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Abstract (550 words) 

 

Purpose: Analysis of the abnormal motion of thoraco-abdominal organs in respiratory disorders such as 

the Thoracic Insufficiency Syndrome (TIS) and scoliosis such as adolescent idiopathic scoliosis (AIS) or 

early onset scoliosis (EOS) can lead to better surgical plans. We can use healthy subjects to find out the 

normal architecture and motion of a rib cage and associated organs and attempt to modify the patient’s 

deformed anatomy to match to it. Dynamic magnetic resonance imaging (dMRI) is a practical and 

preferred imaging modality for capturing dynamic images of healthy pediatric subjects. In this paper, we 

propose an auto-segmentation set-up for the lungs, kidneys, liver, spleen,  and thoraco-abdominal skin in 

these dMRI images which have their own challenges such as poor contrast, image non-standardness, and 

similarity in texture amongst gas, bone, and connective tissue at several inter-object interfaces.  

Methods: The segmentation set-up has been implemented in two steps: recognition and delineation using 

two deep neural network (DL) architectures (say DL-R and DL-D) for the recognition step and 

delineation step, respectively. The encoder-decoder framework in DL-D utilizes features at four different 

resolution levels to counter the challenges involved in the segmentation. We have evaluated on dMRI 

sagittal acquisitions of 189 (near-)normal subjects. The spatial resolution in all dMRI acquisitions is 1.46 

mm in a sagittal slice  and 6.00 mm between sagittal slices. We utilized images of 89 (10) subjects at end 

inspiration for training (validation). For testing we experimented with three scenarios: utilizing (1) the 

images of 90 (=189-89-10) different (remaining) subjects at end inspiration for testing, (2) the images of 

the aforementioned 90 subjects at end expiration for testing, and (3) the images of the aforesaid 99 

(=89+10) subjects but at end expiration for testing. In some situations, we can take advantage of already 

available ground truth (GT) of a subject at a particular respiratory phase to automatically segment the 

object in the image of the same subject at a different respiratory phase and then refining the segmentation 

to create the final GT. We anticipate that this process of creating GT would require minimal post hoc 

correction.  In this spirit, we conducted separate experiments where we assume to have the ground truth 

of the test subjects at end expiration for scenario (1), end inspiration for (2), and end inspiration for (3). 

Results: Amongst these three scenarios of testing,  for the DL-R, we achieve a best average location 

error (LE) of about 1 voxel for the lungs,  kidneys, and spleen and 1.5 voxels for the liver and the thoraco-

abdominal skin. The standard deviation (SD) of LE is about 1 or 2 voxels. For the delineation approach, 

we achieve an average Dice coefficient (DC) of about 0.92 to 0.94 for the lungs, 0.82 for the kidneys, 

0.90 for the liver, 0.81 for the spleen, and 0.93 for the thoraco-abdominal skin. The SD of DC is lower 

for the lungs, liver, and the thoraco-abdominal skin, and slightly higher for the spleen and kidneys.  

Conclusions: Motivated by applications in surgical planning for disorders such as TIS, AIS, and EOS, 

we have shown an  auto-segmentation system for thoraco-abdominal organs in dMRI acquisitions. This 

proposed setup copes with the challenges posed by low resolution, motion blur, inadequate contrast, and 

image intensity non-standardness quite well. We are in the process of testing its effectiveness on TIS 

patient dMRI data.  

 

Keywords: artificial intelligence, deep neural networks, segmentation, dynamic MRI, thoraco-

abdominal organs, thoracic insufficiency syndrome, adolescent idiopathic scoliosis, early onset 

scoliosis, ABCNet. 
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1. Introduction 

 

 The study of the motion of thoraco-abdominal organs can give better insights for treating patients with 

respiratory restrictive disorders such as Thoracic Insufficiency Syndrome (TIS) [1], adolescent idiopathic 

scoliosis (AIS) [2, 3], and early onset scoliosis (EOS) [4]. Consider for example, TIS, which is a pediatric 

disorder in which there is inability of the thorax to support normal respiration or lung growth, leading to 

complications. The constraints imposed by the abnormal osseous structures of TIS patients on the motion 

of other thoraco-abdominal organs such as the lungs, kidneys, liver, and spleen is currently not 

understood. Unfortunately, even in the case of normal subjects these motions are not well studied in 

pediatrics. As such, gathering a normative database consisting of dynamic images of healthy subjects 

during natural respiration and the analysis of the motion of these organs is essential to understand the 

deviation from normalcy of the architecture and motion of the organs in TIS patients. Such dynamic 

properties during respiration can be captured effectively via dynamic magnetic resonance imaging 

(dMRI) [1], which does not involve radiation exposure, does not require special patient maneuvers or 

breathing control, and can be implemented readily on MRI scanners available in the community. In this 

paper, we focus on the problem of auto-segmentation of the lungs, kidneys, liver, spleen, and thoraco-

abdominal skin in dMRI sagittal acquisitions of healthy subjects which is an inevitable first step before 

carrying out motion analysis from dMRI. 

   We searched literature on dMRI images using the terms “dynamic MRI article”, “dynamic MRI 

segmentation article”, and “dynamic MRI thorax” in the Google search engine. The search with “dynamic 

MRI article” listed 2 articles, which presented cardiac motion [5] and musculoskeletal joint motion [6] 

from a clinical perspective only. The latter search “dynamic MRI segmentation article” listed  5 articles 

[7, 8, 9, 10, 11] which were related to segmentation of a single object of interest. For example, [9] dealt 

with segmentation of the blood vessels using a classical image processing approach. Another article [11] 

presented a method to segment the skin from axial slices of the breast. Three  articles [12, 13, 14] , which 

were listed with “dynamic MRI thorax”, utilized only manual segmentations of diaphragm or chest wall 

excursions for measuring relevant physiological parameters. There exist two works [15, 16] which deal 

with the segmentation of the lungs in dMRI images. To the best of our knowledge, methods dealing with 

multi-organ (>2: lungs, liver, spleen, kidneys, and thoraco-abdominal skin) automatic segmentation in 

dMRI acquisitions, especially of the thorax/abdomen, do not exist. We will discuss the related works [15, 

16] and other articles referenced in this paragraph in further detail in the next section. 

Static MRI images have lower spatial resolution compared to computed tomography (CT) images, and 

are prone to various challenges. These problems also occur in dMRI acquisitions even more severely: (1) 

different meaning of gray-level intensities for the same object for the same subject across different 

acquisitions, and different meaning of gray-level intensities for the same object across different subjects, 

(2) poor contrast amongst objects, (3) low signal-to-noise ratio, (4) motion blur, (5) low spatial resolution, 

and (6) similarity in intensity and texture amongst gas, bone, and connective tissues at several inter-object 

interfaces. These issues make multi-organ segmentation in dMRI images very challenging (Figure 1). To 

further elaborate (6) above, the peripheral region of the lungs can be confused with the surrounding 

connective tissue. The posterior portion of the liver can be confused with the stomach and the spleen 

while the inferior portion of the liver can be confused with the gastro-intestinal tract. The posterior 

portion of the kidneys can be confused with the muscles connected to the spine while the anterior portion 

and the inferior portion of the spleen could be confused with the stomach and the left kidney, respectively. 

Dynamic MRI acquisitions are inherently four dimensional with the dimensions being space (in three 

dimensions) and time. In our dMRI acquisition, a sagittal slice MR image at a fixed location is first 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.04.24306582doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.04.24306582


acquired continuously for a specified duration (typically over 10 respiratory cycles) while the subject is 

breathing naturally, and then the next sagittal slice is captured for the next specified duration, and so on 

until the right to left width of the entire thoraco-abdominal region is fully covered. To segment the 

thoraco-abdominal organs, we first perform a 4D construction of the body region image representing the 

dynamic body region over one respiratory cycle via an optical flux strategy [17], and then segment the 

3D organs (see Figure 2) in the 3D images corresponding to specified respiratory phases such as the end-

inspiration (EI) and end-expiration (EE) time point phases. Our contribution in this paper is that we 

present a novel and unique system to address the problem of multi-organ segmentation from dMRI 

acquisitions of the thoraco-abdominal region.   

Figure 2: Three-dimensional rendering of the ground truth segmentation of the left lung (LLg), 

right lung (RLg), left kidney (Lkd), right kidney (Rkd), liver (Lvr) and spleen (Spl) for a normal 

subject at (a) end inspiration (EI) and (b) end expiration (EE). 

(a) EE (a) EI 

Figure 1: Representative sagittal bright-blood dMRI slices at end-expiratory phase (obtained 

with 4D construction [17]  from a dMRI acquisition) through thorax and abdomen of a normal 

subject with true boundary delineations for (left to right) left lung, right lung, left kidney, right 

kidney, liver, and spleen. 
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A preliminary version of this work was presented at the SPIE 2023 Medical Imaging Conference whose 

proceedings contained a very abbreviated version of this work. The conference paper [18] differs from 

the current paper in the following manner.  

(1) The 3D images at EI only were utilized in [18]. The current paper utilizes images at multiple (two 

(EI and EE) and greater than two) respiratory phases. 

(2) The conference paper focused on the large organs – left lung and right lung only. The current 

paper includes the more challenging left kidney, right kidney, liver, spleen, and thoraco-

abdominal skin as well. 

(3) This paper includes further expansions. For example, we show how an additional information 

from one respiratory phase can be considered for the delineation of the object in the image of the 

same test subject in a different respiratory phase. 

(4) Our experimental evaluation involves significant expansion over the conference paper, with a 

much larger data set (189 vs. 95 in the conference paper) and additional experiments involving 

repeated scans to show the consistency of performance of the proposed method.   

 

2. Related Work 

 

The articles [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 19] were found to be relevant to dMRI acquisitions for 

medical imaging applications. These can be grouped into three categories. A: articles which review the 

viability of dMRI  for specific clinical applications. B: articles which discuss dMRI for measurement of 

physiological parameters with the help of segmentation algorithms. C: articles which discuss dMRI in 

the context of clinical applications but with manual analysis in these dMRI images. D: other articles such 

as those discussing image reconstruction in dMRI. We give a brief overview of the articles in these 

categories. 

The articles [5, 6] in Category A are not related to segmentation of objects in dMRI images. 

Specifically, the authors in [5] tried to show how dynamic contrast-enhanced MRI (DCE-MRI) is an 

attractive imaging modality for measuring peripheral perfusion, other diverse microvascular parameters 

such as vessel permeability and fluid volume fractions, and the actual tissue perfusion. The authors in [6] 

discussed techniques of using dMRI for evaluating joint motion.  

 The articles [7, 8, 9, 10, 11] in  category B, deal with segmentation of a single object of interest in 

dMRI images. The articles [8, 9, 10, 11] did not elucidate their segmentation methods. The authors in [7] 

used dMRI to assess pelvic organ prolapse with segmentation of the vertebral shape. Specifically, they 

segmented the sacral curve using a curve fitting procedure, and utilized an adaptive shortest path 

algorithm that enhances edge detection and linking. They report discerning the sacral curve from dMRI 

in 91% of the images. Since we are dealing with volumetric objects compared to linear objects, we cannot 

directly apply their method to segment the lungs, kidneys, liver, spleen, or thoraco-abdominal skin. The 

authors in [8] demonstrated the feasibility of quantitative cerebral blood flow (CBF) measurements 

during supine bicycling exercise with pseudo-continuous arterial spin labeling MRI at 3T. The authors 

in [9] utilized classical segmentation algorithms to segment the foci which represent tumor in the prostate 

gland in the dMRI image. The authors in [10] tried to indirectly measure local changes in CBF, blood 

volume, and blood oxygenation from neuronal activity via segmentation in the dMRI image. Lastly, the 

authors in [11] proposed a method to segment and remove the skin from the dMRI image of the breast to 

improve the clarity of the breast tissue in the dMRI image for further diagnosis. We reiterate that the 

articles cited in this paragraph deal with the segmentation of a single object of interest in dMRI images, 

they do not deal with dynamic or moving thoraco-abdominal organs, and some of the dMRI images 

pertain to studying the kinetics of the contrast agent and not the dynamic motion of organs. 
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 The article [12] uses dMRI images to measure the chest wall and diaphragm excursions in normal 

subjects. However, they utilize the manual segmentations of the lungs and the chest wall for evaluating 

the relevant excursion parameters. In [13] diaphragm function is analyzed from their manual 

segmentations in dMRI images. In [14] the benign and malignant tumor lesions in lungs are manually 

segmented. These manual segmentations are utilized directly to establish their characteristics in dMRI 

acquisitions. 

We found one article [19] that belongs to category D. The authors in [19] discuss a novel approach for 

reconstructing the dMRI image quickly from k-space and spatial prior knowledge via a multi-supervised 

network which they call “DIMENSION”. However, the article [19] does not deal with segmentation. 

The authors of [15] had proposed a deep neural network for segmentation of the lungs from dMRI 

sagittal acquisitions of (near-)normal pediatric subjects using a  U-Net architecture. The article [16] uses 

atlas based segmentation approaches for the lungs in dMRI images. In the current paper, our segmentation 

approach uses the neural networks in [20, 21] where the encoder-decoder architecture is enhanced with 

different modules such as the Path Aggregation Network (PAN) [22] and Dual Attention Network (DAN) 

[23]. We adopted this enhanced architecture as we are also dealing with segmentation of the left kidney, 

right kidney, liver, and spleen, which are more challenging (given poor contrast and inconsistent intensity 

meanings) to handle than the segmentation of the lungs. From the above discussion, we conclude that 

except for [15, 16], the problem of multi-organ (say greater than 2 organs) segmentation in the thoraco-

abdominal region of dMRI acquisitions has not been addressed before.   

 

3.   Methods 

    

3.0 Data acquisition and pre-processing 

dMRI scans: The dMRI scan data were acquired from 189, 6-20 year-old, healthy children under an 

ongoing prospective research study protocol approved by the Institutional Review Board at the Children’s 

Hospital of Philadelphia (CHOP) and University of Pennsylvania, along with Health Insurance 

Portability and Accountability Act waiver. We excluded scans with significant body movement during 

scanning or with obvious image artifacts. The thoracic dMRI protocol includes a 3T MRI scanner (Verio, 

Siemens, Erlangen, Germany) using a True-FISP sequence with acquisition and reconstruction 

parameters of TR=3.82 ms, TE=1.91 ms, flip angle 76 degrees, bandwidth 258 Hz, 320×320 matrix, and 

voxel size ~1×1×6 mm3. For each sagittal location across the thorax, 80 image slices were obtained over 

several tidal breathing cycles at ~480 ms/slice. On average, 35 sagittal locations across the chest were 

imaged. Therefore, a total of 2800 (35 × 80) 2D MRI slices were acquired per subject.  

DL-R DL-D 
Segmented 
object 

DL-D 
model 

DL-R 
model 

Image 

Figure 3: Illustration of our segmentation pipeline. Deep learning recognition (DL-R) module 

used for the recognition step. Deep learning delineation (DL-D) module utilized for the 

delineation step . 
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4D construction: Given the dMRI scan for each subject, a small set of 175-320 slices representing one 

4D volume over one respiratory cycle is selected from the 2800 2D free-breathing dMRI image slices 

using an optical flux-based optimization method to represent the dynamic thorax of the subject [17]. 

Image intensity standardization: MRI signal intensities in the 4D constructed image are standardized [24] 

to a standard intensity scale to facilitate MRI segmentation and analysis. Intensity standardization enables 

voxel intensity values to have similar numeric meaning for each type of tissue within the same subject, 

across subjects, in repeat scans on the same scanner, and across different scanners [24, 25]. 

Creating ground truth segmentations: Following the principles outlined in [26], we created clinically 

meaningful and computationally feasible definitions of the thoraco-abdominal body region and objects 

considered in this application to make the models anatomically specific and minimize inter-tracer 

variability while creating the ground truth of the objects. We define the thoraco-abdominal body region 

considered in this application as extending from 15 mm superior to the lung apices to the inferior aspect 

of the kidneys. Similarly, each object was defined in terms of which substructures are to be 

included/excluded. A board-certified radiologist with more than twenty-five years of experience 

(Torigian) trained students, post-doctoral fellows, engineers, and medical interns (Kogan, Tong L, 

Mannikeri, Akhtar, Wu, Al-noury) for anatomic and dMRI radiological appearance of the relevant 

structures. Following training, the 7 organs of our focus in the 189 dMRI acquisitions were all segmented 

manually by the above individuals through use of the open-source software CAVASS [24] in the EE and 

EI time points of the respiratory cycle. This yielded a total of 2,646 (=189x7x2) 3D object samples for 

our cohort. 

 

3.1 Segmentation: DL-R [20] 

 

We perform segmentation in two steps: a recognition step and a delineation step (Figure 3). In 

recognition, we try to obtain a rough idea of the location of the object of interest in the unseen image 

with the help of bounding boxes. In delineation, the approach marks the outline of the object of interest 

within the bounding box. We have utilized deep learning recognition (DL-R) and deep learning 

delineation (DL-D) networks for recognition and delineation. We now give a description of DL-R in the 

rest of this section and a description of DL-D in section 3.2. 

The DL-R module consists of three types of networks: backbone network, neck network, and head 

network. The backbone network is based on ResNet [27] and DenseNet [28]. The input to the backbone 

network is a 3-channel image which is obtained by mapping each pixel intensity value in a sagittal slice 

to three intensity values using three pre-defined intensity intervals. The backbone network uses pre-

trained model weights of ResNet and DenseNet. From the last four convolutional layers of the backbone 

network, four feature maps (C2, C3, C4, and C5) are taken using strides of 4, 8, 16, and 32 pixels, 

respectively. The map C2 captures lower-level textural information compared to C3, C4, and C5. The 

map C5 captures high level contextual information from the 3-channel input image. These feature maps 

(C2, C3, C4, and C5) are taken as 4 separate inputs (channels) to the neck network. 

The neck network is based on PAN [22] and DAN [23] architectures. The PAN architecture creates 

maps referred to by Q4, Q5, and Q6 by merging feature maps C2, C3, C4, and C5 using bottom-up 

connections, top-down connections, and lateral connections. The DAN architecture is used to create 

prediction maps which contain the information dependency across the spatial dimensions and the channel 

dimensions of the maps Q4, Q5, and Q6. The maps Q4, Q5, Q6 and the prediction maps are taken as 

input to the head network. 

The head network recognizes the non-sparse organs with the maps Q4, Q5, and Q6 by associating them 

with anchor sizes 32 x 32, 64 x 64, and 128 x 128, respectively. This recognition is further refined by 
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utilizing the prediction maps and the anchors with the help of convolutional layers. The output of DL-R 

is a bounding box in those sagittal slices which are identified to contain the objects of interest. These 

bounding boxes come from the head network.  

 The presence of bifurcations of blood vessels in the liver or the appearance of chambers of the heart in 

the dMRI image can help in locating our organs of interest. Such signatures could also be inconspicuous 

to the naked eye if they are present at a local scale. The feature maps such as C2 that extracts  low-level 

textural information is integrated with feature maps dealing with high-level contextual information (say 

from C5) in the neck network. This makes the usage of the DL-R approach appealing for our multi-organ 

segmentation problem, as it integrates different types of information at varying scales in its design. 

For training and testing the DL-R model, the images are intensity standardized [25]. This step of 

intensity standardization is necessary because intensity values of an object of interest have different 

meanings in different dMRI acquisitions. Intensity standardization yields a tissue-specific numeric 

meaning for an object of interest in the transformed image, which helps in utilizing recognition algorithms 

effectively.  

The DL-R model takes three thresholds as input for transforming a sagittal slice to the 3 (color)-channel 

(2D) image (refer the second paragraph of this subsection). The motivation behind creating this 3-channel 

image is to roughly visually depict different compositions of the body region based on intensity values 

alone. We observe that gas and cortical bone are very dark in appearance on bright-blood MRI images, 

as compared to soft tissues of the skeletal muscles and visceral organs which are somewhat brighter in 

appearance, and the fat, cardiac chambers, and blood vessels which appear very bright. We have chosen 

the first color channel to represent low intensity objects, the second color channel to represent medium 

intensity objects, and the third color channel to represent high intensity objects. 

For each color channel, two thresholds (an upper threshold and a lower threshold) are chosen to roughly 

contain the intensities of interest. Based on our visual inspection of the histograms  of the pixel intensity 

values of the objects of interest (left lung, right lung, left kidney, right kidney, liver, and spleen) in the 

intensity standardized images, we have chosen the three thresholds as 150 units, 750 units, and 1500 

units. For example, consider a channel which uses a lower threshold (L) and an upper threshold (U). If 

the pixel value in the intensity standardized image is y, we transform y to 0 if it is less than L. If y lies 

between L and U, it is transformed to 255*(y-L)/(U-L). If y is greater than U, it is transformed to 255. 

For the first channel, L is 0 unit and U is 150 units. For the second channel, L is 150 units and U is 750 

units. For the third channel, L is 750 units and U is 1500 units.  

The DL-R module is optimized using an Adam optimizer with a learning rate of 0.00001. The Focal 

Loss [29] function is utilized for optimization of the DL-R module. 

 

3.2 DL-D [21] 

This module utilizes a network called ABCNet [21], which was originally designed to delineate the 

different types of body tissues: subcutaneous adipose tissue, visceral adipose tissue, skeletal muscle 

tissue, and skeletal tissue from low dose axial CT images of the body torso. The design of ABCNet is 

similar to an encoder-decoder architecture.  

The fundamental unit of ABCNet is referred to by BasicConv which is comprised of four modules in 

succession: concatenation, batch normalization, activation, and convolution. Bottleneck is a special case 

of BasicConv with a convolutional kernel of 1x1x1. There are four DenseBlocks [28] used in the encoder-

decoder architecture of ABCNet. The deeper the DenseBlock,  the more high-level information it extracts 

from the input image. Each DenseBlock of ABCNet is composed of Dense Layers, which are themselves 

composed of Bottleneck and a BasicConv with a kernel size of 3x3x3 in succession. The bottleneck, 

because of its lower convolutional kernel size, keeps the number of parameters less and simultaneously 
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acts as a feature extractor through the normalization and activation functions of its BasicConv 

architecture.  

The ABCNet model uses a Dice coefficient-based loss function for training its model and selects 

patches randomly from within and slightly around the ground truth in the images of the seen dataset 

during training. During testing, the patches are selected from within and slightly around the bounding 

box (from the recognition step) in the images of the unseen dataset. The output of ABCNet is the 

prediction map  of the object from the decoder. This prediction map is binarized using a threshold to 

yield the final segmentation of the object. Unlike existing encoder-decoder architectures (DeepMedic 

[30], Dense V-Net [31], V-Net [32], and 3D U-Net [33]), which have typically 12 or 31 layers and 1 

million or 80 million parameters, ABCNet has 118 layers with only 1.4 million parameters. The usage of 

ABCNet is thus attractive because of its deeper architecture with a lower number of parameters.  

We have used intensity normalization on the intensity standardized images before using them for 

training and testing the DL-D module. For intensity normalization, the Z-score method has been utilized. 

The Z-score utilizes the mean (and standard deviation) of the standardized pixel values belonging to the 

object over all images in the training set. Let this mean (standard deviation) be denoted by μ (σ). A pixel 

value x in an image of the training set or in the test set is transformed to a new value y by the relation 

y=(x-μ)/σ.  

The patch size which is an input to the DL-D module is chosen as 72 x 72 x 24 voxels for large organs 

such as the left lung, right lung, liver, and thoraco-abdominal skin, and as 72 x 72 x 16 voxels for smaller 

organs such as the spleen, left kidney, and right kidney. Smaller patches lead to a reduction in the 

delineation accuracy of DL-D. Larger patches require a large amount of memory, sometimes exceeding 

the workstation’s memory capacity and exponentially increasing the time required for training the DL-R 

and DL-D models.   

The DL-D module is trained for 50 epochs with 200 steps per epoch. A batch size of 4 is utilized for a 

mini-batch gradient descent for optimization. The initial learning rate is set to 0.01, which is reduced 

further to 0.00001 by the cosine annealing strategy. 

 

4. Experiments and Results 

 

Table 1: Summary of related information about the 9 experiments presented in this paper. 
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Exp. 0 
Proposed No 

72 10 13 
EI 

EI 
No 

Yes 
Yes 

Exp. 1 89 10 90 EI Yes 
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Exp. 2 90 EE No 

Exp. 3 99 EE Yes No 

Exp. 4 

Yes 

90 EE 
No 

No 

Exp. 5 90 EI Yes 

Exp. 6 99 EE Yes No 

Exp. 7 

No 

20 EI and EE No Mixed 

No (only 
left lung 
and right 
lung 
segmented) 

Exp. 8 [15] 

36 images 
for 
training 
and 
validation 

140 EE EI (70) and 
EE (70) 

No Mixed No 

 

As summarized in Table 1, we have conducted 9 experiments (Exp. 0–Exp. 8) to analyze the behavior of 

the whole pipeline. We particularly focus on the 3D images corresponding to EE and EI since they are 

critical for analyzing lung tidal volumes.   

4.1. Exp. 0: Experiment which utilizes (3D) images at a single respiratory phase (EI) with data 

augmentation: 

 In this experiment, we explored different data augmentation techniques using reflection of the dMRI 

images across a 2D plane (sagittal, transverse, or coronal) or reflection across a particular combination 

of the 2D planes. We examine each object and see what reflection mode makes anatomic sense for that 

object and examine the delineation output by DL-D for all methods of data augmentation. In Table 2, 

“0”, “1”, and “2” mean reflection is made across the transverse, coronal, or sagittal plane, respectively, 

and a serial listing of these numbers indicates a series of reflections (e.g., “01” means that reflection is 

first made across the transverse plane then across the coronal plane). The last column indicates no 

reflection.   

dMRI images of 72, 10, and 13 subjects at EI were used for training, validation, and testing the DL-D 

module. In Table 2, the average Dice coefficient (DC) indicates that for each of the 7 organs, a particular 

method of reflection is optimal. However, such data augmentation techniques are not meaningful in the 

context of our thoraco-abdominal organ segmentation problem as the meaning behind the appearance of 

the organs in the reflected image changes with respect to the meaning of the appearance of the organs in 

the original image. The results of the last column of Table 2 with no reflection show excellent DC for 

most of the organs suggesting that this augmentation method is not useful. 

 

Table 2: Mean (1st value) and standard deviation (SD, 2nd value) of DC over the tested 

data sets are listed for the 7 organs for the different data augmentation strategies. “0”, 

“1”, “2” mean reflection about the transverse, coronal, and sagittal planes, 

respectively. Multiple digits indicate reflection involving multiple planes. For example, 

“01” means reflection is first made across the transverse plane then across the coronal 

plane.  

 

Organ "0" "1" "2" "01" "12" "02" "012" None 
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Left lung 
0.947 

±0.021 

0.944 

±0.013 

0.911 

±0.085 

0.947 

±0.024 

0.938 

±0.033 

0.942 

±0.028 

0.905 

±0.052 

0.948 

±0.021 

 

Right lung 

0.945 

±0.019 

0.956 

±0.013 

0.954 

±0.024 

0.907 

±0.047 

0.933 

±0.032 

0.946 

±0.021 

0.942 

±0.032 

0.958 

±0.008 

Left kidney 
0.805 

±0.092 

0.772 

±0.142 

0.799 

±0.095 

0.785 

±0.111 

0.840 

±0.029 

0.855 

±0.029 

0.774 

±0.210 

0.820 

±0.071 

Right kidney 
0.871 

±0.048 

0.806 

±0.126 

0.793 

±0.238 

0.685 

±0.314 

0.780 

±0.192 

0.781 

±0.239 

0.839 

±0.061 

0.855 

±0.089 

Liver 
0.865 

±0.052 

0.856 

±0.044 

0.823 

±0.056 

0.866 

±0.070 

0.895 

±0.023 

0.911 

±0.019 

0.893 

±0.029 

0.891 

±0.026 

Spleen 
0.792 

±0.109 

0.824 

±0.053 

0.818 

±0.069 

0.802 

±0.077 

0.783 

±0.102 

0.811 

±0.066 

0.803 

±0.067 

0.791 

±0.089 

Thoraco-

abdominal skin 

0.911 

±0.025 

0.896 

±0.032 

0.906 

±0.031 

0.893 

±0.020 

0.888 

±0.032 

0.902 

±0.032 

0.887 

±0.033 

0.908 

±0.027 

 

4.2 Exp. 1-3: Experiments which utilize (3D) images at two respiratory phases (EI and EE): 

The creation of ground truth (GT) in dMRI images is labor intensive and is impractical for all respiratory 

phases. Thus, if we can create GT or close to GT (which requires minimal post hoc correction rather than 

tracing from scratch) through our pipeline, it will be useful. We evidently need to train our networks for 

obtaining the DL-R and DL-D models which would be utilized for creating the GT. Certain scenarios 

during these training and testing processes would arise as discussed below.  

We can use two parameters to describe the images in the test set or training set. The first parameter is the 

subject (PSub) to which an image belongs. The second parameter (PResp) is the respiratory phase to 

which the image belongs. Based on which of PSub and PResp are identical or different between the 

training and test set, there can be four combinations of training and testing. We exclude that combination 

where both PSub and PResp are identical in the training and test sets. The other three combinations of 

experimentations constitute Exp. 1, 2, and 3 in Table 1. 

We explore three scenarios F, G and H (see Table 3). In scenario F, PResp is identical between training 

and test sets but PSub is different. In G, Presp and PSub are both different between training and test sets. 

In H, PResp is different but PSub is identical between training and test sets. We utilize 89 images at EI 

for training and 10 images at EI for validation in F, G, and H. For testing, we utilize in F: the images of 

90 (=189-89-10) different (remaining) subjects at EI, G: the images of the aforementioned 90 subjects at 

EE, and H: the images of the aforesaid 99 (=89+10) subjects but at EE. 

 

Table 3: Partitioning of 189 subjects for the evaluation of DL-R and DL-D 

modules for Exp. 1-3. 

Number of 

subjects 

Respiratory 

phase of 

image 

Purpose Scenario PResp PSub 
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99 
EI 

Training 

(89) and 

Validation 

(10) 

F, G, and 

H 

--- --- 

EE 

Testing 

H Different Same 

90 
EI F Same Different 

EE G Different Different 

 

 

Table 4: Recognition location error (mean±SD: LE) in mm of DL-R on images at end 

inspiration (EI) and end expiration (EE) for experiments Exp. 1-3. The least LE under 

each column is highlighted.   

 

Test 
Left 

lung 

Right 

lung 

Left 

kidney 

Right 

kidney 
Liver Spleen 

Thoraco-

abdominal 

skin 

Exp. 1 

(F: 90 

EI) 

5.69 

±3.23 

6.31 

±5.81 

4.66 

±2.50 

5.16 

±8.12 

7.69 

±6.09 

5.50 

±3.51 

7.18 

±4.22 

Exp. 2 

(G: 90 

EE) 

5.35 

±3.38 

5.20 

±2.95 

4.15 

±2.45 

4.41 

±2.80 

10.21 

±8.27 

5.83 

±3.52 

7.11 

±4.25 

Exp. 3 

(H: 99 

EE) 

4.73 

±3.44 

4.90 

±2.63 

3.79 

±2.16 

3.70 

±1.93 

6.94 

±5.76 

4.31 

±2.17 

4.09 

±2.85 

 

In Exp. 1-3, we check scenarios F-H, respectively, and the results are summarized in Table 4 for DL-

R and Tables 5-6 for DL-D including Dice coefficient (DC) and mean-Hausdorff distance (mean-HD). 

The recognition error for DL-R is expressed in terms of location error LE which is defined as the distance 

between the centroids of the bounding box from the recognition step and the tight-fitting bounding box 

around the true object (ground truth). Note that in Experiment 3, an image in the training set and an image 

in the test set can belong to the same subject dMRI acquisition. However, these two images (in the 

preceding statement) belong to different respiratory phases (as EE for the test set and as EI for the training 

set). 
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Table 5: Delineation results (mean±SD: DC) of DL-D on images at end inspiration (EI) and 

end expiration (EE) for three experiments. The highest average Dice coefficient under a 

column has been highlighted. For further details, please refer subsection 4.2. 

 

Test 
Left 

lung 

Right 

lung 

Left 

kidney 

Right 

kidney 
Liver Spleen 

Thoraco-

abdominal 

skin 

Exp. 1 

(F: 90 

EI) 

0.936 

±0.018 

0.930 

±0.039 

0.808 

±0.094 

0.828 

±0.072 

0.896 

±0.053 

0.807 

±0.075 

0.929 

±0.029 

Exp. 2 

(G: 90 

EE) 

0.924 

±0.033 

0.923 

±0.041 

0.811 

±0.069 

0.833 

±0.082 

0.899 

±0.053 

0.826 

±0.050 

0.925 

±0.028 

Exp. 3 

(H: 99 

EE) 

0.943 

±0.026 

0.939 

±0.028 

0.833 

±0.056 

0.843 

±0.077 

0.909 

±0.023 

0.830 

±0.057 

0.937 

±0.024 

 

We notice from the results in Table 4 that out of the three experiments, Experiment 3 has the least 

average location error for all seven organs. This observation aligns with our intuition that if we have 

additional information about the test image (such as the ground truth in the image of a test subject at a 

particular respiratory phase), and use it in training DL-R, we will obtain better recognition results in the 

image of the same subject at a different respiratory phase. 

Amongst Experiment 1, Experiment 2, and Experiment 3, we notice from the results in Table 5 and 

Table 6 that Experiment 3 fares the best for all organs (with respect to DC in Table 5), right lung and 

right kidney (with respect to mean-HD in Table 6) whereas Experiment 1 fares the best for the left 

lung, left kidney, and spleen, and Experiment 2 fares the best for the liver and thoraco-abdominal skin 

in Table 6. The competitive performance of Experiment 3 is in accordance to our intuition that if an 

image (say A) of a subject at a particular respiratory phase is included with it’s associated ground truth 

in the training of DL-D, then the delineation performance of DL-D for an image of the same subject at 

a different respiratory phase will be better compared to its performance when A is not used in training. 

 

Table 6: Performance of DL-D in terms of (mean±SD) mean-HD in units of mm for three 

experiments. The least value under a column has been highlighted. For further details, 

please refer subsection 4.2. 

 

Test 
Left 

lung 

Right 

lung 

Left 

kidney 

Right 

kidney 
Liver Spleen 

Thoraco-

abdominal 

skin 

Exp. 1 (F: 

90 EI) 

0.52 

±0.24 

1.10 

±2.57 

1.50 

±1.61 

1.43 

±1.57 

2.50 

±3.84 

1.15 

±1.12 

3.79 

±2.31 
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Exp. 2 

(G: 90 

EE) 

0.65 

±0.63 

0.83 

±1.00 

1.85 

±2.25 

2.12 

±4.17 

2.34 

±2.96 

1.38 

±0.86 

2.14 

±1.09 

Exp. 3 

(H: 99 

EE) 

0.67 

±0.96 

0.59 

±0.37 

1.98 

±2.65 

1.29 

±1.85 

2.64 

±5.41 

3.02 

±8.73 

3.14 

±1.69 

4.3. Exp. 4-6: Experiments which utilize (3D) images at multiple (>2) respiratory phases (EI, EE, and 

intermediate phases): 

The problem of segmenting an object at any phase (Q) for a subject x given GT for one phase (P  Q) for 

x, is also legitimate and practically very relevant. We conduct Exp. 4-6 where we assume that we have 

the ground truth for an organ of interest in an image of the test subject at a respiratory phase P which is 

different from the respiratory phase Q in which we are trying to delineate the organ.   

Note that in the previous experiments, the bounding boxes for the delineation step were obtained from 

DL-R. However, in the incremental manner of predicting via DL-D, initially, the bounding boxes for 

delineation at a respiratory phase P1 closest to P comes from the enlarged tight fitting bounding box 

around the ground truth at P. The bounding boxes for the delineation at the next respiratory phase P2 

closest to P1 comes from the enlarged tight fitting bounding boxes around the delineations at P1. This 

process continues recursively until we have the delineations for the organs in the image of the test subject 

at respiratory phase Q. 

We present the performance of DL-D for the delineation of the seven organs in images of the 90 

subjects at EE in an incremental manner (i.e., Exp. 4 where Q=EE and P=EI). Of these 90 subjects, 29 

had one intermediate respiratory phase between EI and EE, 57 had 2 intermediate respiratory phases 

between EI and EE, and 4 had 3 intermediate respiratory phases between EI and EE. The number of 

intermediate respiratory phases is variable because of the different respiratory rates of the subjects [17] 

which affects the quality of the image which in turn determines how many respiratory phases within a 

respiratory cycle can be utilized to reliably reconstruct the image of the body region. The training (and 

validation) set consisted of images of the 89 (and 10) subjects at EI. The results in terms of average (and 

standard deviation) of Dice coefficients over all 90 test subjects for seven organs are shown in the second 

row (Experiment 4) of Table 7. The corresponding average and standard deviation of the mean-HD values 

are shown in Table 8. 

 

Table 7: Performance (mean±SD: DC) of DL-D for delineation of left lung, right lung, 

left kidney, right kidney, liver, spleen, and thoraco-abdominal skin in an incremental 

manner in three different experiments. The highest Dice coefficient under a column has 

been highlighted. 

 

 

Experiment 

Left 

lung 

Right 

lung 

Left 

kidney 

Right 

kidney 

 

Liver 

 

Spleen 

Thoraco-

abdominal 

skin 

Experiment 

4 (90 EI to 

EE) 

0.937 

±0.018 

0.929 

±0.040 

0.820 

±0.077 

0.831 

±0.086 

0.898 

±0.048 

0.808 

±0.073 

0.949 

±0.028 
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Experiment 

5 (90 EE to 

EI) 

0.922 

±0.035 

0.923 

±0.039 

0.814 

±0.066 

0.830 

±0.087 

0.897 

±0.039 

0.811 

±0.060 

0.936 

±0.027 

Experiment 

6 (99 EI to 

EE) 

0.942 

±0.026 

0.921 

±0.052 

0.816 

±0.070 

0.841 

±0.097 

0.907 

±0.020 

0.813 

±0.071 

0.945 

±0.026 

 

Table 8: Performance of DL-D in terms of  (mean±SD) mean-HD (mm) for Experiment 

4. The 90 test images have been categorized in the first column based on the number of 

intermediate respiratory phases between EE and EI. For further details, please refer 

subsection 4.3. 

 

No. Int. 

Resp. 

Phases 

Left 

lung 

Right 

lung 

Left 

kidney 

Right 

kidney 

 

Liver 

 

Spleen 

Thoraco-

abdominal 

skin 

‘1’ 0.66 

±0.46 

0.81 

±0.74 

1.17 

±0.47 

1.17 

±1.60 

2.07 

±2.72 

1.42 

±0.74 

2.15 

±1.15 

‘2’ 0.70 

±0.76 

0.83 

±1.02 

1.62 

±1.40 

1.93 

±3.15 

2.17 

±1.79 

1.54 

±1.15 

1.59 

±0.82 

‘3’ 0.58 

±0.26 

0.80 

±0.22 

1.57 

±0.85 

0.89 

±0.29 

1.76 

±0.43 

1.65 

±0.56 

1.99 

±1.18 

Overall 0.68 

±0.65 

0.82 

±0.91 

1.98 

±3.75 

1.64 

±2.68 

2.12 

±2.09 

1.51 

±1.01 

1.79 

±0.98 

 

Table 9: Performance of DL-D in terms of  (mean±SD) mean-HD (mm) for Experiment 

5. The 90 test images have been categorized in the first column based on the number of 

intermediate respiratory phases between EE and EI. For further details, please refer 

subsection 4.3. 

 

No. 

Int. 

Resp. 

Phases 

Left 

lung 

Right 

lung 

Left 

kidney 

Right 

kidney 

 

Liver 

 

Spleen 

Thoraco-

abdominal 

skin 

‘1’ 0.51 

±0.23 

0.76 

±0.63 

1.48 

±2.07 

1.23 

±1.49 

2.13 

±2.95 

1.80 

±1.54 

2.83 

±1.62 

‘2’ 0.54 

±0.23 

0.97 

±1.43 

1.29 

±0.83 

1.45 

±1.68 

2.18 

±1.96 

1.37 

±0.63 

2.08 

±1.08 

‘3’ 0.39 

±0.17 

0.55 

±0.31 

0.89 

±0.23 

0.81 

±0.38 

1.50 

±0.63 

1.40 

±0.43 

1.49 

±0.96 
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Overall 0.52 

±0.23 

1.12 

±2.56 

1.33 

±1.34 

1.57 

±2.62 

2.13 

±2.27 

1.51 

±1.01 

2.29 

±1.43 

 

Table 10: Performance of DL-D in terms of  (mean±SD) mean-HD (mm) for 

Experiment 6. The 99 test images have been categorized in the first column based on 

the number of intermediate respiratory phases between EE and EI. The best 

performing case amongst ‘0’, ‘1’, ‘2’, and ‘3’ intermediate respiratory phases has 

been highlighted. For further details, please refer subsection 4.3. 

 

No. Int. 

Resp. 

Phases 

Left 

lung 

Right 

lung 

Left 

kidney 

Right 

kidney 

 

Liver 

 

Spleen 

Thoraco-

abdominal 

skin 

‘0’ 0.43 

±0.21 

0.78 

±0.46 

2.32 

±2.29 

1.03 

±0.62 

1.79 

±1.22 

1.77 

±1.99 

2.45 

±0.98 

‘1’ 0.79 

±1.56 

1.86 

±1.27 

6.83 

±20.67 

1.29 

±1.55 

1.74 

±2.62 

2.00 

±3.50 

2.53 

±1.15 

‘2’ 0.72 

±2.31 

0.76 

±1.29 

1.70 

±3.79 

3.15 

±10.26 

2.35 

±3.89 

2.29 

±5.17 

2.45 

±1.67 

‘3’ 0.43 

±0.21 

0.37 

±0.12 

1.35 

±0.72 

1.12 

±0.54 

1.74 

±0.91 

1.60 

±0.65 

2.26 

±0.81 

Overall 0.69 

±0.21 

1.04 

±0.12 

3.16 

±0.72 

2.28 

±0.54 

2.08 

±0.91 

2.11 

±0.65 

2.46 

±0.81 

In Experiment 5, we test the delineation of the seven organs on images of the 90 subjects at EI (Q=EI), 

using the ground truth of organs in the images of the aforesaid 90 subjects at EE (P=EE), in an 

incremental manner. The results are shown in (the third row as Experiment 5 of) Table 7 and  Table 9. 

In Experiment 6, we test the DL-D for the said seven organs on images of 99 subjects at EE (Q=EE) 

using the ground truth of the organs in the images of the aforesaid 99 subjects at EI (P=EI), in an 

incremental manner. Out of these 99 subjects, 9 did not have images at intermediate respiratory phases. 

Amongst the remaining 90 (=99-9) subjects, 28, 54, and 8 had images at 1, 2, and 3 intermediate 

respiratory phases, respectively. The results  are shown in (the fourth row (Experiment 6) of) Table 7 and  

Table 10. 

Experiments 5 and 1 are similar in the sense that both try to delineate organs in images of 90 subjects 

at EI, and the same holds true for Experiments 4 and 2 at EE. The results of Experiment 5 in Table 7 are 

better by about 1% for the left kidney (0.74%), right kidney (0.24%), spleen (0.50%) and thoraco-

abdominal skin (0.75%) compared to those of Experiment 1 in Table 5. Except for the right kidney, liver, 

and spleen, Experiment 4  yielded better results than Experiment 2 by about 1% to 3%. Experiments 6 

and 3 are similar in the sense that both try to delineate organs in images of 99 subjects at EE. Experiment 

6 yields inferior results by about 2% for the right lung, left kidney, and spleen compared to those of 

Experiment 3. For the remaining organs, Experiments 6 and 3 perform in a statistically similar fashion.  

We notice that despite using additional information about the test image in Table 7, the results did not 

significantly improve compared to those in Table 5 with respect to DC. It seems that this is because the 
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delineations at an intermediate respiratory phase are not sufficiently accurate to provide a correct 

bounding box for the delineation of the organs at the subsequent respiratory phase. We can expect this 

drawback to be minimal if the adjacent respiratory phases are closer to one another. For example, if we 

look at the results in Tables 8, 9, and 10 we notice that the mean-HD assumes the least value mostly at 

‘3’ number of intermediate respiratory phases. This suggests that if we have images at a larger number 

of intermediate respiratory phases between EE and EI, then the incremental manner of testing DL-D 

would demonstrate better performance.  

4.4 Exp. 7: Experiment on repeated scans of the same thoraco-abdominal region of the same subject: 

We reiterate that different dMRI scans even for the same body region and for the same subject need 

not have the same meaning of gray-level intensities for an organ [24]. Intensity standardization (IS) was 

developed to circumvent this problem [24]. In this experiment, we test whether our segmentation model 

can perform consistently in multiple dMRI scans of the same thoraco-abdominal region of a subject in 

repeated scans. We obtained 2 repeated dMRI scans of each of 5 subjects with a 5-minute gap between 

the two repeated scans and created auto-segmentations of both lungs for each subject. The mean and SD 

of DC values over the 5 scans are summarized in Table 11 as well as the p value comparing DCs between 

the two repeated scans. 

 

Table 11: Performance of DL-D on repeated scans in Exp.7. For 

details refer to subsection 4.4. 

 

Organ 1st scan 2nd scan p-value 

Left lung 
0.948 

±0.016 

0.900 

±0.057 
0.078 

Right lung 
0.919 

±0.064 

0.923 

±0.034 
0.764 

We observe that the performance of DL-D is similar in the two scans for the right lung (p=0.764 based 

on DC)  and the left lung (p=0.078, α=0.05 based on DC). These results suggest that our segmentation 

set-up can perform consistently in multiple dMRI acquisitions of the same thoraco-abdominal region of 

a subject in most of the cases despite these acquisitions having different intensity meanings for an organ. 

4.5 Exp. 8: Comparison with competing approaches. 

As mentioned previously, articles [15, 16]  deal with the segmentation of the lungs only. In this 

experiment, we have therefore compared our work with these methods for the segmentation of just the 

two lungs.  

We took the trained model of [15] as is for testing. As reported in [15], that model was trained using 

images of 36 subjects at EE. Of these 36 subjects, 29 belonged to the set of 99 subjects. In Table 12, we 

therefore show results of the method in [15] on images of the 70 (=99-29) subjects at EI and EE 

(Experiment 8). The corresponding average and standard deviation of mean-HD are shown in Table 13.  

Article [16] reports a Dice coefficient of 0.94-0.96 for the segmentation of the lungs in dMRI using 

atlas based registration methods. The dataset which they [16] have utilized is not the same as ours with 

regards to spatial resolution (2.81 X 2.81 X 4 mm3) and scanner and mode of acquisition (regulated 
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breathing compared to our free-breathing acquisitions). The age of the patients have not been disclosed 

in [16]. 

 

Table 12: Performance of a competing approach [12] for 

segmentation of left lung and right lung in terms of DC. 

 

Category 
Respiratory 

Phase 
Left lung 

Right 

lung 

Experiment 8: 70 

subjects 

EI 
0.833 

±0.046 

0.847 

±0.040 

EE 
0.881 

±0.098 

0.910 

±0.051 

 

 

Table 13: Performance of a competing approach [12] for 

segmentation of left lung and right lung in terms of mean-

HD. 

 

Category 
Respiratory 

Phase 
Left lung 

Right 

lung 

Experiment 8: 70 

subjects 

EI 
2.62 

±1.22 

2.94 

±2.20 

EE 
2.23 

±2.33 

2.21 

±2.78 

   

5. Discussion and Conclusions 

 

The results of Exp. 1, which are shown in the second row of Table 5, and the results of the last column 

of Table 2 are both obtained using images at EI in the training set as well as in the test set. The only 

difference between these two experiments is that the former (Experiment 1) utilized 189 subjects (~100 

images for training and validation)  for evaluation while the latter utilized 95 subjects (~80 images for 

training and validation) for evaluation. We notice that these two results are statistically similar. This 

observation suggests that at about 100 studies, the performance of DL-R and DL-D perhaps stabilize. 

From the results in Table 5 and Table 12, we find that our proposed approach performs better by about 

2% to 10%  compared to [15]. As mentioned earlier, the approach of [15] is based on a 2D U-Net 

architecture whereas our architecture (ABCNet [21]) is based on an enhanced version of an encoder-

decoder architecture. We think that judiciously designed sophisticated architecture like DL-R and DL-D 

modules can handle the challenges in segmentation from dMRI images better than networks such as in 

[15], since our set-up works better on unseen images.  

The evaluations shown in this paper are based on a dMRI dataset from a single center. Gathering 

additional datasets from multiple clinical centers might help us to assess the robustness of the proposed 
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approach. We believe that merging natural intelligence techniques with artificial intelligence techniques 

can have the potential to provide better segmentation performance. We will try to investigate the design 

of the hybrid intelligence framework for application to dMRI in patients with TIS as a future work. 

For the sake of completeness, we have shown 6 slices for each organ where the ground truth for the 

organ is superimposed on the delineation by the proposed auto-segmentation set-up in Figure 4. In Figure 

5, we have shown the 3D rendering of the prediction results of DL-D for the left lung, right lung, left 

kidney, right kidney, liver, and spleen for three subjects along with the 3D rendering of the corresponding 

ground truth of the said organs. 

In this paper, we have developed an auto-segmentation setup for delineation of the thoraco-abdominal 

organs in dynamic magnetic resonance imaging (dMRI) images of pediatric subjects. We have 

implemented the segmentation in two steps: a recognition step and a delineation step. The DL-R is 

reasonably able to localize the organs given that the dMRI images are challenging to handle compared 

to other imaging modalities. For the delineation of the organs, we compared two AI approaches: ABCNet 

[21] and U-Net [15]. The delineation results for the lungs, kidneys, liver, and spleen by ABCNet from 

dMRI sagittal image acquisitions of the thoraco-abdominal region of (near-)normal healthy subjects are 

excellent, in light of the extreme difficulty of segmentation of these objects in dMRI images. We are 

further investigating this system for segmentation of the thoraco-abdominal organs in dMRI images of 

patients with thoracic insufficiency syndrome. 
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Figure 4: A row shows the delineations for an organ (top to bottom: left lung ,right lung, left kidney, right kidney, 

liver, and spleen) by the proposed auto-segmentation algorithm (green) and by the expert human tracer (red) in 

six sagittal bright-blood dMRI slices. The last column shows those cases where the delineations by the proposal 

are relatively more off compared to the ground truth. 
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Figure 5: 3D rendering of ground truth (1st row) and corresponding predictions (2nd row) of a subject 

for left lung and right lung (1st column), liver and spleen (2nd column), and left kidney and right kidney 

(3rd column). The illustration has been repeated for a second subject in the 3rd row (ground truth) and 

4th row (predictions) and for a third subject in the 5th row (ground truth) and 6th row (predictions). 
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