Supplementary Material Occupation Recognition and Exploitation in Rheumatology Clinical Notes: Employing Deep Learning Models for Named Entity Recognition and Knowledge Discovery in Electronic Health Records

García et al. (2024)

The main sections of this supplementary material correspond to each of the objectives described in the main manuscript.

1 Performance of NER models in HCSC-MSKC gold standard set

1.1 MEDDOPROF corpus description

MEDDOPROF corpus was described in depth in [1]. This corpus is comprised of clinical cases and notes from different medical specialities, see Supplementary Table 1. The corpus is split into two subsets: training (n = 1,500) notes and validation (n = 344) notes. This corpus was created in the context of a shared-task [2], and contains two set of annotations in brat rapid annotation tool (BRAT) format. The first set of notes is known as MEDDOPROF-NER and contains annotations related to:

- Professions: occupations that provide a person with an income or livelihood, including conventional professions, civil servants, public employees, new professions, and illegal professions. 'Ex' and 'Co' prefixes are considered part of the profession.
- Working status: including homemaker; retired; unemployed; unpaid caregiver; student, PhD student, apprentice, competitive examinations student; under temporary employment regulation; self-employed; on maternity/paternity leave; slave; prisoner, homeless, pauper; worker; other unspecified professional; refugee; hourly, full-time, part-time job; military service; military veteran; and co-worker or colleague.
- Activities: non-remunerated professions such as non-professional athlete/entertainer; unpaid community positions; activist; volunteer; guru or gamer.

The second set of notes is known as MEDDOPROF-CLASS and contains annotations related to:

- Patient: main actor of the clinical note.
- Family member: patient's relative
- Health professional: healthcare professional who interacts with the patient, namely, primary and secondary doctors, nurses, and assistant nurses.
- Others: mention of other persons not included in any of the above categories

Hence, two different folders with notes in .txt and annotations in .ann extension are provided in MEDDOPROF corpus, one for each task (i.e., MEDDOPROF-NER and MEDDOPROF-CLASS). Supplementary Table 2 shows the train and validation set statistics and Supplementary Table 3 shows the distribution of the annotations in the MED-DOPROF corpus.

1.2 Data manipulation and pre-processing

Bidirectional encoder representations from transformers (BERT)-based models are known for their low pre-processing requirements and a decline in performance if conventional natural language processing (NLP) pre-processing techniques like stemming or stopwords removal are applied. The following steps were conducted to transform the annotated MED-DOPROF data into the expected BERT input format. These steps have been described in the literature [3]:

- .ann to BIO: *brat_to_conll.py* script from NeuroNER [4] is used to transform the annotations in standoff BRAT format to BIO format. In brief, B stands for first token in an entity, I for other tokens in an entity, and O for every token not included in an entity. These tags locates the boundaries of an entity in a sentence. The BIO tags are followed by others tags that indicates the type of entity, In this work, these tags are professions, working status, activities and/or patient, family member, health professional, others. Hence, this schema provides two kinds of tags: the position of an entity (i.e., B, I, O) in a token and the entity type.
- Input text length: to handle the length of the input text, and the maximum length of the BERT-based models, the clinical notes were split into independent sentences and the models were trained with all the information contained in the clinical note
- Text to tensor: The input data is tokenized according to the tokenizer implemented by the pre-trained language model (PLM). After tokenization, the subtokens receive the same BIO tag that the original unsplit token. Besides, as the input text can be of varying lengths, padding is done to homogenize the length of all of them. Next, attention masks are created to ignore padding labels. Finally, the data are converted to torch tensors.

1.3 Model development

The model used in this work, biomedical RoBERTa-based pre-trained language model (PLM) with Spanish corpus, and its hyperparameters were set after assessing different hyperparameters and models such as BERT, AlBERT, DistilBERT or RoBERTa. This was discussed in [1]. In this work, the training set of the MEDDOPROF corpus was split into two subsets, training (80%) and validation (20%). The hyperparameters of the best performing model were identified and used to train the final models used in the current research, see Supplementary Table 4.

Python 3.8.16 was used to carry out the experiments and Google Colab was used as the cloud environment for conducting the training. The models were fine-tuned with a Nvidia Tesla T4 GPU.

1.4 Annotation process and gold standard

2,000 first visit notes from the HCSC-MSKC cohort were randomly selected and annotated to build a gold standard and to assess the model's performance before making inference, locally, on the rest of the notes, Supplementary Table 5. These 2,000 notes were annotated by two annotators, AMG and IPS, using brat rapid annotation tool (BRAT) and following MEDDOPROF corpus annotation guidelines [5]. The inter-annotator agreement (IAA) between the two annotators was measured using the bratian python package accessible through GitHub [6]. The characteristics of the gold standard set are summarized in Supplementary Table 6. The distribution of the entities among the different labels can be seen Supplementary Table 7.

Initially, the token and instance IAA mean F1 was 0.668 and 0.687 respectively. After computing this score with bratiaa, both annotators met to resolve discrepancies and correct errors (e.g., not detected entities and/or annotation errors) with the aim of building a robust gold standard. Once the discrepancies were sorted, the entities distribution, Supplementary Table 7, and the confusion matrices for both tasks, Supplementary Table 8 and 9, as well as the combined confusion matrix, Supplementary Table 10, were studied. The results of the evaluation library, sequeval, are shown in Supplementary Table 11. As it can be appreciated, the patient identification is the limiting task of the combined model, this is, the hardest task of the two proposed. As shown in Supplementary Table 10, six and eight entities recognised by the model as "Profession" and as "Patient" were actual patient occupations (8.4%). We therefore opted to study these entities as well.

2 Demographic and clinical characteristics that influence occupation collection

2.1 Predictions in the HCSC-MSKC notes

Supplementary Table 12 shows the number of entities recognised by the models, 33,292, when using all the notes from HCSC-MSKC before accounting for selection bias. Of them, 7,314 belongs to "Patient" (n = 2,307), "Profession" (n = 1,305) or "Profession-patient" (n = 3,702). After manual review, 189 (8.19%) and 45 (3.45%) notes with only "Patient" or "Profession" entities were actually "Profession-patient" and therefore, recovered.

2.2 Matching visits

Each visit with an occupation mention is paired with an available visit from a patient with no occupation mentions that has the closest propensity score to it. From this point, there were two options:

- 1. Visits without occupation mentions can come from the same controls (i.e., number of visits without occupation mention is greater than the number of patients without occupation mentions)
- 2. Each control can only provide one visit (i.e., number of visits without occupation mention is the same as the number of patients without occupation mentions)

Both options were considered and analyses were repeated for both scenarios. Finally, the first approach was chosen as propensity scores are more similar between the comparison groups.

Eventually, Supplementary Figure 4 shows the love plot after balancing. Balance was achieved for all the covariates with a standardized mean difference < 0.1.

2.3 Bivariate and multivariates analyses

The variables included in the bivariate and multivariate analyses were related to quality of life measures (n = 3; distress, disability, Rosser) and diagnoses (n = 13; back pain, tendinitis (upper extremities), pain in joint, neck pain, muscle disorders, no diagnosis, autoimmune, other osteoarthritis, tendinitis (lower extremities), osteoarthritis of knee, fibromyalgia and unspecified tendinitis, peripheral neuropathy and other joint disease).

After bivariate analyses, rosser, fibromyalgia and unspecified tendinitis, other osteoarthritis, and tendinitis (lower extremities) variables were excluded from subsequent analysis as their p-value was > 0.15.

After multivariate analyses following an hybrid stepwise approaches optimising the AIC, autoimmune disease was excluded.

3 Association between occupation and patient's diagnosis

Supplementary Table 13 shows the result of the multivariate analysis for assessing the association between occupation and patient's diagnosis.

Supplementary Tables

MEDDOPROF corpus related tables

Supplementary Table 1: MEDDOPROF clinical notes specialities. Other I: includes all clinical cases starting with SXXXX-. Other II: includes all clinical cases starting with XXXXXXXX_ES

Speciality	total	train	\mathbf{test}
N (%)	n = 1,844	$n = 1,500 \ (0.81)$	$n = 344 \ (0.19)$
Psychiatry	560	484(0.86)	76(0.14)
Labour	233	81 (0.35)	$152 \ (0.65)$
Internal medicine	229	207 (0.9)	22 (0.1)
Oncology	194	$175 \ (0.9)$	19(0.1)
Primary care	93	$86\ (0.92)$	7 (0.08)
Dermatology	87	77 (0.89)	$10 \ (0.11)$
Infectology	65	58 (0.89)	7(0.11)
Neurology	63	54 (0.86)	9(0.14)
Other II	58	50 (0.86)	8(0.14)
Emergency	35	34 (0.97)	1 (0.03)
Radiology	31	27 (0.87)	4(0.13)
Otorhinolaryngology	28	$26\ (0.93)$	2(0.07)
Allergology	25	24 (0.96)	1 (0.04)
Odontology	24	$22 \ (0.92)$	2(0.08)
Ophthalmology	24	22 (0.92)	2(0.08)
COVID	20	19 (0.95)	1 (0.05)
Urology	20	16 (0.8)	4(0.2)
Other I	19	16(0.84)	3(0.16)
Tropical medicine	18	15 (0.83)	3(0.17)
Endocrinology	10	7 (0.7)	$3\ (0.3)$
Rheumatology	8	0 (0)	8 (1)

Supplementary Table 2: Number or documents, annotations, unique codes, and sentences in the MEDDOPROF corpus. Table extracted from IberLEF 2021 - MEDDOPROF video

	Documents	Annotations	Sentences	Tokens
Train	1,500	$3,\!658$	49,114	1,075,655
Validation	344	1,085	9,513	$215{,}531$
Total	1,844	4,743	$58,\!627$	$1,\!291,\!186$

,	Patient	Family	Health Prof.	Other	Total
Dreferrion	1,158	134	1,525	410	3,227~(68.04%)
FIOIESSION	(876-282)	(105-29)	(1,231-294)	(316-94)	(2,528-699)
Empl. Status	1,047	119	0	203	1,369~(28.86%)
	(754-293)	(97-22)	0	(160-43)	(1,011-358)
Activity	122	7	0	18	147~(3.10%)
Activity	(105-17)	(5-2)	0	(9-9)	(119-28)
Total	2,327~(49.06%)	260~(5.5%)	1 595 (29 140%)	631~(13.29%)	4,743
	(1,735-592)	(207-53)	1,020 (02.14/0)	(485-146)	$(3,\!658\text{-}1,\!085)$

Supplementary Table 3: Proportion of entities in the MEDDOPROF corpus. In parentheses, train and test proportions. Table extracted from [1]

	Suppl	ementary 7	Table 4:	Models' par	rameters	
I Model	Learning	Batch size	Enochs	Max token	Ontimizer	Max clip

PLM Model	Learning rate	Batch size	Epochs	Max token length	Optimizer	Max clip grad norm	Epsilon
RoBERTa base biomedical clinical es	2e-05	8	10	510	AdamW	1	1e-08

HCSC-MSKC related tables

/	
Voor	Number of
Tear	notes
2007	348
2008	381
2009	228
2010	100
2011	101
2012	100
2013	115
2014	86
2015	127
2016	101
2017	313

Supplementary Table 5: Number of randomly selected clinical notes per year composing gold standard set (HCSC-MSKC)

Supplementary Table 6: Number of documents, annotations, and sentences in the gold standard set (HCSC-MSKC)

beamaara bee (11050 mbile)				
Corpus	Documents	Annotations	Sentences	Tokens
Gold standard set (HCSC-MSKC)	2,000	898	$15,\!306$	202,173

Supplementary	Table 7:	Proportion	of entities in	the gold	standard set	(HCSC-MSKC)	
11 .		1		()		· · · · · · · · · · · · · · · · · · ·	

	Patient	Family	Health Prof.	Other	Total
Profession	167	5	579	1	752 (83.74%)
Empl.Status	103	1	0	0	104~(11.58%)
Activity	42	0	0	0	42~(4.68%)
Total	312~(34.74%)	6 (< 1%)	579~(64.48%)	1 (< 1%)	898

Supplementary Table 8: Occupation recognition task confusion matrix. Gold standard set (HCSC-MSKC). BIO schema. ACT: Activity, PRO: Profession, WS: Working status Actual (Gold Standard)

			F	iciual (Gold St	anuaru)				
		B-ACT	B-PRO	B-WS	I-ACT	I-PRO	I-WS	О	support	
F	B-ACT	13	2	0	10	0	0	17	42	
	B-PRO	0	595	1	0	5	0	151	$\bf 752$	
te	B-WS	0	7	48	0	2	2	45	104	
dic	I-ACT	4	0	0	29	3	0	43	79	
re	I-PRO	0	8	0	0	332	2	50	$\boldsymbol{392}$	
Р	I-WS	0	0	5	3	19	61	81	169	
	Ο	31	34	9	41	36	22	200462	200635	
	total predicted	48	646	63	83	397	87	200849	202173	

Supplementary Table 9: Identification of the actor to which the occupation belongs confusion matrix. Gold standard set (HCSC-MSKC). BIO schema. ACT: Activity, FAM: Family member, HEA: Health professional, OTH: Other, PAT: Patient, PRO: Profession, WS: Working status

					Actual (Gold sta	ndard)				
		B-FAM	B-OTH	B-PAT	B-HEA	I-FAM	I-OTH	I-PAT	I-HEA	0	support
	B-FAM	2	0	0	4	0	0	0	0	0	6
	B-OTH	0	1	0	0	0	0	0	0	0	1
ъ	B-PAT	0	0	202	3	0	0	22	0	85	312
te	B-HEA	0	2	1	469	0	0	0	1	106	579
dic	I-FAM	0	0	0	0	3	0	0	0	0	3
re	I-OTH	0	0	0	0	0	0	0	0	0	0
Д	I-PAT	0	0	17	0	0	0	373	4	160	554
	I-HEA	0	0	0	1	0	4	0	72	6	83
	О	0	6	54	30	0	0	118	3	200424	200635
	total predicted	2	9	274	507	3	4	513	80	200781	202173

Supplementary Table 10: Occupation recognition and actor to which the occupation belongs combined confusion matrix. Gold standard set (HCSC-MSKC). ACT: Activity, FAM: Family member, OTH: Other, PAT: Patient, HEA: Health professional. WS: Working status

				Actu	ial (Gold standa	rd)				
		PROF-PAT	PROF-HEA	PROF-FAM	PROF-OTHER	WS-PAT	WS-FAM	ACT-PAT	0	support
·	PROF-PAT	115	1	0	0	5	0	1	20	142
	PROF-HEA	2	428	2	0	0	0	0	34	466
	PROF-FAM	0	0	1	0	0	0	0	0	1
	PROF-OTHER	0	2	0	0	0	0	0	4	6
	WS-PAT	0	0	0	0	35	0	0	14	49
ed	WS-FAM	0	0	0	0	0	1	0	0	1
ict	ACT-PAT	0	0	0	0	0	0	7	19	26
ed	0	36	127	1	0	51	0	26	0	241
P.	PROF	6	0	0	0	1	0	0	30	37
	WS	0	0	0	0	8	0	0	15	23
	ACT	0	0	0	0	0	0	4	23	27
	PAT	8	0	0	0	3	0	4	56	71
	HEA	0	21	1	0	0	0	0	18	40
	OTHER	0	0	0	1	0	0	0	2	3
	total	167	579	5	1	103	1	42	235	1133
	predicted	107	015	0	1	100	1	-12	200	1100

Supplementary Table 11: Precision, recall and F1 values per entity using seqeval library. Gold standard set (HCSC-MSKC)

Task	Entity	Precision	Recall	$\mathbf{F1}$	Support
Occupation recognition	Activity	0.21	0.26	0.23	42
	Profession	0.89	0.77	0.83	752
	Working status	0.62	0.43	0.51	104
	Family member	1	0.33	0.50	6
To whom the	Other	0.11	1	0.20	1
occupation belongs	Patient	0.64	0.59	0.61	312
	Health professional	0.92	0.80	0.86	579

Supplementary Table 12: Number of recognised entities in the whole HCSC-MSKC dataset, n = 33,292. Number of profession and/or patient related mentions, n = 7,314 belonging to 5,917 visits

Entity	\mathbf{n}
PROFESSION-PATIENT	3,702
PROFESSION-HEALTH PROFESSIONAL	$18,\!223$
PROFESSION-FAMILY MEMBER	58
PROFESSION-OTHERS	309
WORKING SITUATION-PATIENT	1,588
WORKING SITUATION-HEALTH PROFESSIONAL	2
WORKING SITUATION-FAMILY MEMBER	23
WORKING SITUATION-OTHERS	39
ACTIVITY-PATIENT	$1,\!121$
ACTIVITY-HEALTH PROFESSIONAL	2
ACTIVITY-FAMILY MEMBER	3
ACTIVITY-OTHERS	3
PROFESSION	$1,\!305$
WORKING SITUATION	722
ACTIVITY	$1,\!060$
PATIENT	$2,\!307$
HEALTH PROFESSIONAL	$2,\!616$
FAMILY MEMBER	57
OTHERS	152

Supplementary Table 13: Multivariate analysis results after conducting hybrid stepwise feature selection. Third objective: association between occupation and patient's diagnosis

Variable	OR	p-value	
Back pain			
(Intercept)	$0.57 \ (0.39 - 0.83)$	0.004	
Age	$0.99\ (0.98 ext{-}0.99)$	4.33E-04	
Administrative and specialised secretaries	1.62(1.14-2.27)	0.006	
Social work associate professionals	1.49(1.1-1.99)	0.009	
Cleaners and helpers	$1.33 \ (1.08-1.65)$	0.009	
Sales workers	1.49(1.06-2.08)	0.019	
Business and administration professionals	$0.36\ (0.13 \text{-} 0.83)$	0.032	
Sports and fitness workers	$0.41 \ (0.14 - 0.97)$	0.066	
Transport and storage labourers	1.53(0.92 - 2.48)	0.093	
Food preparation assistants	$0.42 \ (0.12 \text{-} 1.06)$	0.103	
Legal, social and cultural professionals	$0.38 \ (0.09-1.09)$	0.116	
Creative and performing artists	$0.65\ (0.34\text{-}1.15)$	0.162	
Sex (female)	0.89(0.74-1.08)	0.241	
Tendinitis (upper extremities)			
(Intercept)	$0.06 \ (0.04-0.09)$	1.41E-34	
Age	1.03(1.02 - 1.04)	6.41E-13	
Hairdressers, beauticians and related workers	2.19(1.36 - 3.45)	9.48E-04	
Sex (female)	$0.78\ (0.63 \text{-} 0.95)$	0.014	
Cleaners and helpers	1.32(1.05-1.65)	0.015	
Social work associate professionals	1.41 (1.03 - 1.91)	0.030	

Drivers and mobile plant operators	1.69(1.02-2.73)	0.035	
Creative and performing artists	$0.44 \ (0.18 - 0.91)$	0.043	
Teaching professionals	0.53 (0.27 - 0.95)	0.045	
Sales and purchasing agents and brokers	0.24(0.04-0.79)	0.049	
Legal, social and cultural professionals	0.15(0.01-0.69)	0.059	
Electrical and electronic trades workers	1.88(0.83-4.04)	0.113	
Science and engineering associate professionals	0.34(0.05-1.17)	0.146	
Business and administration professionals	0.56(0.23-1.17)	0.156	
Muscle disorders	, , ,		
(Intercept)	0.16 (0.09 - 0.26)	3.91E-12	
Sex (female)	1.73(1.31-2.29)	1.15E-04	
Age	0.98(0.97-0.99)	0.003	
Protective services workers	2.36(1.21-4.28)	0.007	
Social work associate professionals	1.61(1.11-2.3)	0.010	
Sales and purchasing agents and brokers	2.74(1.08-6.07)	0.020	
Cleaners and helpers	1.34(1.02-1.75)	0.037	
Science and engineering professionals	0.18 (0.01-0.81)	0.087	
Health professionals	0.69(0.42-1.09)	0.129	
Autoimmune			
(Intercept)	0.18(0.1-0.31)	9.92E-10	
Age	0.98(0.97-0.99)	0.003	
Hairdressers, beauticians and related workers	2.03 (1.15-3.39)	0.010	
Business and administration professionals	2.51 (1.18-4.86)	0.010	
Health professionals	1.59(1.08-2.28)	0.016	
Customer services clerks	2.15(0.97-4.27)	0.040	
Waiters and bartenders	0.59(0.34-0.96)	0.048	
Protective services workers	0.31 (0.05 - 0.99)	0.101	
Sex (female)	1.22(0.95-1.59)	0.128	
Peripheral neuropathy	()		
(Intercept)	$0.04 \ (0.02 - 0.09)$	3.40E-17	
Cooks	2.68(1.57-4.39)	1.64E-04	
Sex (female)	1.82 (1.26-2.67)	0.002	
Cleaners and helpers	1.67 (1.17-2.36)	0.004	
Food preparation assistants	3.43(1.26-7.92)	0.007	
Health professionals	0.26 (0.08 - 0.62)	0.008	
Administrative and specialised secretaries	$0.52 \ (0.18-1.18)$	0.164	
Age	0.99(0.98-1.01)	0.448	
Osteoarthritis of knee			
(Intercept)	0.01 (0-0.01)	1.07E-34	
Age	1.04 (1.03-1.06)	1.52E-07	
Social work associate professionals	1.81 (1.15 - 2.79)	0.008	
Building and related trades workers, excluding electricians	2.51 (1.16-4.96)	0.013	
Sales and purchasing agents and brokers	3.42(1.14-8.39)	0.014	
Electrical and electronic trades workers	3.59(1.02-9.76)	0.023	
Sex (female)	1.49(1.04-2.15)	0.032	
Cleaners and helpers	1 45 (1 02 - 2 04)	0.034	
Creative and performing artists	2.13 (0.87-4.5)	0.067	
Waiters and bartenders	0.58 (0.26-1.13)	0.145	
Neck pain			
(Intercept)	0.08 (0.05-0.13)	2.78E-20	
	(- = -	

Sex (female)	2.62(1.97-3.52)	7.11E-11	
Social work associate professionals	$1.41 \ (0.99-1.97)$	0.053	
Science and engineering professionals	0.17(0.01-0.77)	0.078	
Hairdressers, beauticians and related workers	0.5(0.21-1.03)	0.087	
Food preparation assistants	0.2(0.01-0.92)	0.110	
Cleaners and helpers	1.21(0.94-1.56)	0.138	
Age	0.99(0.98-1)	0.276	
No diagnoses			
(Intercept)	0.37(0.22-0.61)	1.15E-04	
Age	0.98 (0.97-0.99)	4.84E-06	
Legal, social and cultural professionals	4.75 (2.15-10.02)	5.96E-05	
Health professionals	1.67 (1.15-2.38)	0.006	
Cleaners and helpers	0.63(0.44-0.89)	0.010	
Social work associate professionals	0.58 (0.33-0.96)	0.047	
Science and engineering professionals	1.8 (0.84 - 3.52)	0.104	
Sports and fitness workers	1.79 (0.79 - 3.64)	0.131	
Hairdressers beauticians and related workers	1.70(0.7000.01) 1.53(0.85-2.59)	0.132	
Sex (female)	0.93 (0.73-1.2)	0.586	
Other joint disease	0.00 (0.10 1.2)	0.000	
(Intercent)	0.02 (0.01-0.05)	2 99E-20	
Sev (female)	0.02(0.010.05) 0.32(0.23-0.45)	1.04E-10	
A ge	1.03(1.01-1.05)	$2.77E_{-0.4}$	
Sports and fitness workers	3.33(1.01-1.05)	0.010	
Skilled agricultural forestry and fishery workers	2.80(1.21-7.00)	0.010	
Corment and related trades workers	2.09(1.10-0.01) 3.22(0.02-8.7)	0.010	
Sales and purchasing agents and brokers	2.48 (0.82-6.11)	0.037	
Cooks	2.48 (0.82 - 0.11) 1.74 (0.80 - 3.16)	0.070	
Teaching professionals	1.14(0.03-3.10) 0.18(0.01.0.84)	0.004	
Information and communications technology professionals	0.18 (0.01-0.04) 2.27 (0.75 5 57)	0.093	
Hostith professionals	2.21 (0.13 - 3.31) 1 56 (0.87 2.64)	0.103 0.114	
Food processing and valated trades workers	1.30(0.87-2.04) 0.22(0.01.1.08)	0.114 0.159	
Cleaners and helpers	0.23 (0.01-1.06) 0.66 (0.26 1.14)	0.152 0.156	
Eibnemueleie and unenecified ten	0.00 (0.30-1.14)	0.130	
Fibromyalgia and unspecified ten	$\frac{\text{dinitis}}{0.07(0.04,0.12)}$		
(Intercept)	0.07 (0.04 - 0.13)	5.57E-15	
Sex (female)	1.4 (1.03 - 1.94)	0.036	
Social work associate professionals	0.51 (0.25 - 0.93)	0.042	
Building and housekeeping supervisors	2.23(0.84-4.98)	0.073	
Building and related trades workers, excluding electricians	0.36(0.06-1.17)	0.159	
Age	0.99(0.98-1.01)	0.431	
Other osteoarthritis			
(Intercept)	0 (0-0)	3.84E-63	
Age	1.09(1.08-1.11)	3.96E-30	
Sex (female)	1.86(1.39-2.52)	4.15E-05	
Mining and Construction Labourers	1.97 (1-3.65)	0.038	
Business and administration professionals	$0.32 \ (0.05 - 1.07)$	0.124	
Pain in joint			
(Intercept)	$0.24 \ (0.15 - 0.39)$	1.82E-08	
Age	$0.98 \ (0.97 - 0.99)$	8.14E-04	
Creative and performing artists	2.05(1.15 - 3.49)	0.011	
General and keyboard clerks	2.09(1.1-3.72)	0.017	

Information and communications technology professionals	2.17(0.96-4.46)	0.046	
Building and housekeeping supervisors	1.98(0.89-3.96)	0.068	
Sex (female)	$1.2 \ (0.96-1.51)$	0.117	
Protective services workers	$0.47 \ (0.14 \text{-} 1.14)$	0.142	
Tendinitis (lower extremities)			
(Intercept)	0.01 (0-0.02)	3.68E-34	
Age	$1.03 \ (1.02 \text{-} 1.05)$	8.43E-06	
Teaching professionals	2.87(1.61-4.82)	1.47E-04	
Sex $(female)$	1.69(1.24-2.33)	0.001	
Building and housekeeping supervisors	$2.61 \ (1.05 - 5.62)$	0.023	
Administrative and specialised secretaries	1.75(1.01-2.86)	0.033	
Waiters and bartenders	1.6(0.99-2.48)	0.046	
Science and engineering associate professionals	3.06(0.71-9.2)	0.077	

Supplementary Figures

Supplementary Figure 1: HCSC-MSKC cohort age-sex distribution in first visit. The average retirement age of the Spanish population in 2017 was 65 years

Supplementary Figure 2: Percentage of occupancy collection per physician. 117,068 visits from 35,470 patients. Of them, 3,978 visits have at least one occupation mention (from 3,723 patient)

Supplementary Figure 3: Time from first patient visit without occupation to the most inmediate visit with occupation (i.e., first visit with registered occupation). n = 515 patients

Supplementary Figure 4: Love plot for matching balance assessment

References

- [1] Alfredo Madrid-García. "Recognition of professions in medical documentation". MA thesis. Universidad Nacional de Educación a Distancia (España), 2023.
- [2] Salvador Lima-López, Eulàlia Farré-Maduell, Antonio Miranda-Escalada, et al. NLP applied to occupational health: MEDDOPROF shared task at IberLEF 2021 on automatic recognition, classification and normalization of professions and occupations from medical texts. 2021-09.
- [3] Denis Rothman. Transformers for Natural Language Processing: Build innovative deep neural network architectures for NLP with Python, PyTorch, TensorFlow, BERT, RoBERTa, and more. Packt Publishing Ltd, 2021.
- [4] Franck Dernoncourt, Ji Young Lee, and Peter Szolovits. "NeuroNER: an easy-to-use program for named-entity recognition based on neural networks". In: *Conference on Empirical Methods on Natural Language Processing (EMNLP)* (2017).
- [5] Eulàlia Farré-Maduell, Salvador Lima-López, Antonio Miranda-Escalada, et al. MED-DOPROF guidelines. Apr. 2021. DOI: 10.5281/zenodo.4720833. URL: https://doi. org/10.5281/zenodo.4720833.
- [6] Tobias Kolditz. Bratiaa. https://github.com/kldtz/bratiaa. 2019.