Tables.

Table 1: Summary of included studies

Author (Ref)	Year	Sample Size & Data Type	Task Type	Specific Task	Summary of Key Results
Bokolo et al. (31)	2023	632,000 tweets	Detection	Depression detection from Twitter	RoBERTa achieved high accuracy; transformer models outperformed ML models.
Lau et al. (26)	2023	189 clinical interview transcripts	Classification	Depression severity assessment	Prefix-tuned LLMs outperformed traditional models with lower error rates.
Dai et al. (32)	2021	500 EHRs	Classification	Psychiatric patient screening	Transfer learning models like DistilBERT and ROBERTa improved performance.
Heston et al. (51)	2023	25 conversational agents	Detection and Management	Depression and suicidality detection	Agents recommended intervention late; delayed suicide hotline reference.
Senn et al. (40)	2022	189 clinical interviews	Classification	Depression classification from interviews	BERT ensembles showed robustness and higher F1 scores.
Levkovich et al. (7)	2023	8 vignettes	Classification and Management	Treatment strategy assessment	ChatGPT aligned with treatment guidelines, differing from primary care physicians.
Perlis et al. (29)	2024	50 clinical vignettes	Management	Bipolar depression management	Augmented LLMs matched expert treatment choices better than non-augmented models.
Sezgin et al. (28)	2023	14 PPD questions	Management	Postpartum depression information quality assessment	ChatGPT provided more clinically accurate responses than other models.

Wan et al. (44)	2022	12,006 admission notes	Classification	Family history identification in mood disorders	BERT–CNN model achieved high accuracy in family history extraction.
Owen et al. (39)	2023	Reddit datasets	Detection	Depression signal detection in Reddit posts	BERT and MentalBERT showed significant early detection ability.
Wang et al. (35)	2020	13,993 microblogs	Classification	Depression risk prediction from Weibo posts	BERT achieved the highest micro-averaged F1 score.
Elyosehp et al. (3)	2024	Case vignettes	Classification and Management	Depression prognosis assessment	LLMs closely aligned with human professionals in prognosis.
Hond et al. (50)	2024	16,159 cancer patients' EHR data	Detection	Early depression risk detection in cancer patients	Structured EHR data used alone yielded the best prediction results.
Danner et al. (25)	2023	DAIC-WOZ datasets	Detection	Depression detection from interviews	Models achieved superior performance, significantly outperforming others.
Farruque et al. (36)	2024	6077 tweets and 1500 annotated tweets	Detection and Classification	Depression symptoms modelling from Twitter	Iterative LLM training improved accuracy in depression detection.
Lu et al. (34)	2023	DAIC dataset	Detection	Depression detection via conversation turn classification	Deep learning framework achieved a high F1-score.
Lam et al. (30)	2019	189 DAIC-WOZ participants	Detection	Multi-modal depression detection	Multi-modal model outperformed single-modality in F1 score.

Llias et al. (27)	2023	Public datasets	Detection	Stress and depression identification in social media	Enhanced performance with multimodal adaptation gates.
Toto et al. (24)	2021	189 clinical interviews	Detection	Depression screening using audio and text	AudiBERT significantly improved classification with high F1 scores.
Sadeghi et al. (41)	2023	275 interview transcripts	Detection	Depression severity prediction from text	Fine-tuned GPT-3.5-Turbo showed robust accuracy.
Kabir et al. (37)	2023	40,191 tweets	Detection and Classification	Depression severity detection from tweets	Attention-based models classified tweets with high confidence scores.
Suri et al. (43)	2022	5997 tweets	Detection	Depressive tendencies detection using multimodal data	Cross-modal attention-based BERT model showed high F1 scores.
Abilkaiyrkyzy et al. (38)	2024	219 E-DAIC participants	Detection and Management	Mental illness detection using a chatbot	Chatbot achieved 69% accuracy and high usability.
Pourkeyvan et al. (42)	2024	11,890,632 tweets and 553 bio-descriptions	Detection	Mental health disorder prediction from Twitter	Hugging Face BERT models significantly improved prediction accuracy.
Tey et al. (49)	2023	Over 3.5 million tweets	Detection and Classification	Pre- and post-depressive detection from tweets	BERT with emoji decoding accurately classified depressive categories.
Farruque et al. (33)	2022	13,387 Reddit samples	Detection and Classification	Depression level detection modelling	MBERT improved classification, especially for longer posts
Janatdoust et al. (46)	2022	16,632 social media comments	Detection and Classification	Depression signs detection from social media text	BERT-based ensembles demonstrated superior classification accuracy.

Adarsh S et al. (54)	2022	Social media texts	Detection and Classification	Depression sign detection using BERT	Fine-tuned BERT model showed specificity in detection improvement.
Sivamanikandan S. et al. (52)	2022	Social media posts	Detection and Classification	Depression level classification	RoBERTa achieved best performance among the tested transformer models.
Esackimuthu et al. (53)	2022	ALBERT base v1 data	Detection and Classification	Depression detection from social media text	ALBERT model showed potential despite challenges with data quality.
Singh et al. (45)	2022	Ensemble of models	Detection and Classification	Depression level classification using BERT, RoBERTa, XLNet	Ensemble ranked 3rd, indicating effective detection and classification.
Poświata et al. (48)	2022	RoBERTa models' data	Detection and Classification	Depression sign detection using RoBERTa	Ensemble achieved high performance metrics in competitive setting.
Hegde et al. (47)	2022	Social media text data	Detection and Classification	Depression detection using supervised learning	BERT-based TL model performed better than ML classifiers.

Abbreviations: Ref: Reference | EHR: Electronic Health Record | LLM: Large Language Model | NLP: Natural Language Processing | PHQ-8: Patient Health Questionnaire-8 | DAIC-WOZ: Distress Analysis Interview Corpus - Wizard of Oz | CNN: Convolutional Neural Network | BERT: Bidirectional Encoder Representations from Transformers | AUROC: Area Under the Receiver Operating Characteristic Curve | ZSL: Zero-Shot Learning | TL: Transfer Learning | MLP: Multi-Layer Perceptron | ACOG: American College of Obstetricians and Gynecologists | DSM-5: Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition | SVM: Support Vector Machine | BiLSTM: Bidirectional Long Short-Term Memory | ROC AUC: Receiver Operating Characteristic Area Under the Curve.

Author	Model	Task Type	Conclusion Summary	Limitations Summary
Bokolo et al. (31)	RoBERTa, DeBERTa	Detection	Transformer models like RoBERTa excel in depression detection from Twitter data, outperforming traditional ML approaches.	Dataset not initially intended for depression detection, lacks demographic and linguistic diversity.
Lau et al. (26)	Prefix-tuned LLM	Classification	LLMs with prefix-tuning significantly enhance depression severity assessment, surpassing traditional methods.	Challenges include potential overfitting, limited training data, and lack of generalizability.
Dai et al. (32)	BERT, DistilBERT, ALBERT, ROBERTa	Classification	BERT models, especially with feature dependency, effectively classify psychiatric conditions from EHRs.	Highly imbalanced dataset and overlapping psychiatric symptoms complicate accurate classification.
Heston et al. (51)	GPT-3.5	Detection and Management	Conversational agents show delayed response in escalating mental health risks, needing more rigorous testing.	Limited by the use of publicly available agents and structured prompts, lacking real-world interaction complexity.
Senn et al. (40)	BERT, RoBERTa, DistilBERT	Classification	Ensembles of BERT models enhance depression detection robustness in clinical interviews.	Small dataset size and reliance solely on transcript data limit effectiveness.
Levkovich et al. (7)	GPT-3.5 and GPT-4	Classification and Management	ChatGPT models align with treatment guidelines better than primary care physicians in hypothetical scenarios.	Study based on vignettes may not accurately reflect real patient interactions.
Perlis et al. (29)	GPT-4	Management	Augmented GPT-4 aids in clinical decision support for bipolar disorder, outperforming non-augmented models.	Limited by the narrow scope of clinical vignettes used, questioning the generalization of findings.
Sezgin et al. (28)	GPT-4, LaMDA	Management	GPT-4 provides more accurate responses to postpartum depression queries than other models and traditional searches.	Reliance on a limited set of standardized questions and the non-medical focus of LLM design limit applicability.

 Table 2: Summary of conclusions and limitations of included studies

Wan et al. (44)	BERT-CNN	Classification	High accuracy in identifying family psychiatric history from EHRs, suggesting utility in understanding mood disorders.	Study's applicability is limited to a single hospital's dataset, possibly not generalizable.
Owen et al. (39)	BERT, MentalBERT	Detection	Effective identification of depressive signals in online forums, with potential for early intervention.	Challenges in determining exact timing of posts and interpreting informal internet communication.
Wang et al. (35)	BERT, RoBERTa, XLNET	Classification	Deep learning methods, enhanced by domain-specific pretraining, effectively detect depression risk levels from microblogs.	Data imbalance and semantic ambiguities in microblogs complicate accurate depression risk classification.
Elyosehp et al. (3)	GPT-3.5, GPT-4, Claude, Bard	Classification and Management	LLMs match or surpass professional judgments in prognosis accuracy, showing potential for clinical integration.	Vignette-based methodology limits real-world applicability; further validation with actual patient data is needed.
Hond et al. (50)	BERT	Detection	Machine learning models predict depression risk in cancer patients using EHRs, with structured data models performing best.	Bias in model calibration and reliance on structured data might miss unrecorded symptoms.
Danner et al. (25)	BERT-based models, GPT- 3.5, GPT-4	Detection	Advanced transformer networks significantly enhance depression detection from clinical interview data.	Ethical, legal, and privacy concerns need addressing; further validation required.
Farruque et al. (36)	BERT, Mental-BERT	Detection and Classification	Semi-supervised learning models, iteratively refined with Twitter data, improve depression symptom detection accuracy.	Limited dataset size and absence of continuous human annotation during model training may affect reliability.
Lu et al. (34)	BERT, transformer encoder	Detection	Novel deep learning framework enhances depression detection from psychiatric interview data, improving interpretability.	Study limited to transcribed data, which may not capture all nuances of psychiatric assessments.
Lam et al. (30)	Transformer, 1D CNN	Detection	Multi-modal models combining text and audio data effectively detect depression, enhanced by data augmentation.	Limited generalizability due to dataset specificity and potential biases in class distribution.

Llias et al. (27)	BERT, MentalBERT	Detection	Extra-linguistic features improve calibration and performance of models in detecting stress and depression from texts.	Constraints in GPU resources, lack of explainability, and reliance on single model runs limit robustness.
Toto et al. (24)	AudiBERT	Detection	AudiBERT outperforms traditional and hybrid models in depression screening, utilizing multimodal data.	Emotional expression variability and privacy concerns during data collection impact model training and performance.
Sadeghi et al. (41)	GPT-3.5- Turbo, DepRoBERTa	Detection	Language models effectively predict depression severity from textual data, enhancing diagnostic procedures.	Limited dataset size impacts generalizability of findings.
Kabir et al. (37)	BERT, DistilBERT	Detection and Classification	Models effectively classify social media texts into depression severity categories, with high confidence and accuracy.	Annotation biases and lack of contextual understanding in social media texts pose significant challenges.
Suri et al. (43)	BERT	Detection	Multimodal BERT frameworks significantly enhance detection of depressive tendencies from complex social media data.	Data biases and model applicability to less active or non- openly expressive users are noted concerns.
Abilkaiyrkyzy et al. (38)	BERT	Detection and Management	Chatbot effectively detects and classifies mental health issues, highly usable for reducing barriers to mental health care.	Chatbot's limited emotional detection capabilities and dataset specificity restrict broader applicability.
Pourkeyvan et al. (42)	BERT models from Hugging Face	Detection	Superior detection of depression symptoms from social media, demonstrating the efficacy of advanced NLP models.	Analysis limited to English-language tweets, not representing non-English speaking populations.
Tey et al. (49)	BERT, supplemented with emoji decoding	Detection and Classification	Augmented BERT model classifies Twitter users into depressive categories, enhancing early depression detection.	Reliance on self-reported diagnosis and English-only analysis limits generalizability.

Farruque et al. (33)	Mental BERT (MBERT)	Detection and Classification	MBERT enhanced with text excerpts significantly improves depression level classification from social media posts.	High computational demands for excerpt extraction limit practical application in time-sensitive environments.
Janatdoust et al. (46)	Ensemble of BERT, ALBERT, DistilBERT, RoBERTa	Detection and Classification	Ensemble models effectively classify depression signs from social media, utilizing multiple language models for improved accuracy.	Training based on predefined criteria may not accurately reflect complex depressive symptoms.
Adarsh S et al. (54)	BERT-small	Detection and Classification	Enhanced BERT model accurately classifies depression severity from social media texts, understanding nuances better than others.	Natural language variability and contextual depth of posts, alongside imbalanced data classes, pose challenges.
Sivamanikandan S. et al. (52)	DistilBERT, RoBERTa, ALBERT	Detection and Classification	Transformer models classify depression levels effectively, with RoBERTa achieving the best performance.	Dataset imbalance and lack of clinical validation limit the generalization of findings.
Esackimuthu et al. (53)	ALBERT base v1	Detection and Classification	ALBERT shows potential in detecting depression signs from social media texts but faces challenges due to complex human emotions.	Limited by the quality of social media data and subtle nature of human emotions.
Singh et al. (45)	Ensemble of BERT, RoBERTa, XLNet	Detection and Classification	Ensemble model accurately classifies depression levels from social media text, ranking highly in competitive settings.	Reliance on social media text and absence of real-world clinical validation pose significant challenges.
Poświata et al. (48)	RoBERTa, DepRoBERTa	Detection and Classification	RoBERTa and DepRoBERTa ensemble excels in classifying depression signs, securing top performance in a competitive environment.	Limited by dataset specifics and the competitive model training environment.

Hegde et al. (47)	Ensemble of	Detection	BERT-based Transfer Learning model outperforms traditional	Challenges include handling the natural language
	ML	and	ML classifiers in detecting depression from social media texts.	variability and contextual depth of social media posts.
	classifiers,	Classification		
	BERT			

Abbreviations: BERT: Bidirectional Encoder Representations from Transformers | CNN: Convolutional Neural Network | GPT: Generative Pre-trained Transformer | LLM: Large Language Model | MLP: Multi-Layer Perceptron | NLP: Natural Language Processing | PHQ-8: Patient Health Questionnaire-8 | PHQ-9: Patient Health Questionnaire-9 | TL: Transfer Learning | ZSL: Zero-Shot Learning.