
Supplementary Methods 

Sample isolation and nucleic acid extraction 

Nascent articular and epiphyseal cartilage tissue (20-30mg) was taken from the distal end of 

the developing femur. As anticipated, adipose tissue was visible within the joint from ~19pcw 

and was thoroughly removed before cartilage isolation. In all cases, tissue was homogenised 

in 2ml screw-cap tubes containing 600μl RTL lysis buffer (AllPrep, Qiagen) at 2400rpm for 

2.5min in 2mm Zirconia beads using the Mini BeadBeater 24 (both from BioSpec Products, 

USA). Samples were centrifuged at 13,000rpm for 30s before further homogenising at 

2400rpm for 5min. Samples were centrifuged again before clarification through 0.2μM nylon 

filters (GeneFlow, UK). DNA was isolated using AllPrep (Qiagen) and RNA was isolated using 

Norgen DNA/RNA mini purification kit (Norgen BioTek Corp, Canada).  

 

Staining of bone and cartilage tissues 

Foetal samples were stained following a previously published protocol1, adapted for human 

tissue. Briefly, excess tissue was removed from the limb before fixing in 70% ethanol for 24hrs, 

then 95% ethanol for 24hrs. Ethanol was replaced with 0.03% Alcian blue solution for 1-3 

days, depending on foetal stage, then washed with 95% ethanol for 6 hours, before 

replacement with 2% KOH solution for 12-24 hours. The KOH was changed to 0.005% Alizarin 

red for 12-24 hours, before clearance in 1%KOH:20% glycerol solution for 1-5 days. All stages 

took place with gentle agitation. The samples were imaged using brightfield optics. 

 

DNA methylation quality control 

The R package minfi2 (v1.4.6) was used to read in, process and perform quality control checks 

on methylation microarray data3.  Bisulfite conversion and sex prediction checks were 

performed, and one sample was excluded from the analysis due to a mismatch between 

predicted and labelled sex. Non-autosomal sites were then excluded. Next, undetected probes 

(sum of Beta values across all samples equal to 0) and probes detected in less than 3 replicate 



beads were removed. Probes were then filtered to retain those with a detection p-value < 

0.001 and any probes with missing data (marked as not applicable, NA) in any samples were 

excluded. Quantile normalisation was then applied to the microarray data. Finally, probes 

covered by known single nucleotide variants (SNVs) were removed using minfi and cross-

reactive probes were removed using the R package maxprobes3. After quality control 678,267 

probes representing CpG sites were retained for analysis. 

 

DNA methylation exploratory data analysis 

Methylation data were transformed to M-values and filtered to remove the bottom 5% of probes 

by variance. Principal component analysis (PCA) was performed using the factoExtra R 

package (v1.0.7), using Z-scaled data as input (Fig.S4). Visual assessment of batch effect by 

PCA using Sentrix ID indicated PC3 and PC4 were associated with batch. Sentrix ID was 

therefore incorporated as a covariate in downstream statistical models.   

 

Differential methylation and differential methylated region analyses 

Prior to statistical analyses, all data were transformed to M values. Probe-level differential 

methylation analysis was performed using the limma R package4 (v3.55.5), using both the 

standard hypothesis testing method (null hypothesis of log2FC equal to 0) and the “treat” 

approach (null hypothesis of log2FC equal to or less than 0.1). The treat method of hypothesis 

testing was taken forward for stage-associated differential methylation analysis, while the 

standard hypothesis testing method was used for sex-associated differential methylation. 

Limma linear models included maternal BMI, maternal age and developmental stage as Z-

scaled covariates and sex as a factor. Post-model fitting and testing, sex- and stage-DMPs 

were defined by filtration at an FDR of 0.001 and 0.05, respectively.   

 

Differential methylated region (DMR) analysis with respect to the developmental stage was 

performed using the dmrff R package (v1.1.0) on the output p-values and standard errors of 



the probe-level differential methylation analysis. Probes were tested for association into a 

DMR with a maximum gap between probes of 1000 bp and DMRs defined as containing at 

least 2 probes and comprising the region between the 5’ and 3’-most constituent probes. 

Resultant candidate sex DMRs (sDMRs) and developmental DMRs (dDMRs) were filtered by 

an FDR of 0.01 and 0.001, respectively. 

 

DMP clustering with mFuzz 

M values for significant stage DMPs were clustered using the Mfuzz R package5 

(v2.62.0) with the optimal cluster number chosen as 3, based on the elbow method. 

Minimum cluster membership was chosen as 0.99 with a seed value of 5 and the 

”fuzzifier” parameter was calculated as 1.15 using the “mestimate” function of Mfuzz. 

 

DMR overlap analysis 

DMR regions were overlapped within the bounds of Assay for Transposase Accessible 

Chromatin (ATAC)-Seq peaks previously generated in 12pcw foetal knee (distal femoral) 

cartilage6 and the 15 chromatin-state model predictions for human cultured chondrocytes 

(E049) downloaded from the NIH ROADMAP Epigenomics Mapping Consortium7. Prior to 

overlap, the 15 ROADMAP states were collapsed into 5 functional classifications: enhancer 

(Enh, EnhG, EnhBiv), repressed (ZNF/Rpts, Quies, Het, ReprPC, ReprPCWk), transcription 

start site (TssBiv, TssA), flanking transcription start site (TssAFlnk, BivFlnk) and transcribed 

(TxWk, Tx, TxFlnk). Regions were overlapped using the intersect function in the bedtools 

(v2.31.1) package8. Presented frequencies and proportions represent overlaps between 

DMRs and ATAC regions/ROADMAP state classes, not the frequencies of unique members 

of either of these features. State enrichments were performed using two-sided Fisher’s exact 

tests, testing for frequencies of overlaps with hypo- or hypermethylated DMRs. 

 

GO Meth term enrichment analysis. 



Gene ontology (GO) term enrichment analysis was performed on MFuzz clusters and sex 

DMPs using the gometh of the MissMethyl package9 (v1.36.0), while DMR enrichment 

analysis made use of the goregion function. The Gene Ontology (GO) database was used 

with array.type=”EPIC” argument provided to provide DMP-gene annotations. All 678,267 

CpGs detected above thresholds were provided as background for all comparisons. Terms 

were called as significant with an FDR threshold < 0.05. 

 

TF Motif Enrichment Analysis 

TF Motif PWMs were downloaded from HOCOMOCO v1210 and filtered to retain motifs with a 

quality grade of C and above. MonaLisa (v1.9.0) was used to group all identified dDMRs into 

bins of 1000 DMRs by fold change11. To allow comparison between bins, the DMR sequences 

were trimmed to the median DMR size (253bp), centred around the centre of each DMR 

(Fig.S5). Enrichment statistics (Fisher’s exact test) were calculated by comparing occurrences 

of each motif in a bin to its occurrences in all other bins. Hierarchical clustering of the motif 

similarity of the enriched motifs was used to visualise the enrichment scores.  

 

Genotype calling and genotype data filtration and quality control 

Genotypes were called from raw idat files using gencall and associated array cluster and 

manifest files. The resultant gtc files were converted to vcf via the gtc_to_vcf.py script of the 

GTCtoVCF codebase (https://github.com/Illumina/GTCtoVCF). PLINK (v1.90b6.21) was used 

for subsequent analytic steps, except where otherwise stated12. Strand-flipped SNVs were 

identified by performing sample-wise merges with all remaining samples before all sample 

data was merged to one PLINK dataset. Genotype data filtering was performed using a minor 

allele frequency (MAF) > 0.01, while >0.975 was used as the variant and individual genotyping 

rate filtration threshold. X chromosome pseudoautosomal regions (PARs) were split to a 

separate chromosome, “26”. Sex and interrelatedness checks were performed using PLINK.  

 



Imputation 

Pre-imputation checks made use of the checkVCF utility 

(https://github.com/zhanxw/checkVCF/tree/master). All samples were submitted for 

imputation, while retaining only autosomes within each sample. Imputation was performed via 

submission to the Michigan Imputation Server (https://imputationserver.sph.umich.edu/ ) with 

population set to “EUR”, genome build as “hg19” and using the haplotype reference 

consortium (HRC) as reference population13,14. Imputed vcf files were then filtered to split 

multiallelic sites into separate records and sites filtered by r2>0.3. Imputed variants were then 

filtered with MAF > 0.05, alongside >0.975 for both variant and individual genotyping rates. 

Pre-imputation and post-imputation processing made use of bcftools (v1.16) and post-

imputation checks utilised the ic utility (v1.0.9) of the batch McCarthy Group Tools suite15. 

After imputation and filtering, 5,394,299 variants were used in the subsequent mQTL analysis. 

 

1000 genomes project PCA 

PLINK2 format data (pgen, pvar and psam files) for the 1000 genomes project were converted 

to PLINK format data (.bed, .bim and .fam) and these were used as the reference population 

data16. For both reference and study data, A-T and C-G alleles were excluded and multiallelic 

sites were entirely excluded, using the “--biallelic strict” option. Next, sites of high linkage-

disequilibrium (LD) were removed from the study data using a database of sites provided by 

the R package plinkQC (v0.3.4). Sites in the study data were then filtered with a 50kb sliding 

window, moving in 5kb steps and removing sites with a pairwise r2>0.2. Sites in the reference 

data were then filtered by this pruned list of study data variants. Mismatched chromosome 

and position IDs were then identified and rectified, and variants orientated on the opposite 

strands between reference and study data were flipped, followed by the merging of the study 

and reference datasets. PCA was then performed using PLINK to obtain ancestry related 

principal components for inclusion in mQTL analysis. 
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