein, and fatty acid metabolism. 

Our findings underscore the potential mechanisms, particularly the modulation of BCAA catabolism, 

through which physical activity may prevent breast cancer.  
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Figure 1: Serum metabolite partial correlations with physical activity 

Associations estimated using Spearman partial correlations, adjusted for age (continuous), sex (men, women), smoking (cotinine detected: yes, no), race (non-

White, White), body fat index (continuous). Confidence intervals estimated using bootstrap analysis (N iterations=1,000). Significance after correcting for multiple 

testing using the Benjamini-Hochberg procedure (p-adjusted<0.05). 

*Indicates a compound that has not been confirmed based on a standard, but confidence in its identity. 

**Indicates a compound for which a standard is not available, but reasonable confidence in its identity, or the information provided. 

Metabolon indicator that a compound that has not been confirmed based on a standard, but confidence in its identity. 

Abbreviations: aMET= active metabolic equivalent of task, PAL=physical activity level, PC=partially characterized. 
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Figure 2: Enrichment analysis of serum metabolites associated with pathways by physical activity measurement 
A) Super-pathway 

B) Sub-pathway 

Pathways assigned by Metabolon. P-values derived from Spearman partial correlations, adjusted for age (continuous), sex (men, women), smoking (cotinine 

detected: yes, no), race (non-White, White), body fat index (continuous) and were pooled by pathway using Fisher’s method. The pathways displayed are for those 

significantly associated with any of the four measures of physical activity, based on the p-value threshold from the analysis of 836 metabolites, p-value<0.005. 

Abbreviations: aMET=active metabolic equivalent of task, DLW=doubly labelled water, PAL=physical activity level, PE=phosphoethanolamine, SAM=S-

Adenosylmethionine, TCA=tricarboxylic acid. 
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Figure 3: UpSet plot of intersections of serum metabolites associated with physical activity by measure 

Correlations estimated using Spearman partial correlation, adjusted for age (continuous), sex (men, women), smoking (cotinine detected: yes, no), race (non-White, 

White), body fat index (continuous). Multiple testing was corrected for using the Benjamini-Hochberg procedure (p-adjust<0.05). This plot shows the intersections 

of metabolites associated with different physical activity measures. Vertical bars represent the count of shared metabolites across these measures, with horizontal 

bars reflecting the total count of metabolites identified by each measure. The matrix at the bottom indicates which physical activity measures are included in each 

intersection. 

Abbreviations: aMET=active metabolic equivalent of task, DLW=doubly labelled water, PAL=physical activity level, PC=partially characterized. 
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Figure 4: Spearman correlations between serum metabolites associated with physical activity level assessed by doubly labelled water 
Metabolites included were associated with physical activity level (assessed by doubly labelled water, based on partial Spearman correlations, adjusted for age 

(continuous), sex (men, women), smoking (cotinine detected: yes, no), race (non-White, White), body fat index (continuous). Multiple testing was corrected for 

using the false discovery rate (p-adjusted<0.05). Heatmap created using the ComplexHeatmap R package[54]. 

*Indicates a compound that has not been confirmed based on a standard, but confidence in its identity. 

**Indicates a compound for which a standard is not available, but reasonable confidence in its identity, or the information provided. 
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Figure 5: Correlations of metabolites with physical activity measurements in IDATA and their associations with breast cancer risk in PLCO 

Associations of metabolites with physical activity were estimated using Spearman partial correlation, adjusted for age (continuous), sex (men, women), smoking 

(cotinine detected: yes, no), race (non-White, White), body fat index (continuous) in the IDATA study. Confidence intervals estimated using bootstrap analysis (N 

iterations=1000). 

Associations with breast cancer risk estimated using conditional logistic regression, conditioned on the matching factors (age at randomization (+/-2 years), date 

of blood collection (+/-3 months), and menopausal hormone therapy use (current, former/never)), and adjusted for age at blood draw (continuous), age at menarche 

(<12, 12-13, 14+ years), age at first live birth and number of live births (No live births, <20 years, 20-24 years and 1-2 live births, 20-24 years and >2 live births, 

25-29 years and 1-2 live births, 25-29 years and >2 live births, 30+ years), type of menopause and age at menopause (natural menopause: <45 years, natural 

menopause: 45-49 years, natural menopause: 50-54 years, natural menopause: 55+ years, bilateral oophorectomy/surgery, drug therapy/radiation, hysterectomy 

with no bilateral oophorectomy), menopausal hormone therapy (never, current. Former), history of benign breast disease (yes, no), first-degree family history of 

breast cancer (yes. no), race/ethnicity (non-Hispanic white, other), education (up to high school, post high school training other than college, some college, college 

graduate, postgraduate), smoking history (never, former, current), diabetes status (no, yes), healthy eating index (quartiles), alcohol consumption (0, >0-1, >1-2, 

>2-4, 4+ drinks/day), body mass index (<25, 25-<30, 30+ kg/m2). 

Metabolites shown here are those associated with any of the physical activity measure (after correcting for multiple testing using the Benjamini-Hochberg 

procedure, p-adjust <0.05) and nominally associated with breast cancer (p<0.05).  

*Indicates a compound that has not been confirmed based on a standard, but confidence in its identity. 

†Directionally consistent metabolites are those with opposing associations for physical activity and breast cancer. 

Abbreviations: aMET=active metabolic equivalent of task, CI=confidence interval, DLW=doubly labelled water, OR=odds ratio, PAL=physical activity level, 

PLCO=Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial, SD=standard deviation. 
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Table 1: Participant characteristics by tertiles of physical activity level assessed by doubly labelled water 

 Physical activity level, doubly labeled water 

 Tertile 1 (N=186)  Tertile 2 (N=185)  Tertile 3 (N=185) 

Variable % Mean (SD)  % Mean (SD)  % Mean (SD) 

Age, years  64 (5.9)   63 (5.8)   63 (6.1) 

Sex         

Male 54% 
 

 52% 
 

 43% 
 

Female 46% 
 

 48% 
 

 57% 
 

Race 
  

 
  

 
  

Non-Hispanic White 92% 
 

 96% 
 

 96% 
 

Other 8% 
 

 4% 
 

 4% 
 

Height (cm)  171 (8.8)   170 (9.0)   167 (9.2) 

Weight (kg)  85 (17.0)   81 (16.0)   77 (15.0) 

BMI (kg/m2)  29 (4.8)   28 (4.4)   27 (4.1) 

Body fat index (body fat/height2)  12 (3.6)   11 (3.2)   10 (2.9) 

Estimated RMR (kcal/day)  1,534 (254)   1,492 (254)   1,412 (255) 

Doubly labeled water         

Total activity expenditure (kcal/day)  2,199 (395)   2,466 (423)   2,741 (540) 

PAEE (kcal/day)  444 (151)   725 (141)   1,055 (279) 

Physical activity level  1.4 (0.1)   1.7 (0.1)   1.9 (0.2) 

ActivPAL         

Steps (n/day)  6,112 (2,313)   7,424 (2,493)   9,207 (3,353) 

ActiGraph         

Total MET (hrs/day)  20 (2.7)   22 (2.8)   24 (3.2) 

Active MET (hrs/day)  11 (3.2)   13 (3.4)   16 (4.1) 

Sedentary (hrs/day)  8.3 (1.3)   8.2 (1.2)   7.5 (1.4) 

Light activity (hrs/day)  4.3 (1.2)   4.7 (1.2)   5.4 (1.3) 

Moderate activity (hrs/day)  0.8 (0.4)   1.0 (0.5)   1.3 (0.6) 

Vigorous activity (hrs/day)  0.1 (0.1)   0.1 (0.1)   0.2 (0.2) 

ACT24         

Total MET (hrs/day)  36 (3.3)   37 (4.1)   39 (4.8) 

Active MET (hrs/day)  14 (5.4)   16 (6.3)   20 (7.0) 

 

Abbreviations: BMI=body mass index, MET=metabolic equivalent of task, PAEE=Physical activity energy expenditure, RMR=resting metabolic 

rate, SD=standard deviation 
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Table 2: Associations of physical activity associated metabolites with breast cancer risk modelled separately and together using stepwise 

selection 

 

Associations with breast cancer risk estimated using conditional logistic regression, conditioned on the matching factors (age at randomization (+/-2 years), date 

of blood collection (+/-3 months), and menopausal hormone therapy use (current, former/never)), and adjusted for age at blood draw (continuous), age at 

menarche (<12, 12-13, 14+ years), age at first live birth and number of live births (no live births, <20 years, 20-24 years and 1-2 live births, 20-24 years and >2 

live births, 25-29 years and 1-2 live births, 25-29 years and >2 live births, 30+ years), type of menopause and age at menopause (natural menopause: <45 years, 

natural menopause: 45-49 years, natural menopause: 50-54 years, natural menopause: 55+ years, bilateral oophorectomy/surgery, drug therapy/radiation, 

hysterectomy with no bilateral oophorectomy), menopausal hormone therapy (never, current, former), history of benign breast disease (yes, no), first-degree 

family history of breast cancer (yes. no), race/ethnicity (non-Hispanic white, other), education (up to high school, post high school training other than college, 

some college, college graduate, postgraduate), smoking history (never, former, current), diabetes status (no, yes), healthy eating index (quartiles), alcohol 

consumption (0, >0-1, >1-2, >2-4, 4+ drinks/day), body mass index (<25, 25-<30, 30+ kg/m2). 

*Indicates a compound that has not been confirmed based on a standard, but confidence in its identity. 

†Physical activity associated metabolites were modelled separately. 

‡All metabolites associated with physical activity were included in a unified model. Key metabolites were identified using a bidirectional stepwise selection 

method based on the Akaike Information Criterion, utilizing the MASS R package[31]. The stepwise approach was applied to the nine metabolites, while other 

covariates were retained as fixed adjustments.  
aDirectionally consistent metabolites are those with opposing associations for physical activity and breast cancer. 

Abbreviations:  CI=confidence interval, OR=odds ratio, SD=standard deviation 

Metabolite 
Model 1† 

 
Model 2‡ 

Directionally consistenta 
OR per 1 SD (95% CI) P-value 

 
OR per 1 SD (95% CI) P-value 

isovalerylglycine 0.86 (0.76, 0.98) 0.020 
 

0.81 (0.71, 0.93) 0.003 Yes 

2-methylbutyrylcarnitine (C5) 1.17 (1.03, 1.32) 0.015 
 

1.14 (1.00, 1.30) 0.057 Yes 

N-acetylthreonine 1.18 (1.05, 1.33) 0.006 
 

1.16 (1.03, 1.32) 0.02 Yes 

andro steroid monosulfate C19H28O6S (1)* 1.14 (1.00, 1.29) 0.047 
 

1.12 (0.98, 1.27) 0.09 Yes 

N-acetyltaurine 1.15 (1.02, 1.29) 0.019 
 

- - Yes 

X-21310 1.14 (1.01, 1.28) 0.035 
 

1.13 (1, 1.28) 0.056 Yes 

beta-hydroxyisovaleroylcarnitine 1.13 (1.01, 1.26) 0.029 
 

- - No 

epiandrosterone sulfate 1.13 (1.00, 1.27) 0.049 
 

- - No 

sphingomyelin (d18:1/20:1, d18:2/20:0)* 0.82 (0.73, 0.93) 0.002 
 

0.83 (0.73, 0.94) 0.004 No 
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