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MATERIALS AND METHODS 

Literature Review 

A search for relevant articles was performed in major databases, including PubMed, IEEE Xplore, 

ScienceDirect, and arXiv, as well as for conference abstracts in the International Society for Magnetic 

Resonance in Medicine annual meetings for the years 2020–2022 and the European Congress of Radiology 

2022 using the following targeted search terms: “virtual contrast enhancement,” “synthetic contrast 

enhancement,” “breast MRI,” “neural networks,” and “generative adversarial network.” The selection criteria 

were based on the relevance of the studies to our research question, with a focus on original research articles 

that reported the development and evaluation of neural network-based vCE imaging methods for breast MRI. 

Based on this investigation, seven different publications and conference abstracts were identified. 

Following the identification of the relevant publications, we extracted and compared the details of the 

employed MRI sequences (e.g., T1-weighted, T2-weighted, and diffusion-weighted imaging), neural network 

architectures (e.g., encoder–decoder convolutional neural networks or GANs), number of patients (with 

distributions into training, validation, and test datasets), and quantitative and qualitative evaluation methods. 

Neural Network Architecture and Training 

A graphical depiction of the network is shown in Appendix Figure 1. The networks were trained on a dedicated 

workstation (Linux Ubuntu 20.04, Intel Xeon E5-2698, 2.20 GHz, 48 Cores, 256 GB RAM) using a single 

NVIDIA v100 GPU card with 32 GB RAM. During training, batches of 35 slices were used, and, in each batch, 

it was ensured that random slices from different examinations were present. The network was trained for 35 

epochs without early stopping. The learning rate during the training was set to 10-3. The neural network model 

from the epoch with the lowest value of the loss function over the validation set was used as the final model 

to generate the image series of the test set.  

An adjusted loss function from the work of Chen et al. (1) was used during training. As our data lacked the 

segmentation of lesions, a combination of the structural similarity index and L1 norm was noted, as presented 

in the equation below. 

𝐿(𝑦, 𝑦̂) = (1 − [𝑙(𝑦, 𝑦̂)]𝛼 ∙ [𝑐(𝑦, 𝑦̂)]𝛽 ∙ [𝑠(𝑦, 𝑦̂)]𝛾) +∑|𝑦𝑖 − 𝑦̂𝑖|

𝑁

𝑖=0

 

The network was implemented using Python (version 3.8.10) via the PyTorch (version 1.9.0) framework. 

 

 



Rationale for the Exclusion of ADC and Simulated Low-Dose Images 

We did not use ADC maps as input data, as they are prone to errors introduced during ADC calculation. We 

believe that neural networks themselves can derive the same information from raw DWI data without the 

need for ADC maps. Additionally, as suggested by Muller-Franzes et al. (2), the simulated low-dose images 

were not used, as these images are not based solely on native input sequences. The simulated low-dose 

images require a preprocessing of a contrast-enhanced MRI acquisition, which deviates from our goal of 

investigating the influence of only native MRI input sequences. 

Segmentation of Target Findings 

The target findings were segmented by a medical student with 2 years of experience in breast MRI research 

under the supervision of a board-certified radiologist with >10 years of experience using the open-source 3D 

Slicer Software’s [version 4.11, Fedorov et al. (3)] built-in region draw function. The target findings were 

selected in consensus based on the clinical routine report and then segmented manually using the original 

post-contrast images as matrix and the full multiparametric information of the MRI examinations (e.g., in case 

of non-enhancing lesions such as cysts, in which, however, contours of the cysts can be delineated carefully 

when shifting co-registered images in between T1-weighted post-contrast subtraction and T2-weighted 

sequences). The segmentations were performed along the inner border of the target finding, suing the slice 

depicting the target finding most centrally. In case of multiple target findings, only the largest target finding 

within the breast volume was segmented. The size of the target finding was measured as the length of the 

longest axis in the segmented target finding. For the analysis of the target finding regarding the performance 

metrics, a bounding box around the segmentation was drawn using the skimage Python package. The metrics 

were then calculated only inside the bounding box. 

Quantitative Metrics Choice and Calculation 

The literature review (Table 1) showed that the two most commonly used similarity metrics were the SSIM 

and PSNR. The SSIM was calculated in accordance with the work of Wang et al. (4). The error metrics 

selected were the normalized root mean square error (NRMSE) and median symmetrical accuracy 

(MEDSYMAC). We used the MEDSYMAC instead of the SMAPE or MAPE, as subtraction images commonly 

consist of many substantially low values; the SMAPE and MAPE could then potentially overestimate the error, 

as they are prone to values close to 0. 

Inter-Reader Agreement Evaluation 

Inter-reader agreement between the Likert scale-assessed variables was evaluated using Kendall’s 

coefficient of concordance. 

 

 

 

 



RESULTS 

Inter-Reader Agreement Evaluation 

Kendall’s coefficient of concordance showed the highest agreement between the three readers for the lesion 

enhancement score (mean=0.94±0.01), followed by the satisfaction with image contrast and SNR 

(mean=0.88±0.04). The image quality and sharpness showed lower but still good agreement between the 

readers (mean=0.82±0.04 and 0.80±0.04, respectively). 

 

Supplemental Figure 1: A 2D U-net architecture consisted of three encoder and three decoder stages with 

a bottleneck layer between the deepest encoder and decoder stages followed by an output stage. The 

number of the networks input channels (x) depends on the specific input sequence combination. 

Each encoder and decoder stage consisted of two convolutional layers with a convolutional kernel size of 3, 

followed by batch normalization and leaky rectified linear unit (LReLU) activation function. The encoder and 

decoder stages connected to the bottleneck layer had additional dropout layers between the batch 

normalization layer and the activation function layer. The down- and up-sampling of the spatial size and 

feature maps was performed via a 2×2 convolution and a transposed 2×2 convolution with a stride of 2, 

respectively. The initial encoder stage, was set to generate 64 features, resulting in a maximal feature size 

of 512. The output layer consisted of 1×1 convolution layer, reducing the number of output channels to 1, 

and was followed by a tanh function to map the output results to [−1,1]. 



Supplement Figure 2: Individual qualitative evaluation scores among the three readers (R1, R2, and R3) 

for the full patient cohort. A significant drop in the ability to enhance lesions/NMEs could be observed for all 

three readers when no DWI acquisition was present in the input sequence combination. A significant drop 

in the diagnostic quality and image sharpness score could be noted when no T1w acquisition was present 

in the input sequence combination for all three readers. A significant drop in the contrast satisfaction could 

be observed when either the T1w image acquisition or DWI acquisition was missing in the input sequence 

combination. T1w=T1-weighted, b50=DWI acquisition with a b-value of 50 s/mm2, b750=DWI acquisition 

with a b-value of 750 s/mm2, b1500=DWI acquisition with a b-value of 1500 s/mm2, NME=non-mass-

enhancement   



Supplement Figure 3: Individual qualitative evaluation scores among the three readers (R1, R2, and R3) 

for only the cases with enhancing lesions/NMEs in the original post-contrast subtraction image after GBCA 

injection. A significant drop in the ability to enhance lesions/NMEs could be observed for all three readers 

when no DWI acquisition was present in the input sequence combination for all three readers when compared 

with the original post-contrast image. A significant drop in the diagnostic quality and image sharpness score 

could be noted when no T1w image acquisition was present in the input sequence combination for all three 

readers. For all three readers, a significant drop in the contrast satisfaction could be observed when either 

the T1w image acquisition or DWI acquisition was missing in the input sequence combination. Further, for all 

three readers, an overall lower score of contrast satisfaction could be noted even for input combinations that 

included both T1w image acquisition and all three DWI acquisitions. T1w=T1-weighted, b50=DWI acquisition 

with a b-value of 50 s/mm2, b750=DWI acquisition with a b-value of 750 s/mm2, b1500=DWI acquisition with 

a b-value of 1500 s/mm2, NME=non-mass-enhancement



Supplement Table 1: Quantitative Performance of the Different Network Input Combinations 

Input Combination Tissue SSIM (↑) PSNR [dB] (↑) NRMSE [%] (↓) MEDSYMAC [%] (↓) 

T1w BV 86.91±2.58 24.18±1.82 8.91±1.20 2.08±0.95 

TF* 50.25±22.84 16.77±6.10 20.05±6.63 13.92±5.19 

T1w+T2w BV 87.06±2.57 24.33±1.79 8.77±1.17 2.02±0.92 

TF* 51.94±22.80 17.15±6.17 20.41±7.49 14.12±6.28 

T1w, b50/b750 BV 86.98±2.60 24.25±1.75 8.86±1.18 1.78±0.85 

TF* 60.63±20.71 18.51±5.25 19.82±7.46 11.88±5.58 

T1w, 

b50/b750/b1500 

BV 87.00±2.55 24.26±1.83 8.79±1.20 2.09±0.92 

TF* 63.08±20.16 19.02±5.24 19.06±7.83 11.01±5.07 

T2w BV 78.18±5.13 22.82±1.70 10.44±1.32 3.38±1.26 

TF* 44.29±21.58 16.34±5.28 25.43±7.89 15.69±5.72 

T2w, b50/b750 BV 78.41±5.07 23.00±1.75 10.28±1.37 3.36±1.28 

TF* 52.02±21.43 17.54±4.85 23.37±8.06 13.69±5.63 

T2w, 

b50/b750/b1500 

BV 78.44±5.09 22.92±1.75 10.36±1.39 3.07±1.23 

TF* 52.90±21.21 17.58±4.97 23.36±8.10 13.82±5.62 

b50/b750 BV 77.38±4.92 22.50±1.68 10.90±1.32 3.85±1.35 

TF* 50.16±22.74 16.59±4.81 26.21±8.32 15.51±5.59 

b50/b750/b1500 BV 77.41±4.93 22.51±1.73 10.89±1.36 3.89±1.33 

TF* 51.17±22.79 16.45±4.90 26.01±9.84 14.98±5.67 

T1w, T2w, b50/b750 BV 87.12±2.58 24.38±1.80 8.73±1.18 1.94±0.87 

TF* 60.24±20.46 18.75±5.55 19.94±8.39 11.70±5.60 

T1w, T2w, 

b50/b750/b1500 

BV 87.10±2.55 24.36±1.78 8.74±1.17 1.91±0.87 

TF* 61.11±20.24 18.16±5.57 19.67±8.21 11.46±5.17 

T1w=T1-weighted, T2w=T2-weighted, b50=diffusion-weighted imaging with a b-value of 50 s/mm2, 

b750=diffusion-weighted imaging with a b-value of 750 s/mm2, b1500=diffusion-weighted imaging with a 

b-value of 1500 s/mm2, BV=breast volume, TF – Target findings, SSIM=structural similarity index, 

PSNR=peak signal-to-noise ratio, dB=decibel, NRMSE=normalized root mean square error, 

MEDSYMAC=median symmetrical accuracy 
*Target findings refer to the findings within the examination that could be both benign or malignant and 

non-mass or mass enhancement as well as findings not enhancing (e.g., cysts) but morphologically 

delineated from healthy fibroglandular tissue. 
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