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Abstract

Multiple myeloma (MM) patients experience repeated cycles of treatment response and
relapse, yet despite close monitoring of disease status through M protein measurements,
no standard model exists for relapse prediction in MM. We investigate the feasibility of
predicting relapse using a hierarchical Bayesian model of subpopulation dynamics by training
and testing the model on 229 patients from the IKEMA trial.

After observing between 11 and 18 treatment cycles, the model predicted relapse within
six cycles with an average sensitivity between 60 and 80 %, and an average specificity
between 60 and 90 %. A model of linear extrapolation is preferable when patients have been
observed for less than 6 cycles, but for longer observation windows the hierarchical Bayesian
model is preferred. Including available baseline and longitudinal covariate information did
not improve predictive accuracy. A survival analysis showed that two model parameters
separated patients into groups with significantly different PFS (p < 0.001).

Statement of Significance

Currently, no standard model exists for relapse prediction in multiple myeloma. A personalized
model of M protein development could guide the frequency of follow-up measurements, reduce
uncertainty for patients, and give clinicians more time to choose the best subsequent treatment
for each patient. Furthermore, models that predict relapse are required to study the effect of
changing treatment in advance of relapse rather than in response to it. Our work addresses this
need by developing a hierarchical Bayesian model of subpopulation dynamics for prediction of
future M protein values. We validate the model on a patient cohort treated with state-of-the-
art CD38 inhibitor therapy and show that it can accurately predict relapse within the next six
treatment cycles, highlighting the promise of mathematical modeling in multiple myeloma and
for personalized medicine in general.
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Introduction

Multiple myeloma (MM) is a hematologic malignancy that affects about 150,000 people annually
worldwide [1]. It develops from monoclonal gammopathy of undetermined significance (MGUS),
an asymptomatic preneoplastic plasma cell disorder that is characterized by an elevated level
of monoclonal antibodies known as M protein. Patients who develop MM typically experience
anemia, bone lesions, and potentially hypercalcemia and reduced kidney function [2]. For newly
diagnosed MM patients, the standard care is induction therapy with a proteasome inhibitor
followed by high-dose melphalan treatment, autologous hematopoietic stem cell transplantation,
and lenalidomide maintenance therapy [3]. Novel treatment options for relapsed and refractory
patients include CD38-antibodies daratumumab [4] and isatuximab [5], typically combined with
a proteasome inhibitor and dexamethasone [6, 7].

Despite the introduction of new treatments, only 10-15 % of patients achieve or exceed the
expected survival of the matched general population [3]. A key reason for this is the large
intra-tumor heterogeneity in MM [8]. Due to their wide genomic variation, heterogeneous can-
cers are more likely to harbor resistant subpopulations [9]. Large inter-patient heterogeneity in
response time [8] further complicates the situation. Yet apart from the chromosomal translo-
cation t(11;14), which is a predictive biomarker for BCL-2 therapy [10], prognostic factors and
molecular markers for personalized treatment are largely lacking in MM. Consequently, there is
both a potential and a need to identify molecular markers of relapse risk in MM.

Mathematical models have a long-standing history of guiding treatment decisions and con-
tributing to the understanding of underlying biological mechanisms by quantifying bio-medical
assumptions and making them testable [11]. The presence of M protein as a proxy of tumor
burden has made MM in particular a target for efforts to model treatment response and search
for optimal therapies [12, 13]. More recent work has attempted to predict future M protein tra-
jectories using mathematical modeling [14, 15]. Related work in head-and-neck cancer has used
statistical modeling of longitudinal tumor burden measurements to predict tumor volume pro-
gression [16]. In this work, we propose a hierarchical Bayesian model of subpopulation dynamics
that builds on these ideas by including automatic discovery of covariate effects.

Repeated observations of M protein provide opportunities for statistical inference about the
underlying population dynamics. We present a hierarchical Bayesian model of subpopulation
dynamics which predicts future M protein values by modeling the decay and growth rates of
sensitive and resistant subpopulations, and which is also capable of incorporating information
from covariates measured at baseline or during treatment. The model employs a nonlinear
mixed effect model (NLME) [17] framework which handles observation noise, allows sharing
of information between patients, and uses sparsity-enforcing priors to discover covariate effects
without overfitting. The model predicts future M protein values on an individual level through
combining observed individual M protein measurements with trends in the wider population.

Materials and methods

Study population and exclusions

In this work, we studied a subset of patients from the multicenter, phase III, open-label trial
IKEMA [18]. In the trial, 302 patients with relapsed or refractory MM, who had received one
to three lines of prior therapy, were randomly assigned (3:2) to treatment with either isatux-
imab plus carfilzomib and dexamethasone (isatuximab group) or carfilzomib and dexamethasone
(control group). In total, 179 patients were assigned to the isatuximab group and 123 patients
to the control group. Non-secretory patients were excluded from entry into the trial.
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From this population, patients with less than three non-zero M protein measurements were
excluded in this work to obtain reliable parameter estimates for every patient. This reduced
the population size to 229 patients: 134 in the isatuximab group and 95 in the control group.
Baseline covariates and longitudinal M protein measurements for patients in both groups were
used in the analysis.

Mathematical model of treatment response and relapse

In 2008, Stein et. al. [19] presented a method for predicting survival in prostate cancer by
estimating decay and growth rates of serum prostate-specific antigen (PSA). The total PSA
level was modeled as the sum of PSA contributions from two populations: a decaying popula-
tion (sensitive to treatment) and a growing population (resistant to treatment). Equation (1)
describes their model, with ρr as the growth rate of the resistant subpopulation and ρs as the
(negative) decay rate of the sensitive subpopulation.

PSA(t) = exp(ρrt) + exp(ρst)− 1 (1)

In their study of 112 patients, the log value of the growth rate was found to be strongly correlated
with survival. A larger retrospective study [20] also found PSA growth rate to be predictive
of overall survival. Subsequent work included a parameter for the proportion of the resistant
subpopulation and used the extended model to estimate growth and decay rates from CT volume
measurements in colorectal cancer [21]. Equation (2) shows an equivalent version of that model,
where πr is the proportion of resistant cells.

VCT (t) = πr exp(ρrt) + (1− πr) exp(ρst)− 1 (2)

The same rationale can be applied to multiple myeloma. Using a slightly different model, the
total M protein at time t is described in equation (3), where M0 is the initial total amount of
M protein, πr is the initial proportion of resistant cells, ρr is the growth rate of the resistant
subpopulation, and ρs (negative) is the decay rate of the sensitive subpopulation.

M(t) = M0πr exp
(
ρrt

)
+M0(1− πr) exp

(
ρst

)
(3)

The two populations are assumed to secrete M protein at the same time-constant rate. The
assumption that the resistant subpopulation grows exponentially is made plausible by the fact
that patients who progress are removed from the study before the carrying capacity is reached.
Together, the model parameters ρr, ρs, πr, and M0 uniquely describe an M protein trajectory.
Figure 1 illustrates the role of each of the parameters in the model.

Covariate effects

For a single patient, the model parameters ρr, ρs, πr, and M0 can be estimated from observed
M protein values. As M protein observations are typically sparse in time and come with mea-
surement errors, some level of uncertainty in each parameter estimate is to be expected. It can
therefore be useful to borrow information from other patients when data is lacking. Using a
nonlinear mixed effect model (NLME) [17] framework, the growth and decay rates of all patients
can be estimated together, allowing parameter estimates to be guided towards the population
mean in the absence of clear information. Bayesian implementations of NLME models allow
measuring the uncertainty of parameter estimates for each patient while also quantifying the
spread of parameter values in the population. Moreover, Bayesian models can be readily ex-
panded to look for correlations between patient-specific covariates and parameter values, all
within the uncertainty quantifying framework [22].
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Figure 1: Influence of model parameters on M protein trajectory. This figure shows the
influence of small changes in the model parameters in equation (3) on the M protein trajectory
of a patient with growth rate of the resistant population ρr = 0.004; decay rate of the sensitive
population ρs = −0.01; proportion of resistant cells at treatment start πr = 0.16; and M protein
level at treatment start M0 = 20. a) ρr is changed from 0.004 to 0.0036 and 0.0044, respectively.
b) ρs is changed from −0.01 to −0.007 and −0.013, respectively. c) πr is changed from 0.16 to
0.11 and 0.21, respectively. d) M0 is changed from 20 to 18.5 and 21.5, respectively.
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In this work, we introduce a hierarchical Bayesian model of subpopulation dynamics that
includes covariate effects from baseline and on-treatment covariates to two interpretable model
parameters: the growth rate ρr and the initial proportion πr of the resistant subpopulation. If
any covariates are correlated with a higher πr and ρr, then modeling covariate effects should
improve predictions of future M protein values compared to an NLME model without covariate
effects. To avoid overfitting weak or spurious correlations, a sparsity-enforcing prior is used to
penalize the covariate effects. More details about the hierarchical Bayesian model of subpopu-
lation dynamics are provided in the Supplementary material.

Baseline and on-treatment covariates from each patient were pre-processed depending on the
covariate type. Categorical covariates with L levels were turned into L-1 binary covariates (so-
called one-hot encoding). Numerical covariates with continuous values like age and weight were
categorized and one-hot encoded. The treatment group was included as a binary covariate called
”Treat is Kd”, with a value of ”1” indicating treatment with carfilzomib and dexamethasone.
From numerical longitudinal measurements, a set of summarizing functions were used to extract
covariates from each time series. The supplemental information contains more details, including
a list of summary functions and longitudinal covariates.

Model overview and comparison

Three models were compared by their ability to predict relapse. A hierarchical Bayesian model
of subpopulation dynamics without covariate effects, a hierarchical Bayesian model of subpopu-
lation dynamics with covariate effects, and a model based on linear extrapolation of M protein
values inspired by [14] and [15]. This model, which we call the model of linear extrapolation,
estimates the rate of change in M protein from the last two M protein measurements, and
uses this to predict future M protein values. More details are provided in the supplementary
information. By providing each model with M-protein measurements taken between the start
of treatment and a chosen cutoff, the ability to predict relapse within six cycles following the
cutoff was evaluated. Finally, relationships between model parameters and PFS were assessed
and the importance of baseline and longitudinal covariates was evaluated and reported.

Figure 2 a) visualizes how the three models work, and Figure 2 b)-d) shows model predictions
for three simulated example patients. The patients are highly heterogeneous in their treatment
response and time to relapse. While patient 2 experiences a lasting response, patients 1 and
3 relapse during the observation period, with resistant populations growing at different rates.
While the model of linear extrapolation is highly sensitive to observation noise, the hierarchical
Bayesian models of subpopulation dynamics fit the observed data well while quantifying the
uncertainty in model fit and prediction.

Statistical analysis

The computational intensity of model fitting, demanding several hours on four parallel cen-
tral processing units (CPUs) for a single fit, hindered the full implementation of a bootstrap
procedure with enough bootstrap samples to generate confidence intervals for the evaluation
metrics. Instead, model performance was assessed based on six bootstrap samples, and the
average score for each evaluation metric was reported. To generate a bootstrap sample from a
population of N patients, N patients were sampled with replacements to create the patient set
used for training, and the remaining out-of-bag [23] patients were used as test patients. The
NLME framework was used to estimate the parameters of all patients together, using informa-
tion from the entire population when estimating the parameters for each patient. For patients
allocated to the training set, all M protein measurements were used. For patients in the test
set, only M protein measurements taken during the chosen observation period were used to fit

5

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.02.24306607doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.02.24306607
http://creativecommons.org/licenses/by-nc/4.0/


1 3 6 9 12 15 18
Cycles

0

5

10

15

S
e
ru

m
 M

 p
ro

te
in

 (
g
/L

)

Posterior CI for patient 0

1 6 9 12 15 18
Cycles

0

5

10

15

S
e
ru

m
 M

 p
ro

te
in

 (
g
/L

)

Patient 0

3 1 6 9 12 15 18
Cycles

0

5

10

15

S
e
ru

m
 M

 p
ro

te
in

 (
g
/L

)

Patient 0

31 6 9 12 15 18
Cycles

0

5

10

15
S
e
ru

m
 M

 p
ro

te
in

 (
g
/L

)

Patient 0

3

1 3 6 9 12 15 18
Cycles

0

10

20

30

40

S
e
ru

m
 M

 p
ro

te
in

 (
g
/L

)

Posterior CI for patient 1

1 3 6 9 12 15 18
Cycles

0

10

20

30

40

S
e
ru

m
 M

 p
ro

te
in

 (
g
/L

)

Posterior CI for patient 2

1 3 6 9 12 15 18
Cycles

0

5

10

15

S
e
ru

m
 M

 p
ro

te
in

 (
g
/L

)

Posterior CI for patient 0

1 3 6 9 12 15 18
Cycles

0

10

20

30

40

S
e
ru

m
 M

 p
ro

te
in

 (
g
/L

)

Posterior CI for patient 1

1 3 6 9 12 15 18
Cycles

0

10

20

30

40
S
e
ru

m
 M

 p
ro

te
in

 (
g
/L

)

Posterior CI for patient 2

Covariates

Observed M protein

Unobserved M protein
Velocity prediction

1 3 6 9 12 15 18
Cycles

0

10

20

30

40

S
e
ru

m
 M

 p
ro

te
in

 (
g
/L

)

Posterior CI for patient 2

1 3 6 9 12 15 18
Cycles

0

10

20

30

40

S
e
ru

m
 M

 p
ro

te
in

 (
g
/L

)

Posterior CI for patient 1

1 3 6 9 12 15 18
Cycles

0

5

10

15

S
e
ru

m
 M

 p
ro

te
in

 (
g
/L

)

Posterior CI for patient 0
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a) Model overview
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Figure 2: a) Overview of the three models fitted to observed M protein (black crosses) and used
to predict unobserved M protein (white crosses). b)-d) simulated example patients with simu-
lated covariate effects illustrate how each model fits to members of a heterogeneous population.
Posterior credible intervals (CI) quantify the uncertainty of the hierarchical Bayesian model of
subpopulation dynamics predictions. Both of the hierarchical Bayesian models of subpopula-
tion dynamics predict future M protein measurements accurately for patients 1 and 2. Within
the simulated population, patients with covariates similar to those of patient 3 have resistant
subpopulations with higher growth rates. This is detected by the hierarchical Bayesian model of
subpopulation dynamics with covariates, which predicts that patient 3 will experience a quick
relapse.
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the model. After fitting the model to the data, the resulting posterior contained credible inter-
vals for each population-level and individual parameter, and probabilistic forecasts of future M
protein development for each patient.

All statistical analysis was performed in Python version 3.11.3. Posterior sampling was
conducted in PyMC version 5.1.1 [24] using the No-U-Turn sampler (NUTS) introduced in [25].
To improve convergence, the sampler was initialized using automatic differentiation variational
inference (ADVI) [26] within the PyMC software. To evaluate differences in average posterior
median model parameters ρr and πr between different levels of baseline covariates, the false
discovery rate was controlled at 0.25 using the Benjamini-Hochberg method.

Code and data availability

The code for this project is available at https://github.com/evenmm/mm-predict-ikema. Data
from the IKEMA trial (NCT03275285) can be requested through the data-sharing platform
Vivli.

Results

Prediction of relapse within six cycles

The ability to predict relapse in M protein within the next six cycles was evaluated for the model
of linear extrapolation, the hierarchical Bayesian model of subpopulation dynamics without
covariate effects, and the hierarchical Bayesian model of subpopulation dynamics with covariate
effects. The following subset of the International Myeloma Working Group (IMWG) criteria [27]
for progressive disease was used as relapse criteria. Any one or more of the following criteria:
a) Increase of 25% from lowest confirmed response value in Serum M-protein (absolute increase
must be ≥ 0.5 g/dL); b) Serum M-protein increase ≥ 1 g/dL, if the lowest M component was
≥ 5 g/dL. Since the model only relates to serum M protein, the definition of relapse used in
this evaluation excludes relapse from causes other than M protein. Figure 3 a) visualizes the
relapse criteria together with observed M protein and predicted credible interval for a simulated
example patient.

Since patients who relapse, are censored, or die during the observed period must be removed
from the population, the number of patients at risk decreases with increasing length of the
observation period. The number of patients who relapse within the next six cycles also varies
with the length of the observation period. Figure 3 b) shows the decrease in the study population
and variation in relapse proportion across different observation period lengths.

In Figure 3 a), the predicted probability of relapse equates to the proportion of the credible
interval that lies above the relapse criteria after six cycles. To classify whether a patient will
relapse or not within the next six cycles, a probability threshold is needed to turn the prob-
ability into either a ”1” for relapse or ”0” for no relapse. For each model, a single threshold
was chosen and used for all observation window lengths. Figure 3 c) shows the average pre-
diction performance across six bootstrap samples for observation windows of different lengths.
Model comparisons under two alternative choices of threshold are shown in the supplementary
materials.

Model parameters predict PFS

A survival analysis showed that the estimated model parameters for the growth rate of the
resistant subpopulation and proportion of resistant cells at the start of treatment separates
patients into groups with highly different PFS. Figure 4 a)-c) shows Kaplan-Meier plots for this
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Figure 3: a) Illustration of relapse criteria and relapse probability. b) Population size and
number of patients about to relapse by the number of observed cycles. c) Average area under
the curve (AUC), accuracy, F1 score, precision, sensitivity, and specificity across six bootstrap
samples for observation period lengths ranging from 1 to 19 cycles.
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Figure 4: a-c) Kaplan Meier plot of PFS, by high and low values of πr, ρr, and ρs, separately. d)
95 % posterior credible intervals for coefficients between selected covariates and initial proportion
of resistant subpopulation πr.
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analysis. Cox regressions showed that patients with growth rate ρr of the resistant subpopulation
above the median had a shorter PFS compared to below median (p < 2·10−16) and that patients
with initial proportion πr of the resistant subpopulation above the median had a shorter PFS
compared to below median (p = 2 · 10−13). Notably, no difference in PFS between high and low
values of ρs was found (p = 0.8). For this analysis, the PFS definition was the same as in the
IKEMA trial, which included relapse from causes other than serum M protein.

Importance of baseline and longitudinal covariates

In the hierarchical Bayesian model of subpopulation dynamics with covariate effects, the co-
variate ‘achieved MRD negative during treatment’ was associated with a smaller estimated
proportion of resistant cells at the start of treatment πr. Additionally, patients with larger
minimum values of Immunoglobulin G during observation tended to have larger estimated πr.
Figure 4 d) shows 95 % credible intervals for a selection of covariate effects on πr. All covariate
effects on πr and ρr are shown in supplementary figures S1 and S2.

Separately, a comparison of average posterior median model parameters πr, ρr, and ρs found
that patients with plasmacytomas in MRI or CT at baseline on average had a significantly higher
estimated πr than patients without. This was the only significant difference when correcting
for multiple testing. The difference in average posterior median πr is shown in Table 1. None
of the baseline covariates had a significant effect on posterior median ρr or ρs.

Table 1: Significant differences in average posterior median πr

Plasmacytomas in MRI/CT at baseline

Plasmacytomas (11 patients) Average πr = 0.20

No plasmacytomas (218 patients) Average πr = 0.06 p = 0.002

Discussion

Evaluation of relapse prediction for the next six cycles in Figure 3 c) showed that after observing
at least eight treatment cycles, the hierarchical Bayesian models of subpopulation dynamics
predict relapse within six cycles with an average sensitivity between 60 and 80 % and average
specificity between 70 and 80 %. After observing at least nine treatment cycles, the Bayesian
mechanistic model achieved AUC scores ranging from 0.71 to 0.89. This matches or exceeds
previous work [14] on relapse prediction in patients treated with combinations of bortezomib,
lenalidomide, and dexamethasone, which achieved an AUC score of 0.83.

In the F1 score, which is the harmonic mean of precision and sensitivity, the hierarchical
Bayesian models of subpopulation dynamics performed better than the model of linear extrap-
olation after observing at least six cycles. Three aspects of the hierarchical Bayesian model of
subpopulation dynamics model may explain why it outperforms the model of linear extrapola-
tion. Firstly, the model of linear extrapolation is unable to predict an increasing growth rate
in M protein, which is common in relapsing patients. In contrast, the hierarchical Bayesian
model of subpopulation dynamics encodes this behavior explicitly through the mathematical
model. Secondly, the inherent handling of uncertainty makes the hierarchical Bayesian model
of subpopulation dynamics robust to noisy observations. Finally, the statistical framework lets
the hierarchical Bayesian model of subpopulation dynamics learn trends from patients in the
training set. How well this performance generalizes to patients with different treatment histories
undergoing different treatment regimens requires further evaluation in another cohort. If the
performance is found to generalize to other patient cohorts, our model could be used to guide
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the frequency of follow-up measurements and to alert clinicians ahead of time when patients are
about to relapse.

The model of linear extrapolation achieves very high accuracy and specificity scores for 1 to 4
cycles long observation windows. This is explained by the fact that most patients have decreasing
M protein values at the start of treatment. Therefore, even in the presence of observation noise,
cases where M protein increases are very unlikely unless the disease is progressing. As more
data are observed, the accuracy and specificity of the model of linear extrapolation drops. For
longer observation windows, M protein values tend to be lower and more stable, meaning that
measurement error may randomly make the M protein appear to be increasing. This explains
the observed drop in specificity and accuracy. The initially very low sensitivity is explained by
the inability of the model of linear extrapolation to predict relapse in patients with decreasing M
protein values. The accuracy and specificity of the hierarchical Bayesian model of subpopulation
dynamics increases with the length of the observation period, accompanied by a modest decrease
in sensitivity. Consequently, the model of linear extrapolation is recommended when less than
six cycles are observed, and the hierarchical Bayesian model of subpopulation dynamics is
recommended for longer observation periods.

As seen in Figure 3 b), there are fewer patients at risk after longer observation periods.
Since the model is trained independently for each observation period length, fewer patients
should lead to a reduction in model accuracy. However, longer observation times mean more M
protein measurements per patient, and the population becomes more homogeneous by selecting
patients who have survived without relapse. Figure 3 shows that the scores of the hierarchical
Bayesian model of subpopulation dynamics are very low with few observations, yet increase
with the length of the observation windows, outperforming the model of linear extrapolation.
From this we can conclude that having more M protein measurements and a more homogeneous
population makes up for the loss in population size.

Since the hierarchical Bayesian models of subpopulation dynamics with and without co-
variate effects had comparable predictive power across different observation period lengths, we
conclude that incorporating covariate effects did not improve the predictive capacity of the hi-
erarchical Bayesian model of subpopulation dynamics. This means that none of the baseline
covariates included in this work were informative about individual M protein trajectories. This
does not, however, exclude the possibility that other covariates measured with novel or more
detailed sequencing techniques could hold important information and thus predictive value.

The survival analysis in Figure 4 shows that separating patients by high and low values of
the mechanistic parameters ρr (growth rate of resistant population) and πr (initial fraction of
resistant population) differentiates PFS. For this analysis, the PFS definition was not limited
to relapse from M protein but included death and relapse from other causes. This shows that
the estimated model parameters describing M protein development hold important information
about the patient’s status. Moreover, this is true even when including patients that relapse
from other causes or die before progressing due to M protein.

While including covariate information did not improve predictive accuracy, patients who
achieved MRD negativity during observation tended to have a smaller proportion of resistant
cells at the start of treatment. As MRD is arguably the strongest marker of long-term survival
outcome in MM [28], it is reassuring to find that our model estimates a lower proportion
of resistant cells at the start of treatment for patients who achieve MRD negativity during
observation. The results of the covariate effect analysis should be viewed as exploratory. The
difference in πr between patients with or without Plasmacytomas in MRI or CT at baseline was
not captured by our model. None of the covariate effects captured by our model were found
to be significant in the separate comparison of average model parameters when correcting for
multiple testing.

The model assumes that a resistant subpopulation is present from the start of treatment.
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Two possible alternative explanations are an outgrowth of resistant clones during treatment, and
phenotypic switching caused by cell plasticity [29, 30]. In practice, should resistant clones arise
during treatment, the hierarchical Bayesian model of subpopulation dynamics should be able to
fit such a patient by estimating an initial resistant population of negligible size. Consequently,
our model is not able to distinguish between these two cases, nor should this alternative be
detrimental to the model’s performance.

As a necessity of the 28-day interval between M protein measurements, M protein and
population sizes are modeled as smoothly changing values, despite treatment being given inter-
mittently at each 28-day cycle. Mechanics of differential clearance and M protein decay rates
are also excluded from the model. In the time between M protein measurements, there may
be time for cells to switch between phenotypes, by intermittent dormancy at treatment admin-
istrations followed by growth between doses. Nevertheless, initial decay in M protein followed
by an increase is indicative of a change in the clonal composition of the cancer. Therefore, the
model may prove capable of response prediction regardless of the actual mechanisms at play.

In this study, a single threshold used for all observation window lengths was chosen for each
model. Since the population at risk changes with the length of the observation window, the
optimal threshold value may vary with the length of the observation period. The supplementary
material provides a model comparison where the probability thresholds were set either to opti-
mize the F1 score or to ensure a sensitivity of 80 %. This lets the threshold vary with the length
of the observation period but does not provide a representative view of the model performance,
since the labels in the test set are used to set the threshold in each case. Provided with a
larger dataset, a validation set could have been used to set the threshold value instead, which
would give an unbiased estimation of the performance on the test set while allowing different
thresholds for different observation lengths.

In this work, a mathematical model has been developed that predicts relapse with acceptable
sensitivity and specificity after observing eight or more treatment cycles. This demonstrates
the usefulness of mathematical models for predicting clinical events. The generalizability of the
prediction accuracy to other regimens and/or patients with different inclusion criteria requires
evaluation in other cohorts.
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