Supplementary Materials

Automated identification of large vessel occlusion on computed tomography angiography using deep learning

Jung Hoon Han et al.

Training & Internal test External test External test validation (n p value (n = 624) 1 (n = 64) 2 (n = 313) = 1,421) Vendor < 0.001 GE 321 (22.6%) 131 (21.0%) 0 0 Philips 4 (0.3%) 0 5 (7.8%) 0 1,096 Siemens 493 (79.0%) 59 (92.2%) 290 (92.7%) (77.1%) 0 0 Toshiba 0 23 (7.4%) Peak Kilovoltage, kVp < 0.001 1 (0.1%) 80 0 4 (6.3%) 0 90 0 0 41 (13.1%) 0 100 113 (8.0%) 103 (16.5%) 55 (85.9%) 251 (80.2%) 1,294 120 521 (83.5%) 5 (7.8%) 21 (6.7%) (91.1%) 140 13 (0.9%) 0 0 0 Data collection diameter, < 0.001 mm 240 5 (1.6%) 0 0 0 320 321 (22.6%) 131 (21.0%) 0 16 (5.1%) 400 0 0 0 2 (0.6%) 1,100 500 493 (79.0%) 64 (100%) 290 (92.7%) (77.4%) Tube current, mA < 0.001 101~319 260 (18.3%) 119 (19.1%) 0 98 (31.3%) 320 187 (30.0%) 459 (32.3%) 0 0 321~995 702 (49.4%) 318 (50.1%) 64 (100%) 215 (68.7%) Pixel spacing, mm < 0.001 192 (30.8%) 0.30 ~ 0.38 451 (31.7%) 10 (15.6%) 3 (1.0%) 0.39 ~ 0.40 676 (47.6%) 340 (54.5%) 16 (25.0%) 16 (5.1%) 0.41 ~ 0.78 294 (20.7%) 92 (14.7%) 38 (59.4%) 294 (93.9%)

Supplementary Table 1. Comparison of imaging parameters among training & validation, internal test, external test datasets

Supplementary Table 2. Diagnostic performance of deep learning algorithm detecting intracranial LVO + MCA-M2 occlusion in combined external dataset

Threshold of 0.50	Confusion matrix	Prediction		
	Confusion matrix	LVO	No LVO	
	GT, LVO	48	9	
	GT, no LVO	8	312	
	Sensitivity (95% CI)	0.842 (0.721 – 0.925)		
	Specificity (95% CI)	0.975 (0.951 – 0.989)		
	PPV (95% CI)	0.857 (0.738 – 0.936)		
	NPV (95% CI)	0.972 (0.947 – 0.987)		
	Youden (J) index (95% CI)	0.829 (0.712 – 0.892)		
	J _{max} cutoff point 0.3008		008	
Optimal threshold	J _{max} Sensitivity (95% CI)	0.895 (0.785 – 0.960)		
	J _{max} Specificity (95% CI)	0.934 (0.901 – 0.959)		
	J _{max} PPV (95% CI)	0.708 (0.589 – 0.810)		
	J _{max} NPV (95% CI)	0.980 (0.958 – 0.993)		
Fixed sensitivity of 0.90	Sens ₉₀ Specificity (95% CI)	0.863 (0.807 – 0.971)		
	Sens ₉₀ PPV (95% CI)	0.542 (0.437 – 0.644)		
	Sens ₉₀ NPV (95% CI)	0.982 (0.959 – 0.994)		
	Sens ₉₀ cutoff point	0.1776		

GT indicates ground truth; NPV, negative predictive value; PPV, positive predictive value; TAVO, Thrombectomy Amenable Vessel Occlusion

False positive							
	Age	Sex	LVO probability score	Stroke subtype	Initial NIHSS score	Location of vessel occlusion	Revascularization therapy
case 1	60s	male	0.8883	1	NA	Right MCA-M3	Yes
case 2	50s	female	0.8832	2	NA	No occlusion	No
case 3	60s	male	0.9138	1	5	No occlusion	No
case 4	60s	male	0.7683	2	1	Left MCA-M3	No
case 5	80s	female	0.5188	1	1	No occlusion	No
case 6	60s	female	0.5044	3	0	No occlusion	No
case 7	80s	female	0.8909	6	5	Right M3 or M4	No
case 8	70s	male	0.5021	3	7	No occlusion	No
False negative							
	Age	Sex	LVO probability score	Stroke subtype	Initial NIHSS score	Location of vessel occlusion	Revascularization therapy
case 9	70s	male	0.0782	1	7	Left MCA-M2	No
case 10	50s	female	0.4194	6	11	Left MCA-M2	Yes
case 11	60s	male	0.304	1	1	Right MCA-M2	No
case 12	80s	male	0.1551	1	3	Right MCA-M1	No
case 13	50s	female	0.0125	3	13	Left MCA-M2	Yes
case 14	50s	male	0.355	1	2	Left MCA-M1	No
case 15	70s	female	0.1799	1	2	Right MCA-M2 No	
case 16	70s	female	0.0424	7	8	Right MCA-M2	No
case 17	40s	male	0.0447	2	8	Right MCA-M2 No	

Supplementary Table 3. Review of false positive and false negative cases in the external test dataset

MCA indicates middle cerebral artery; NIHSS, National Institutes of Health Stroke Scale; TAVO, Thrombectomy Amenable Vessel Occlusion

Author	End point	n	Models	Results	Modality	Remark	Year
Olive- Gadea et al.(20)	LVO prediction	1453	Densenet161	·AUC (0.87) ·Sen (0.83) ·Spec(0.71)	NCCT	Validation of prior ML algorithm	2020
Meng et al.(21)	·LVO classification ·Clinical outcome prediction	8650	Inception-V1	·AUC (0.74) ·Sen (0.61) ·Spec (0. 74)	СТА	Validation of prior ML algorithm	2022
Czap et al.(22)	LVO classification	·Training - 870 ·Internal validation- 441	DeepSymNet- v2	·AUC (0.80)	CTA (MSU)	Small external validation test size (n=68)	2022
Matsoukas et al. (23)	LVO classification	1822	Viz LVO	·AUC (0.86) ·Sen (74.6) ·Spec (91.1)	СТА	Validation of prior ML algorithm	2022
This study	LVO classification	·Training - 1422 ·Internal validation - 629 External validation - 390	·Vessel Segmentation - U-Net ·LVO Classification - EfficientNetV2	·AUC (0.96) ·Sen (0.80) ·Spec (0.97)	СТА	Novel development Two external validation set	Present

Supplementary Table4. Summary of related previous studies.

 AUC indicates area under the curve; CTA, computed tomography angiography; ML, machine learning;

 MSU, mobile stroke unit; NCCT, non- contrast computed tomography; TAVO, Thrombectomy

 Amenable Vessel Occlusion

Supplementary Figure 1. Study flow chart. TAVO indicates Thrombectomy Amenable Vessel Occlusion.

Supplementary Figure 2. Probability of Thrombectomy Amenable Vessel Occlusion (TAVO), location of TAVO, and ground truth label for TAVO for each subject in the combined external test dataset. Each column indicates each subject. The first row indicates TAVO probability score. The second row indicates the ground truth label of TAVO. The third, fourth, and fifth rows indicate the location of TAVO. ICA indicates internal carotid artery; MCA, middle cerebral artery

Supplementary Figure 3. Probability density in (A) internal test dataset and (B) combined external test dataset. Change of Youden index by probability cutoff in (C)internal test dataset and (D) combined external test dataset.

Supplementary Figure 4. ROC analysis. ROC curves for detection of intracranial LVOs in (A) Internal test and (B) Combined external dataset. ROC curves for detection of isolated M2-MCA occlusion in (C) Internal test and (D) Combined external datasets. Red dots indicate optimal cutoff points with the maximum Youden index. AUC indicates area under the curve; LVO, large vessel occlusion; ROC, receiver operating characteristics.