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ABSTRACT
Lung cancer is the second most common type of cancer worldwide, making up about 20% of allcancer deaths with less than 10% 5-year survival rate for the very late stage. The recent guidelinesfor the most common non-small-cell lung cancer (NSCLC) type recommend performing stagingbased on the 8th edition of TNM classification, where the mediastinal lymph node involvementplays a key role. However, most of the non-invasive methods have a very limited level of sensitivityand are relatively accurate, but invasive methods can be contradicted for some patients. Currentadvances in Deep Learning show great potential in solving such problems. Still, most of theseworks focus on the algorithmic side of the problem, not the clinical relevance. Moreover, none ofthem addressed individual lymph node malignancy classification problem, restricting the indirectanalysis of the whole study, and limiting the interpretability of the result without giving anoption for cliniciansto validate the result. This work mitigates these gaps, proposing a multi-stepalgorithm for each visible mediastinal lymph node segmentation and assessing the probability of itsinvolvement in themetastatic process, using the results of histological verification on training. Thedeveloped pipelineshows 0.74 ± 0.01 average Recall with 0.53 ± 0.26 object Dice Score for theclinically relevant lymph nodes segmentation task and 0.73 ROC AUC for patient’s N-stageprediction, outperformingtraditional size-based criteria.
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1 Introduction
Lung cancer is the second most common type of cancer worldwide. For the year 2018, global incidence and mortalityrates were 2.1 million and 1.8 million, respectively, making about 20% of all cancer deaths Thandra et al. [2021]. Thefive-year survival rate prognosis starts from 68-92% for the early stage and dramatically drops below the level of 10%for the very late stage, which is 42% of all cases Goldstraw et al. [2016]. So, it is crucial to indicate and treat lungcancer early to increase the patient’s survival chances and lower the treatment process costs.
The worldwide practice for indicating lung cancer in the early stages is screening programs. These are examinationsfor finding a disease among the group of risk patients without any symptoms. The 50+ y.o., current (or quit forthe last 15 years) smokers, having at least a 20-pack-year smoking history, are recommended to participate in suchprograms Tanoue et al. [2015]. The recommended Ettinger et al. [2019], Planchard et al. [2018] method to be used forlung screening programs is a low-dose computed tomography (LDCT), the efficacy of which was proven by severalrandomized prospective studies Heleno et al. [2018], Pegna et al. [2013], Infante et al. [2015], de Koning et al.[2020],Pastorino et al. [2019], Baldwin et al. [2011]. Despite being non-invasive and minimally harmful, it doesn’tprovide sufficient insights needed for incident-finding verification.
For the initial finding verification, the guidelines Ettinger et al. [2019], Planchard et al. [2018] recommend usingnon-invasive positron emission tomography combined with computed tomography (PET-CT) scanning procedures orminimally-invasive biopsy. Once the initial finding is verified as cancer, the clinicians have to understand its spread(this process is called "staging") and determine the best treatment tactics, depending on the lung cancer type.
The recent guidelines for the most common non-small-cell lung cancer (NSCLC) type recommend performing stagingbased on the 8th edition of TNM classification Detterbeck et al. [2017]. The T, N, and M letters stand for theevaluated entities. Primary tumor, thoracic lymph nodes, and distant metastases in other organs, respectively. Thecombination yields the patient’s stage that can be clinical (usually done before the surgery using non-invasivemethods), pathological (using histological analysis), and re-staging after the therapy.
N-stage plays a vital role in staging and future treatment process selection since metastasis to the thoracic lymph nodesis the most common way of lung cancer spread. The mediastinal lymph nodes’ involvement in the metastatic processcan be a decisive criterion for routing the NSCLC-diagnosed patient either to the radical surgery or the adjuvanttherapy Ettinger et al. [2019], Planchard et al. [2018].
Currently, there are two main guidelines for the management of NSCLC-diagnosed patients. The first one proposesperforming PET-CT Planchard et al. [2018] and, after that, diagnostic surgical interventions (EBUS/EUS Nakajimaet al. [2013], VAMLA Hartert et al. [2020]). The second one says that diagnostic surgery should be conducted,regardless of the PET-CT scanning results Ettinger et al. [2019]. The NCCN guidelines state that surgery should bepreferable for patients with early NSCLC, and radiation or chemotherapy in case of advanced NSCLC Ettinger et al.[2017].
However, even using the entire set of tools to detect malignant mediastinal lymph nodes, there is no complete certaintyin the lesion or absence of the metastatic process. The misdiagnosis rate Roberts et al. [2000] and the false-negativerate Kanzaki et al. [2011] were higher with PET-CT diagnosis of lymph node metastasis than the results of thehistological verification that is considered a golden standard. In addition, PET-CT may not be available for mostpatients in remote areas Verduzco-Aguirre et al. [2019]. As for the diagnostic surgery, even the minimal invasiverequires anesthesia thatmay be contradicted for the patient. Thus, a non-invasive and cost-effective assessment toolis needed to predict the presence of mediastinal lymph node metastases in a patient with primary NSCLC.
Current advances in Deep Learning LeCun et al. [2015] show great potential in solving such problems. Recent studieshave reported solid results for both: lymph node stations Guo et al. [2021] and lymph nodes Iuga et al. [2021a,b]segmentation problems. Still, most of these works focus on the algorithmic side of the problem, not the clinicalrelevance. Moreover, none of them addressed individual lymph node malignancy classification problem, restricting theindirect analysis of the whole study, and limiting the interpretability of the result without giving an option forcliniciansto validate the result Zhong et al. [2018], Liu et al. [2018], Cong et al. [2020].
This work mitigates these gaps, proposing a multi-step algorithm for each visible mediastinal lymph nodesegmentation and assessing the probability of its involvement in the metastatic process, using the results ofhistological verification on training. The developed pipeline show 0.74 0.01 average Recall with 0.53 0.26 objectDice Score for the clinically relevant lymph nodes segmentation task and 0.73 ROC AUC for patient’s N-stageprediction, outperforming traditional size-based criteria.

2 RelatedWork
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2.1 Clinical
Lymph node staging is a vital step for proper NSCLC-verified patient management. To do this, clinicians have a widespectre of methods, divided into two categories: non-invasive (can be done without intervention to the body) andinvasive (assumes diagnostic surgery). The latter show solid results in terms of sensitivity and low post-operativeupstaging Gu et al. [2009], Hartert et al. [2020]. However, they require intervention and can be contradicted in somecases because of the anaesthesia. This work will focus on more affordable and widespread non-invasive methods.
Several studies have shown the great limitation of the method, which uses each visible lymph node short-axis diameter(SAD) alone in histological status determination on computed tomography (CT) or magnetic resonance imaging(MRI)scanning. The mesorectal region study reports the vague border between histologically benign (2–10 mm) andmalignant (3–15 mm) lymph nodes Brown et al. [2003]. The same problem occurred in the head and neck region.The widely used in clinical practice 10mm cut-off value Som [1987] resulted in sensitivity 0.88 and specificity 0.39Curtin et al. [1998]. However, the same study shows that other morphological criteria, such as an irregular border ormixed-signalintensity, can improve the results to the sensitivity of 0.85 (95% CI: 0.74, 0.92) and a specificity of 0.97(95% CI: 0.95,0.99). A recent study examined the classification accuracy for different combinations of such criteriaLoch et al. [2020]but did not propose any standardized way of using them. It was solved with the Node Reportingand Data System (Node-RADS) concept introduction Elsholtz et al. [2021]. The described method hierarchyassesses each visible lymph node, classifying it into five categories, using the SAD, texture, border, and shapecriteria, addressing the specifications implied by other factors, such as anatomic location.
A more accurate result can be achieved with the help of contrast-enhanced computed tomography (CE-CT) combinedwith positron emission tomography (PET). Recent studies show a significant difference (p < 0.05) for nodal stagingbetween positron emission tomography combined with computed tomography (PET-CT) with 0.78 sensitivity and 0.92specificity and 0.56, 0.73 respectively for the CE-CT Ceylan et al. [2012]. Still, PET-CT is a rather expensive methodthat may not be available for most patients in remote areas Verduzco-Aguirre et al. [2019].
2.2 Algorithmic
The mediastinal lymph node segmentation and classification problem has not been studied well by the community,preferably due to the unavailability of good public datasets. Still, there are some works, that address parts of theproposed algorithm in this paper.
Lymph Nodes Segmentation Over the past years many approaches were introduced to solve the volumetric medicalimages segmentation problem. Architectures, such as DeepMedic Kamnitsas et al. [2017], 3D U-Net Çiçek et al.[2016] or V-Net Milletari et al. [2016] provide solid results on public datasets with medical images Van Ginneken etal. [2010], Bakas et al. [2018]. The proposed feature-pyramidal (FPN) convolutional neural networks (CNN) weresuccessfully adapted to the lymph node segmentation problem. In the most relevant work Iuga et al. [2021a], theauthors report a total detection rate of 0.77 for enlarged lymph nodes during fourfold cross-validation with 10.3 falsepositives (FP) percase. However, showing poor sensitivity the lymph nodes of diameter from 5mm to 10mm 0.34and a rather low overall Dice Score (DSC) of 0.44.
Lymph Node Stations Identification The paper Iuga et al. [2021b] that deals with the distribution of the lymphnodes to the mediastinal stations utilizes the same architecture as Iuga et al. [2021a], but with the multiclass output inthe end. The authors report convincing mean classification accuracies: 0.86 (Top-1), 0.94 (Top-2) and 0.96 (Top-3).However, the proposed algorithm still has poor sensitivity for the most important lymph node stations, also onlyindirectly addressing the guidelines Goldstraw et al. [2016]. More advanced work solves the segmentation task Guoet al. [2021] reporting DSC 0.81 0.06, but skipping the accuracy of the lymph nodes distribution and its influence onthe N-stage determination.
Lymph Nodes Malignancy Classification Previous works proposed algorithms for the indirect analysis ofmediastinal lymph nodes’ involvement in the metastatic process. The popular approach uses a set of radiomicfeatures, extracted from a primary tumor Zhong et al. [2018], Liu et al. [2018], Cong et al. [2020], withoutspecifying the particular lymph node station, not saying about the concrete node. One of the reasons for that is thecomplexity of obtaining the ground truth label for each lymph node. After the biomaterial extraction, it is hard to saythe position of each lymph node on the CT scan, especially for the small ones. The solution would bestraightforward, having a label for each lymph node, as was shown in the similar problem of lung nodules malignancyclassification. Simple patch-based convolutional neural network for classification results in ROC AUC of 0.9280.027. Better quality can be achieved via pre-training the convolutional autoencoder for the extracted patch
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reconstruction and utilization of the encoder as a backbone for malignancy classification, giving ROC AUC of0.936 0.009 Silva et al. [2020]. However, it is possible to get the general histological label for a group of lymphnodes, extracted from the same station, formulatingthe problem as a weak-supervision task. An interesting idea wasproposed in Dubost et al. [2020] by using the single label for training while predicting the probability map oninference. However, the global max-pooling (GMP) operation will lose too much information for such small objectsas lymph nodes, unlikely to be successful for the histological status determination problem.
3 Method
The proposed algorithm for lymph node segmentation and malignancy classification is three-step. First, themediastinumis segmented to narrow down the region of interest and identify lymph node stations that play a vital rolein the N-stagedetermination Detterbeck et al. [2017]. Then, the mediastinum region’s bounding box is used to cropthe input imageand segment each visible lymph node. Finally, each of the detected lymph nodes is passed throughthe feed-forward network to get its probability of being malignant. The generated result contains information aboutmalignant lymph nodes found in a particular lymph node station, and, depending on the tumor side – the desired N-stage. Each part ofthe developed pipeline is described in a specific section:

• Subsection 3.1 is devoted to the lymph node stations segmentation;
• Subsection 3.2 is devoted to the lymph nodes segmentation;
• Subsection 3.3 is devoted to the lymph nodes malignancy classification;

2.3 Lymph Node Stations Segmentation
The lymph nodes involved in the N-staging of NSCLC-diagnosed patients are located in a narrow region –mediastinum. Moreover, N-stage determination depends on the particular anatomic location (called "station") and theprimary tumorside Detterbeck et al. [2017]. According to the IASLC Rusch et al. [2009] the mediastinum is dividedinto 10 lymph node stations. Adjacent to the trachea and bronchi stations are subdivided by the left and right side,except the subcarinal, which has no specific subdivision. The diagnostic surgeries usually don’t take biomaterial fromstations 1, 8, and 9, sothis work waves them out.
This work utilizes de-facto 3D implementation of U-Net Ronneberger et al. [2015] with two heads for the stations’segmentation (Figure 1). The first separates the mediastinum from the background. The second classifies each voxelinside the mediastinal mask to one of the lymph node stations. Moreover, we use all the best practices introduced bythe deep learning community over the recent years: residual blocks (ResBlocks) He et al. [2016], batchnormalization Ioffe and Szegedy [2015] and ReLU activation function Nair and Hinton [2010] after everyconvolution except the output.
2.4 LymphNodes Segmentation
Despite the image itself, the second step requires a mediastinum box from the first step to extract the narrow region forthe computational resources economy. If the box size is less than 128 pixels in the Axial projection, it is additionallypadded to the minimal shape of 128 pixels.
In the end, the architecture of the second step remains practically the same as for lymph node station segmentation,except having fewer levels and more channels with the single binary output for the predicted lymph nodessegmentation map (Figure 1). This design solution is motivated by the fact that lymph nodes are much smallerobjects than the stations and do not require a large receptive field, but the additional features are helpful for theirsegmentation.
2.5 LymphNodesMalignancy Classification
The task is formulated as a weak supervision problem: having a malignancy status label for the whole station, andpredicting the probabilities of metastases for each of the included lymph nodes. To do this, the patches of a fixed size32 32 with lymph nodes are extracted from the image and combined with the corresponding mask, gathering all thedetected objects in a single batch. Then, it is processed through the ResNet-like He et al. [2016] convolutional neuralnetwork (CNN) of 5 levels, followed by a max-pooling layer, shrinking the spatial dimensions, and, finally, passedthrough the fully connected and sigmoid layers to get the final probabilities for each lymph node to be malignant.
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The additional complexity is that the malignant station, in contrast to the benign, can contain as benign as malignantlymph nodes. Thus, it can be considered that a benign station has no malignant lymph nodes, but least the malignantstation must have at least one. A specific loss function is developed to address this rule. All the lymph nodeprobabilities in the benign station are trained with binary cross-entropy (BCE) loss, but, the malignant nodes – only ifevery node in that zone was predicted as benign. This method has its upsides and downsides that are thoroughlydiscussed in Section5.

Figure 1: The proposed multi-step pipeline for lymph nodes segmentation and malignancy classification. In the firststep, the IASLC lymph node stations are segmented, also giving the bounding box of the mediastinum for the next step.Then, the image is cropped to that box and passed through the second network to get the mask of all visible lymphnodes. Finally, each detected lymph node is extracted from the image, stacked with its mask and processed through thefeed-forward network to get the corresponding malignancy probabilities.

4 Experiment
4.1 Data
Unfortunately, the only available public dataset Roth et al. [2014] has several limitations. First, there is not enoughinformation about the diagnosis and histological status of mediastinal lymph nodes. Second, the provided annotationcontains LN only with a short-axis diameter (SAD) greater than 10mm and no lymph node stations annotation. Finally,the contrast phase of the contrast-enhanced computed tomography (CE-CT) scans seems to be arterial instead ofvenous. So, the private dataset of 60 patients who had verified NSCLC and had undergone diagnostic surgery toexamine someof the lymph node stations was acquired.
The following inclusion criteria were applied to the collected dataset:

• presence of venous contrast phase, because it provides the best differentiation of lymph nodes from thesurrounding structures, especially vessels;
• diagnostic surgery was conducted no later than two months from the latest study, which included the venousphase;
• slice thickness of CE-CT should not be greater than 1mm;

what resulted in 8 series that we gave for annotation.
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4.1.1 Annotation
Lymph Node Stations The lymph node stations annotation was done by a single radiologist, in strict accordancewith the IASLC guidelines for mediastinum map Rusch et al. [2009]. The annotation protocol was ordered toexclude the big vessels (aorta, pulmonary trunk, Azygos vein, etc.) and oesophagus from the station areas 2.
Table 1: The training dataset biopsy result statistics for IASLC lymph node stations

Status 1R 1L 2R 2L 3a 3p 4R 4L 5 6 7 8 9 10R 10L
benign 0 0 5 3 0 0 6 8 0 0 6 0 1 2 2malignant 0 0 2 0 0 0 2 0 1 1 1 0 0 2 1n/a 8 8 1 5 8 8 0 0 7 7 1 8 7 4 5

Figure 2: The example of the lymph node stations annotation at different mediastinum levels.

Lymph Nodes The mediastinal lymph node annotation has been conducted by two radiologists, who have assignedeach visible lymph node its binary mask. In the case of multiple lymph nodes having an indistinct border betweenthemselves, a single mask was assigned to the whole conglomerate.
Lymph Node Staging The mediastinal lymph node station malignancy was obtained after conducting VAMLAHartert et al. [2020] diagnostic surgery. The extracted nodes were passed to the biopsy, where the status of eachextracted lymph node was determined. Finally, each station was assigned one of three labels, depending on thehistological analysis result: "n/a" (because the station was not resected), "benign" or "malignant". The training datasetstatistics canbe found in Table 1.
4.2 Training
In all experiments was utilized the standard preprocessing, which zooms the input image to the constant voxel spacingof (1, 1, 1), clips the input CT scan to the soft-tissue window of [ 160; 240] HU, and, finally, scale the intensities to
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the [0; 1]. The only difference is that for the first step, the input image is cropped to the lungs, using the pre-trainedneural network Goncharov et al. [2021] and the second step is cropped to the mediastinum. Also, being in a situationwith a tiny dataset, severe augmentations are applied during training: rotation for the limit of 10 degrees, 90-degreerotation,random shifts, and vertical and horizontal flips.

a) b) c)
Figure 3: Illustration to the way considered statistics are assigned to different connected components (CCs) inside theground truth mask (Figure a) and the corresponding logit mask (Figure b). Although self-logit and hit-logit are a kind ofpersonal statistics for each CC, hit-dice, as can be seen from the (Figure c), is always shared between the pair of CCs ifits value is positive.

Lymph Node Stations Segmentation The first step is trained for 30k iterations of Adam, using mixed-precision andgradient scaling. For the first head, binary cross-entropy (BCE) with adaptive re-weighting of the foreground voxels isutilized, and, for the second – cross-entropy (CE). The learning rate remains the same at the level of 3 10−3 during thetraining process.
Lymph Nodes Segmentation The second step is trained for 70k iterations of Adam, using mixed-precision andgradient scaling, minimizing BCE, and adaptively re-weighting the foreground voxels, the same way as in the first step.The training starts with a learning rate of 10−3 and is being reduced by a factor of 3, 3, 2, and 2 at the 5k, 15k, 50k, and60k iterations respectively.
Lymph Node Malignancy Classification The classification network is trained for 40k iterations of Adam,minimizing the loss, described in Subsection 3.3, re-weighting the positive-case examples by a factor of 100. Thetraining starts witha learning rate of 3 · 10−5 and remains the same till the end.
4.3 Metrics
In assessing the first step lymph node assignment accuracy to the particular station is measured, instead of the classicalsegmentation metrics, because they are less informative in this particular case. Also, for the third step, prediction canonly be assessed by the final result, where the determined N-stage ROC AUC score is computed for N-positive andN-negative patients. Metrics for the second step are described in more detail below.
4.3.1 FROC
To assess the lymph nodes detection quality we use the Free-response Receiver Operating Characteristic (FROC)analysis Van Ginneken et al. [2010]. Such a curve illustrates the trade-off between the model’s object-wise recall (Y-axis) and the average number of false positives (FPs) per image (X-axis).
To build one, we take the ground truth mask of the whole image (Figure 3 a) and the corresponding map of logits,binarized using the threshold value of 0 to obtain logit mask (Figure 3 b). Then, we split both masks into the connectedcomponents (CCs) and to each CC we assign 3 statistics:

• self-logit— the maximum logit value inside the CC (+∞ if the CC is located inside the ground truth mask),
• hit-dice— the maximum Dice Score between the chosen CC and the CC from the other mask (Figure 3 c),
• hit-logit— the same statistics as self-logit, but taken from the CC inside the other mask that hits the first onewith the hit-dice value (we consider it as −∞ if hit-dice is 0).
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Based on these statistics we can take hit-logit as the value we will use to build the FROC curve, choosing differentl-threshold values. Moreover, we also take hit-dice into account while obtaining the points of the curve, to check the so
called hit condition. We say that hit condition between the two CCs is satisfied if hit-dice value is positive. So that,for the chosen l-threshold value we define:

• FP value as the number of CCs inside the logit-mask that hasself-logit > l-threshold, but hit-dice = 0;
• TP value as the number of CCs inside the ground-truth mask that hashit-logit > l-threshold and hit-dice > 0;
• FN value as the number of CCs inside the ground-truth mask that hashit-logit ≤ l-threshold or hit-dice = 0.

In our experiments, we choose l-threshold values from the ( 0.1; max-logit) range, where max-logit is the maximumlogit value over the hold-out set of predictions.
In contrast to the classical approach of building such curves, the chosen method guarantees the monotony. This comesfrom the property of any CC inside the prediction mask. It appears in the mask fully or doesn’t appear at all instead ofcontinuous change in the classical approach, that may lead to confusing situations like splitting a single CC into manydistinct CCs or vice versa. The choice to iterate over the logit values instead of classical probabilities is motivated bythe floating-point precision restrictions. This scale allows us to build full-ranged curves because large logit values canbe separated with much higher precision than the large probabilities, which tend to round upward to 1.
4.3.2 Average Recall
Although FROC analysis provides a very deep understanding of the obtained results, it still can be hard to understand.For this reason, the next metric is chosen as the simplification and generalization of information that FROC curvesgive. In our work, we report values averaged over FP points from 0 to 5 with a step of 0.01. Hence, the detectionquality ismeasured similarly. This is our main quality metric because the fraction of detected lesions per case is animportant clinical characteristic.
4.3.3 Object Dice Score
The most common method to measure segmentation quality is the Dice Score Bakas et al. [2018]. However, averagingthe Dice Score (DSC) over images has a serious drawback in the case of multiple targets because large objectsovershadow small ones. Hence, we report the average object-wise Dice Score:

where N is the number of images in the hold-out set,M is the number of lesions inside the ground truth mask, Yj —the set of voxels, that relates to the j-th CC inside that mask and Ŷj the corresponding CC from the prediction maskthat has the biggest overlap with it in terms of Dice Score.
5 Results
Lymph Nodes Segmentation The Second step’s metric is reported for different size ranges: "all lymph nodes","greater than 5 mm" (treated as clinically relevant by to the guidelines), and "greater than 10 mm" (used in the simplestcriteria for a node to be metastasized) Elsholtz et al. [2021]. Despite the poor detection rate in the first group, the CNNshows a perfect sensitivity for the riskiest group (the last one) at the level of only three false positives (FP) per case(Figure 5).

Table 2: Lymph nodes detection metrics for different SAD groups
Group avgRecall objDSC
d > 0 mm 0.48 ± 0.01 0.53 ± 0.24d > 5 mm 0.74 ± 0.01 0.53 ± 0.26d > 10 mm 0.95 ± 0.01 0.56 ± 0.26
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Figure 4: Accuracy of the IASLC lymph node stationsassignment.

Table 3: Patients’ N-status, the maximum SAD andpredicted malignancy probability. Note, that lymph nodeschosen by the diameter criteria can differ from the oneswith maximum malignancy probability.
Patient N max d, mm max p
0 0 11 0.291 0 14 0.412 + 38 1.003 + 14 0.544 + 14 0.545 0 21 0.836 + 15 0.617 + 11 0.96

Figure 5: Detection results for the lymph nodes segmen-tation step. The 80% of clinically relevant nodes are suc-cessfully detected by the algorithm at the level of 10 FPper case. Moreover, the network doesn’t miss any of thelarge lymph nodes with only 3 FP per case.

Figure 6: Comparison between the naive SAD-basedcri- teria for patient’s N-status prediction with theproposedalgorithm.

Lymph Node Malignancy Classification The obtained malignancy classification results were compared to a naiveapproach, where the lymph node with maximal short-axis diameter (SAD) was taken. This simple criterion yields threeFP results (the 10mm threshold), however, the proposed algorithm outperforms it (Figure 6) showing a better ROCAUC score of 0.73 in comparison to the 0.53 for a naive approach. Note, that following the Node-RADS Elsholtz et al.[2021] guidelines, the larger than 30 mm SAD lymph nodes are treated as malignant for sure. The only mistake wasmade for patient 5, where the highlighted lymph node is very suspicious of metastatic involvement.
6 Discussion
The proposed loss function has its upsides and downsides. On the one hand, the CNN is free to decide the relationbetween lymph nodes assigned to the malignant station and based on its negative experience balance it. On theother, there is no reinforcement for assigning the right probabilities for positive-class examples, because there is noinformation for each lymph node in the malignant station. This way of learning can result in higher sensitivity butproduce unpleasant FPs.
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Figure 7: Lymph nodes with the maximum malignancy probability for each patient.

Since this task places a high level of demand on the localization of lymph nodes based on clinical classification, themain limitation of this work was the small size of the dataset, providing an insufficient variety of examples of benignand malignant lymph nodes in each group. The major reason is a very tedious and time-consuming process of lymphnodestations and lymph node delineation from scratch. The lymph nodes, it is given for two to three hours for onepatient, and the lymph node stations – about 1 hour, with very vague criteria of human anatomy, making it verydifficult to derive general rules. In this regard, it is expected to improve the performance indicators of the algorithmwhen expanding thetraining set, primarily by including new cases with non-enlarged metastatic nodes and enlargednon-metastatic ones for each group of intrathoracic lymph nodes.
Important information to help solve the problem can be taken from data using multiphase CT scans so that informationis available for each lymph node without and with intravenous contrast. First of all, the use of the venous phase ofintravenous contrast has been demonstrated in similar works as the most valuable CT series Cong et al. [2020].However, the generalized value of information from multiphase scanning, including native (non-contrast), arterial,venous and delayed phases of intravenous contrast, remains unexplored, which may provide additional informationabout the accumulation and washout of contrast agent from each lymph node.

7 Conclusion
This work proposes a three-step pipeline for the lymph node segmentation and malignancy classification for NSCLC-diagnosed patients, using histological verification information about lymph node stations on training. The developedpipeline shows 0.74 0.01 average Recall with 0.53 0.26 object Dice Score for the clinically relevant lymph nodes(SAD 5mm) segmentation task and 0.73 ROC AUC for patient’s N-stage prediction, outperforming traditional size-based criteria. The segmentation performance increases up to 0.95 0.01 average Recall with 0.56 0.26 objectDiceScore for the enlarged lymph nodes (SAD 10mm) and makes it possible to conduct new research to optimize themanagement of patients with non-enlarged intrathoracic lymph nodes, improving the quality of medical care forcancer patients.
In perspective, the algorithm proposed in this paper can be integrated into the existing routing of patients with verifiedNSCLC as an intermediate step between the confirmation of the primary diagnosis and PET-CT scanning. There aremultiple variants of the algorithm that can be useful. In the first scenario, where the algorithm will give a lowprobability of having a metastatic lesion of the lymph nodes of the mediastinum, it will allow the patient to be sentfor radical surgery, skipping the steps of PET-CT, as well as performing a diagnostic surgery. In the case of a highprobability, thepatient will immediately be contraindicated for radical surgery and given a referral for neoadjuvantchemotherapy, again bypassing the steps of PET-CT and diagnostic surgery. Even operating at a level of accuracycomparable to PET-CT,the algorithm will be significantly cheaper to use and also much more accessible to patients.
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