Supplementary information: Relapse prediction in multiple
myeloma patients treated with isatuximab, carfilzomib, and
dexamethasone

Even Moa Myklebust!, Fredrik Schjesvold®?, Arnoldo Frigessil,
Kevin Leder?, Jasmine Foo®, and Alvaro Kohn-Luque!: ¢

LOslo Centre for Biostatistics and Epidemiology, Faculty of Medicine, University of Oslo, 0372 Oslo,
Norway
2KG Jebsen Center for B-Cell Malignancies, Institute for Clinical Medicine, University of Oslo, 0450
Oslo, Norway
30slo Myeloma Center, Department of Hematology, Oslo University Hospital, 0450 Oslo, Norway
4 College of Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
5 Institute for Mathematics and its Applications, School of Mathematics, University of Minnesota,
Minneapolis, MN 55455, USA
60slo Centre for Biostatistics and Epidemiology, Oslo University Hospital, 0372 Oslo, Norway

1 Evaluation of predictions with different thresholds

The choice of probability threshold impacts the predictive performance of the model. In the
main article, the thresholds were set to 0.02 for the NLME models with and without covariates
and 0.45 for the model of linear extrapolation. Figure [I| shows the average performance across
6 bootstrap samples under two alternative choices of probability threshold. In both cases, the
thresholds were set using information from the test set. Therefore, it does not represent an
unbiased view of the predictive performance but can be used to compare the performance of
the methods. The AUC score does not depend on a threshold. Therefore it remains the same
and is not repeated here.

In Figure (1] a), for each number of observed cycles, the threshold was chosen to achieve 80
% sensitivity on average, reflecting a prioritization of relapse discovery at a potential cost of
specificity. With this choice of threshold, the models can be compared by their compared by
the cost in specificity incurred by requiring a sensitivity of 80 %. Both hierarchical Bayesian
models of subpopulation dynamicswith and without covariates have higher specificity than the
model of linear extrapolation for 14 out of 19 observation window lengths. The NLME models
with and without covariates are comparable across all metrics and observation period lengths.

Alternatively, the probability threshold that maximizes the F1 score can be chosen. Figure
b) shows the average performance across 6 bootstrap samples with this threshold. The F1
scores tend to increase with the number of observed cycles for all three models. Both hierarchi-
cal Bayesian models of subpopulation dynamicshave higher F1 score than the model of linear
extrapolation for 13 out of 19 observation window lengths. The F1 score of the NLME models
with and without covariates are comparable across all observation period lengths.

2 Baseline and longitudinal covariates

Table [I] lists the baseline covariates. Table [2] lists the summary functions used to extract sum-
mary covariates from longitudinal measurements. Table (3] lists the longitudinal measurements
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Figure 1: Evaluation metric scores with two alternative ways to set the probability threshold
to classify whether patients will relapse or not. In a), the smallest threshold that achieved an
average sensitivity of 80 % across all folds is used, for each observation window length separately.
In b), the threshold that maximizes the F1 score is chosen for each observation window length
separately.



from which summary covariates were extracted. Figures [2] and [3] show all covariate effects on
7w and p".

Table 1: List of baseline covariates.

Age
Race
Sex
Region
Weight
ISS stage at study entry
Duration of last treatment
Number of prior lines of treatment
Treatment group (isatuximab or control)
T 4.14
T_14_16
Del 17
Gain 1q21
Chromosomal aberration risk
Biclonal at study entry
Heavy chain type at study entry
Light chain type at study entry
Received radiotherapy
Time from diagnosis to randomization
Presence of bone lesions at baseline
Baseline Serum M protein
Baseline Urine M protein
Baseline plasma cell bonemarrow
Baseline creatinine clearance
Baseline ECOG status
Baseline FcGR3A
Plasmacytomas in MRI or CT at baseline
Baseline LDH
Baseline smoke status



Table 2: List of summary functions for extracting covariates from longitudinal measurements.

minimum value min(x).
Maximum value max(x).

Average sum(x)/len(x).

Standard deviation \/ lenl(m) suméeznl(m) (x; — mean(z))?.
Absolute decrease x[0] - min(x).
Time to minimum value Time from start of treatment to observing min(x).
Derivative at start of treatment %:tx[%)]]
Derivative at end of observation period ﬁj :f[[__g]}

Table 3: List of longitudinal covariates, with units.

Immunoglobulin A mg/L
Immunoglobulin G mg/L
Immunoglobulin M mg/L
Kappa light chain, Free/Lambda light chain, free Ratio
Kappa light chain, Free mg/L
Lambda light chain, free mg/L
Alanine Aminotransferase IU/L
Albumin g/L
Alkaline Phosphatase IU/L
Aspartate Aminotransferase IU/L
Bicarbonate mmol/L
Calcium mmol /L
Chloride mmol/L
Creatinine pmol/L
Direct Bilirubin pmol /L
GFR from Creatinine adjusted for BSA mL /min/1.37m?
Glucose mmol /L
Hemoglobin g/L
Leukocyte count (WBC) 10°/L
Lymphocytes 10°/L
Magnesium mmol /L
Neutrophils 10°/L
Phosphate mmol /L
Platelet count 10°/L
Potassium mmol /L
Sodium mmol/L
Total Bilirubin pmol /L
Urea Nitrogen (BUN) mmol/L
Uric acid pmol /L
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Figure 2: All covariate effects on 7"
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Figure 3: All covariate effects on p”
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3 Model of linear extrapolation

As a baseline method, the model of linear extrapolation predicts future M protein values by
linear extrapolation using the last two observed M protein measurements. To account for mea-
surement error, 100 perturbed observations are created for each of the two points separately by
adding noise terms sampled from a normal distribution with zero mean and standard deviation
0.5 g/dL, which equals the minimum change required for progressive disease. Then, 100 differ-
ent velocities are calculated from the perturbed points and used to make a simple forecast of
the tumor progression.

4 Mathematical model of treatment response and relapse

With N as the total number of patients, assign to each patient an index ¢ € [1,..., N], and

denote their M; measured M protein values as y; = (yi1,...,Yim;) € RM:  where each measure-
ment y;; is taken at the corresponding time t;; in t; = (t;1 = 0,..., %) € RM:  Additionally,
let the p covariates measured at baseline be denoted as x; = (x;1,..., i) € RP. The observed

M protein y; is modeled as the sum of a resistant population growing exponentially with rate
p; and a sensitive population decaying exponentially with rate p;, with initial total population
size Mi0 and initial proportion of resistant cells 7r]. Observation noise terms ¢;; are assumed to

be normally distributed with variance 2.

yij = M(ti;,0") +ei5 , ij ~N(0,07)

) 1

M(ti5,0") = M} exp (pitiy ) + MP(1 = 7]) exp (pitis ) ®
Notice that since t;1 = 0, y1 = M(0,6;) + i1 = M? + e;1. The patient-specific mechanistic
parameters in this model are:

° Mi0 : True M-protein value at the time when treatment is started.

e 7 : Fraction of resistant cells at the time when treatment is started.

‘A

e pi: Growth rate of resistant cells under current treatment.

S

o pf: Growth rate of sensitive cells under the current treatment.

Due to the physical constraints on the mechanistic parameters pf, p’, and 7, we use a variable
transform to work with model parameters that have support on the entire real line.

p; —exp(01;) [—00, 0]
Mechanistic parameters | pf | = | exp(f2) | with domains [0, 0]
m Tre w5 0.1]
911' log(—pf )
Model parameters o' = 0y | = 105—’;(,02) € R3.
O3 log(7=%)

4.1 Nonlinear mixed effect model (NLME)

A nonlinear mixed effect (NLME) framework was used to estimate the parameters of all patients
together, using information from the entire population when estimating the parameters for
each patient. For an introduction to Bayesian nonlinear mixed effects models for repeated



measurements, see [I]. After fitting the model to the data, the resulting posterior contains
credible intervals for each population-level and individual parameter and probabilistic forecasts
of future M protein development for each patient. In the NLME model, individual parameters
01, 02;, and 63; are modeled as normally distributed around population means a1, as, and as,
with patient-specific random intercepts allowing the patient-specific pi, pi, and 7] to deviate
from the group means to match the observed M protein. This works as a prior that encourages
parameters to be more similar to the group averages in the absence of M protein observations
that indicate otherwise.

Forl=1,...,3: 0 ~N(ag,w?) (2)

We do not seek to predict M, using the covariates since we believe there is enough information
in the observed M protein alone to estimate it. To deal with the requirement that all M protein
values be greater than or equal to zero, we assign a prior to the log-transformed 64; = log(Mio):

01; ~ N (log(yin), &%)
M = exp(6a;)

1

(3)

The parameters a;, | = 1,2,3 are given normal priors centered around suitable guesses q;
of the average 0;; in the population, for [ = 1,2,3. The variance of this prior is set to 1 to cover
a wide enough range of values.

alNN(d\lvl) ) l€[17273] (4)

We chose non-informative priors restricted to positive values for the standard deviations o and
w.
o ~ HalfNormal(0,1) : o >0
¢ ~ HalfNormal(0,1) : £ >0 (5)
w; ~ HalfNormal(0,1) : w; >0, [ €[1,2,3]

4.2 Incorporating covariate information: NLME with linear covariate effects

In addition to the M protein data that the NLME models, every patient has a set of covariates
that are measured at baseline or longitudinally. It is natural to ask what additional stratification
these covariates can achieve beyond the information available through the M protein measure-
ments. To answer this question, the NLME can be extended by adding one simple hierarchical
layer. The purpose of this section is to describe what this layer is and how it can be used to
include any stratifying covariates.

Let the covariate vector be denoted as z. In the linear covariate model, the effect of the
p covariates in x on parameter ¢; is modeled by the function fj(z) = z8]. Note that f;(x)
can be freely exchanged to other, more flexible mappings, each of which would complicate the
convergence of the Bayesian inference in their own way. The parameters related to the speed of
relapse are p" and 7", so for the cause of simplicity, the model is extended with linear covariate
effects for these two but not for p®.

For 1 €{2,3}: Oy ~ N(og+x85,w}), Bi=Bu,-..,Bp) € RP (6)

Note that the inclusion of baseline covariate effects alters the interpretation of the o parame-
ters, which do no longer represent population means, but must be interpreted as the expected
parameter for a patient with all covariates equal to 0.

To include covariates in x without knowing a priori how relevant they are to the parameters
pi,p;, and 7], we need a sparsity inducing prior on the coefficients §;. In their 2008 paper,
Carvalho et al.[2] introduced the Horseshoe prior, a regularization method that shrinks some



parameters to zero while simultaneously allowing nonzero parameters by using heavy-tailed
distributions, an approach that offers good computational tractability compared to the spike-
and-slab prior. Piironen and Vehtari expanded upon this in 2017[3] by suggesting a hierarchical
regularized horseshoe, presenting a complete hierarchical framework with stronger shrinkage for
weakly identified parameters.

We use the hierarchical regularized horseshoe as a sparsity-inducing prior for the parameters
B;. This introduces a global shrinkage parameter T plus one local shrinkage parameter A\ for
each fp,b € [1,...,p|, and requires an estimate of the number of nonzero parameters, pg, which
we set to pp = int(p/2). In addition, for sampling efficiency, we reparametrize Sy as B = 2T \ib
to sample z; ~ N (0,1) from a standard normal distribution.

6leN(O7T2'Xl2b) ’ l€[17273] ’ bE[l,,p]

Po o
7 ~ Half-StudentT —] , 1€(1,2,3] , bel,...,p
? (P —Po \/N) [ : | |
52 _ Ay (7)
b2 2N\

A ~ Half-StudentTo(1) , 1 €[1,2,3] , bel,...,p]

¢® ~ InverseGamma(1, 1)

References

[1] Se Yoon Lee. Bayesian nonlinear models for repeated measurement data: An overview,
implementation, and applications. Mathematics, 10(6):898, 2022.

[2] Carlos M Carvalho, Nicholas G Polson, and James G Scott. The horseshoe estimator for
sparse signals. Biometrika, 97(2):465-480, 2010.

[3] Juho Piironen and Aki Vehtari. Sparsity information and regularization in the horseshoe
and other shrinkage priors. Electronic Journal of Statistics, 11(2):5018-5051, 2017.



	Evaluation of predictions with different thresholds
	Baseline and longitudinal covariates
	Model of linear extrapolation
	Mathematical model of treatment response and relapse
	Nonlinear mixed effect model (NLME)
	Incorporating covariate information: NLME with linear covariate effects


