PAM-free diagnostics with diverse type V CRISPR-Cas systems

Santosh R. Rananaware¹, Katelyn S. Meister¹, Grace M. Shoemaker¹, Emma K. Vesco^{1,†}, Luke Samuel W. Sandoval², Jordan G. Lewis¹, August P. Bodin¹, Vedant N. Karalkar⁴, Ian H. Lange¹, Brianna Lauren Maria Pizzano¹, Minji Chang¹, M.Reza Ahmadimashhadi¹, Sarah J. Flannery¹, Long. T. Nguyen¹, Gary P. Wang^{5,6}, Piyush K. Jain^{1,3,7,*}

¹Department of Chemical Engineering, University of Florida, Gainesville, Florida, USA

² Department of Biology, CLAS, University of Florida, Gainesville, Florida, USA

³ Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA

⁴ Department of Computer Science, University of Florida, Gainesville, Florida, USA

⁵Department of Medicine, Division of Infectious Diseases and Global Medicine, University of Florida, Gainesville, Florida, USA

⁶Medical Service, North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA

⁷UF Health Cancer Center, University of Florida, Gainesville, Florida, USA

[†]Current Affiliation: Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas, USA

*Corresponding author: jainp@ufl.edu

Supplementary Information

 Table 1: List of protein sequences used in this study:

Sr. No.	Name	Sequence	
1	LbCas12a	MSKLEKFTNCYSLSKTLRFKAIPVGKTQENIDNKRLLVEDEKRAEDYKGVKKLL DRYYLSFINDVLHSIKLKNLNNYISLFRKKTRTEKENKELENLEINLRKEIAKAFK GNEGYKSLFKKDIIETILPEFLDDKDEIALVNSFNGFTTAFTGFFDNRENMFSEEA KSTSIAFRCINENLTRYISNMDIFEKVDAIFDKHEVQEIKEKILNSDYDVEDFFEGE FFNFVLTQEGIDVYNAIIGGFVTESGEKIKGLNEYINLYNQKTKQKLPKFKPLYKQ VLSDRESLSFYGEGYTSDEEVLEVFRNTLNKNSEIFSSIKKLEKLFKNFDEYSSAGI FVKNGPAISTISKDIFGEWNVIRDKWNAEYDDIHLKKKAVVTEKYEDDRRKSFK KIGSFSLEQLQEYADADLSVVEKLKEIIIQKVDEIYKVYGSSEKLFDADFVLEKSL KKNDAVVAIMKDLLDSVKSFENYIKAFFGEGKETNRDESFYGDFVLAYDILLKV DHIYDAIRNYVTQKPYSKDKFKLYFQNPQFMGGWDKDKETDYRATILRYGSKY YLAIMDKKYAKCLQKIDKDDVNGNYEKINYKLLPGPNKMLPKVFFSKKWMAY YNPSEDIQKIYKNGTFKKGDMFNLNDCHKLIDFFKDSISRYPKWSNAYDFNFSET EKYKDIAGFYREVEEQGYKVSFESASKKEVDKLVEEGKLYMFQIYNKDFSDKSH GTPNLHTMYFKLLFDENNHGQIRLSGGAELFMRRASLKKEELVVHPANSPIANK NPDNPKKTTTLSYDVYKDKRFSEDQYELHIPIAINKCPKNIFKINTEVRVLLKHDD NPYVIGIDRGERNLLYIVVVDGKGNIVEQYSLNEIINNFNGIRIKTDYHSLLDKKE KERFEARQNWTSIENIKELKAGYISQVVHKICELVEKYDAVIALEDLNSGFKNSR VKVEKQVYQKFEKMLIDKLNYMVDKKSNPCATGGALKGYQITNKFESFKSMST QNGFIFYIPAWLTSKIDPSTGFVNLLKTKYTSIADSKKFISSFDRIMYVPEEDLFEF ALDYKNFSRTDADYIKKWKLYSYGNRIRIFRNPKKNNVFDWEEVCLTSAYKELF NKYGINYQQGDIRALLCEQSDKAFYSSFMALMSLMLQMRNSITGRTDVDFLISP VKNSDGIFYDSRNYEAQENAILPKNADANGAYNIARVLWAIGQFKKAEDEKLD KVKIAISNKEWLEYAQTSVKH	
2	AsCas12a	MTQFEGFTNLYQVSKTLRFELIPQGKTLKHIQEQGFIEEDKARNDHYKELKPIIDR IYKTYADQCLQLVQLDWENLSAAIDSYRKEKTEETRNALIEEQATYRNAIHDYFI GRTDNLTDAINKRHAEIYKGLFKAELFNGKVLKQLGTVTTEHENALLRSFDKF TTYFSGFYENRKNVFSAEDISTAIPHRIVQDNFPKFKENCHIFTRLITAVPSLREHF ENVKKAIGIFVSTSIEEVFSFPFYNQLLTQTQIDLYNQLLGGISREAGTEKIKGLNE VLNLAIQKNDETAHIIASLPHRFIPLFKQILSDRNTLSFILEEFKSDEEVIQSFCKYK TLLRNENVLETAEALFNELNSIDLTHIFISHKKLETISSALCDHWDTLRNALYERRI SELTGKITKSAKEKVQRSLKHEDINLQEIISAAGKELSEAFKQKTSEILSHAHAAL DQPLPTTLKKQEEKEILKSQLDSLLGLYHLLDWFAVDESNEVDPEFSARLTGIKL EMEPSLSFYNKARNYATKKPYSVEKFKLNFQMPTLASGWDVNKEKNNGAILFV KNGLYYLGIMPKQKGRYKALSFEPTEKTSEGFDKMYYDYFPDAAKMIPKCSTQL KAVTAHFQTHTTPILLSNNFIEPLEITKEIYDLNNPEKEPKKFQTAYAKKTGDQKG YREALCKWIDFTRDFLSKYTKTTSIDLSSLRPSSQYKDLGEYYAELNPLLYHISFQ RIAEKEIMDAVETGKLYLFQIYNKDFAKGHHGKPNLHTLYWTGLFSPENLAKTSI KLNGQAELFYRPKSRMKRMAHRLGEKMLNKKLKDQKTPIPDTLYQELYDYVN HRLSHDLSDEARALLPNVITKEVSHEIIKDRRFTSDKFFFHVPITLNYQAANSPSKF NQRVNAYLKEHPETPIGIDRGERNLIYITVIDSTGKILEQRSLNTIQQFDYQKKLD NREKERVAARQAWSVVGTIKDLKQGYLSQVIHEIVDLMIHYQAVVLENLNFGF KSKRTGIAEKAVYQQFEKMLIDKLNCLVLKDYPAEKVGGVLNPYQLTDQFTSFA KMGTQSGFLFYVPAPYTSKIDPLTGFVDPFVWKTIKNHESRKHFLEGFDFLHYDV KTGDFILHFKMNRNLSFQRGLPGFMPAWDIVFEKNETQFDAKGTPFIAGKRIVPV IENHRFTGRYRDLYPANELIALLEEKGIVFRDGSNILPKLLENDDSHAIDTMVALI RSVLQMRNSNAATGEDYINSPVRDLNGVCFDSRFQNPEWPMDADANGAYHIAL KGQLLLNHLKESKDLKLQNGISNQDWLAYIQELRN	

3	ErCas12a	NNGTNNFQNFIGISSLQKTLRNALIPTETTQQFIVKNGIIKEDELRGENRQILKDIM DDYYRGFISETLSSIDDIDWTSLFEKMEIQLKNGDNKDTLIKEQTEYRKAIHKKFA NDDRFKNMFSAKLISDILPEFVIHNNNYSASEKEEKTQVIKLFSRFATSFKDYFKN RANCFSADDISSSSCHRIVNDNAEIFFSNALVYRRIVKSLSNDDINKISGDMKDSL KEMSLEEIYSYEKYGEFITQEGISFYNDICGKVNSFMNLYCQKNKENKNLYKLQK LHKQILCIADTSYEVPYKFESDEEVYQSVNGFLDNISSKHIVERLRKIGDNYNGYN LDKIYIVSKFYESVSQKTYRDWETINTALEIHYNNILPGNGKSKADKVKKAVKN DLQKSITEINELVSNYKLCSDDNIKAETYIHEISHILNNFEAQELKYNPEIHLVESE LKASELKNVLDVIMNAFHWCSVFMTEELVDKDNNFYAELEEIYDEIYPVISLYNL VRNYVTQKPYSTKKIKLNFGIPTLADGWSKSKEYSNNAIILMRDNLYYLGIFNAK NKPDKKIIEGNTSENKGDYKKMIYNLLPGPNKMIPKVFLSSKTGVETYKPSAYIL EGYKQNKHIKSSKDFDITFCHDLIDYFKNCIAIHPEWKNFGFDFSDTSTYEDISGF YREVELQGYKIDWTYISEKDIDLLQEKGQLYLFQIYNKDFSKKSTGNDNLHTMY LKNLFSEENLKDIVLKLNGEAEIFFRKSSIKNPIIHKKGSILVNRTYEAEEKDQFGN IQIVRKNIPENIYQELYKYFNDKSDKELSDEAAKLKNVVGHHEAATNIVKDYRYT YDKYFLHMPITINFKANKTGFINDRILQYIAKEKDLHVIGIDRGERNLIYVSVIDTC GNIVEQKSFNIVNGYDYQIKLKQREGARQIARKEWKEIGKIKEIKEGYLSLVIHEI SKMVIKYNAIIVMEDLSYGFKKGRFKVERQVYQKFETMLINKLNYLVFKDISITE NGGLLKGJQLTYIPDKLKNVGHQCGCIFYVPAAYTSKIDPTTGFVNIFKFKDLTV DAKREFIKKFDSIRYDSEKNLFCFTFDYNNFITQNTVMSSSWSVTYGVRIKRR FVNGRFSNESDTIDITKDMEKTLEMTDINWRDGHDLRQDIIDYEIVQHIFEIFRLT VQMRNSLSELEDRDYDRLISPVLNENNIFYDSAKAGDALPKDADANGAYCIALK GLYEIKQITENWKEDGKFSRDKLKISNKDWFDFIQNKRYL
4	BrCas12b RFND	MPVRSFKVKLVTRSGDAEHMLQLRRGLWKTHEIVNQGIAYYMNKLALMRQEP YAGKSREVVRLELLHSLRAQQKRNNWTGDAGTDDEILNLSRRLYELLVPSAIGE KGDAQMLSRKFLSPLVDPNSEGGKGTAKSGRKPRWMKMREEGHPDWEAEREK DEAKKAADPTASILNDLEAFGLRPLFPLFTDEQKGIQWLPKQKRQFVRTWDRDM FQQALERMLSWESWNRRVAEEYQKLQAQRDELYAKYLADGGAWLEALQSFEK QREVELAEESFAAKSEYLITRRQIRGWKQVYEKWSQLPEHAAQEQFWQVVADV QTSLPGAFGDPKVYQFLSQPEHHHIWRGYPNRLFHYSDYNGVRKKLQRARHDA TFTLPDPVEHPLWIRFDARGGNIHDYEISQNGKQYQVTFSRLLWPENETWVERE NVTVAIGASQQLKRQIRLDGYADKKQKVRYRDYSSGIELTGVLGGAKIQFDRRH LRKASNRLADGETGPVYLNVVVDIEPFLAMRNGRLQTPIGQVLQVVTKDWPKV TGYKPAELISWIQNSPLAVGTGVNTIEAGMRVMSVDLGQRSAAAVSIFEVMRQK PAEQETKLFYPIAVTGLYAVHRRSLLLRLPGEKISDEIEQQRKIRAHARSLVRYQI RLLADVLRLHTRGTAEQRRAKLDELLATLQTKQELDQKLWQTELEKLFDYIHEP AERWQQALVAAHRTLEPVIGQAVRHWRKSLRIDRKGLAGMSMWNIEELEETRK LLIAWSKHSRVPGEPNRLDKEETFAPQQLQHIQNVKDDRLKQMANLLVMTALG YKYDEAEKQWKEAYPACQMILFEDLSRYRFALDRPRRENNRLMKWAHRSIPRL VYLQGELFGIQVGVYSAYTSRFHAKTGAPGIRCHALKEEDLQPNSYVVKQLIK DGFIREDQTGSLKPGQIVPWSGGELFVTLADRSGSRLAVIHADINAAQNLQKRFW QQNTEIFRVPCKVTTSGLIPAYDKMKKLFGKGYFAKINQTDTSEVYVWEHSAKM KGKTTPADPAEEGVFDESLTDEMEELEDSQEGYKTLFRDPSGFFWSSDRWLPQK EFWFWVKRRIEKKLREQLQ
5	Cas12i1	MSNKEKNASETRKAYTTKMIPRSHDRMKLLGNFMDYLMDGTPIFFELWNQFGG GIDRDIISGTANKDKISDDLLLAVNWFKVMPINSKPQGVSPSNLANLFQQYSGSEP DIQAQEYFASNFDTEKHQWKDMRVEYERLLAELQLSRSDMHHDLKLMYKEKCI GLSLSTAHYITSVMFGTGAKNNRQTKHQFYSKVIQLLEESTQINSVEQLASIILKA GDCDSYRKLRIRCSRKGATPSILKIVQDYELGTNHDDEVNVPSLIANLKEKLGRF EYECEWKCMEKIKAFLASKVGPYYLGSYSAMLENALSPIKGMTTKNCKFVLKQI DAKNDIKYENEPFGKIVEGFFDSPYFESDTNVKWVLHPHHIGESNIKTLWEDLNA IHSKYEEDIASLSEDKKEKRIKVYQGDVCQTINTYCEEVGKEAKTPLVQLLRYLY SRKDDIAVDKIIDGITFLSKKHKVEKQKINPVIQKYPSFNFGNNSKLLGKIISPKDK LKHNLKCNRNQVDNYIWIEIKVLNTKTMRWEKHHYALSSTRFLEEVYYPATSEN PPDALAARFRTKTNGYEGKPALSAEQIEQIRSAPVGLRKVKKRQMRLEAARQQN LLPRYTWGKDFNINICKRGNNFEVTLATKVKKKKEKNYKVVLGYDANIVRKNT YAAIEAHANGDGVIDYNDLPVKPIESGFVTVESQVRDKSYDQLSYNGVKLLYCK

PHVESRRSFLEKYRNGTMKDNRGNNIQIDFMKDFEAIADDETSLYY LQSSIRNHSSQAKEYREEIFELLRDGKLSVLKLSSLSNLSFVMFKVA HLLKKPKNSKSDVKAPPITDEDKQKADPEMFALRLALEEKRLNKV KIVAKALELRDKYGPVLIKGENISDTTKKGKKSSTNSFLMDWLAR MVMMHQGLEFVEVNPNFTSHQDPFVHKNPENTFRARYSRCTPSEI SFLSDKPSKRPTNAYYNEGAMAFLATYGLKKNDVLGVSLEKFKQI EDQLLFPSRGGMFYLATYKLDADATSVNWNGKQFWVCNADLVA QKDFKKK	YFNMKYCKL AKSLIGTYFG VKSKKEVIAN GVANKVKE ELTEKNRKEIL QIMANILHQRS AAYNVGLVDI
---	---

Sr. No.	Name	Isoelectric Point
1	CmtCas12a	8.72
2	Mb2Cas12a	8.66
3	PdCas12a	8.58
4	FnCas12a	8.57
5	MbCas12a	8.47
6	Mb3Cas12a	8.47
7	LbCas12a	8.38
8	HkCas12a	8.36
9	Pb2Cas12a	8.28
10	PcCas12a	8.2
11	BoCas12a	8.18
12	AsCas12a	8.01
13	BfCas12	7.76
14	ArCas12a	7.72
15	MICas12a	7.65
16	TsCas12a	7.15
17	Lb5Cas12a	7.04
18	ErCas12a	6.71
19	BsCas12a	6.47
20	LpCas12a	6.38
21	CmaCas12a	6.09
22	PxCas12a	5.66
23	PrCas12a	5.57

Table 2: List of Cas12a orthologs and their isoelectric points (Red = high pI, Blue = low pI)

Fig. S1: Temperature dependency of denaturation of dsDNA substrates. Data showing the temperature dependence of trans-cleavage-mediated fluorescence activity in RFU with and without the addition of PICNIC buffer (pH=12) and temperatures ranging from room temperature (RT) to 90°C. Error bars represent Mean \pm S.D. (n=3).

Fig. S2: The effect of pH on the DNA denaturation dynamics. Data showing trans cleavage dependence on pH for a PICNIC reaction. The pH ranges from neutral (7) to 12, with water used as a control. Plot represents the fluorescence intensity in RFU at each condition. Error bars represent Mean \pm S.D. (n=3).

Fig. S3: The effect of incubation temperature on PICNIC method. Graph depicting transcleavage fluorescence values utilizing the PICNIC method at various temperatures, ranging from room temperature (RT) to 95°C. Error bars represent Mean \pm SD (n=3) is indicated.

Fig. S4: The effect of heating time on PICNIC method. Graph illustrating the time dependence of target dsDNA denaturation via incubation, from 0 min to 30 min. All samples are incubated in PICNIC buffer at a pH of 12 and a temperature of 100°C and cooled for 15 minutes at room temperature. Error bars represent Mean \pm SD (n = 3).

Fig. S5: pH dependence of trans-cleavage activity using the PICNIC method. All samples are incubated under the same conditions at 100°C for 10 minutes with differing pH. pH levels left to right are 7, 8, 9, 10, 11, and 12. Mean \pm SD (n = 3) is indicated.

Fig. S6: Fold change at t=30 minutes utilizing the PICNIC method using water at a pH of 12. Various additives to this water at a pH of 12 are indicated. Mean \pm SD (n = 3) is indicated.

Fig. S7: The effect of changing the 4th nucleotide in the PAM sequence with WT-CRISPR and PICNIC method. Figure showing trans-cleavage activity of target sequences preceded by various PAM sequences under both Wild Type and PICNIC conditions. In this figure the fourth nucleotide of the 4-nucleotide PAM sequence is varied.

Fig. S8: PAM-library trans-cleavage with Cas12b and Cas12i. Figure showing trans-cleavage activity of target sequences preceded by various 'NNN' PAM sequences with PICNIC conditions using BrCas12b (top) and Cas12i1 (bottom).

Fig. S9: Comparison of trans-cleavage activities of LbCas12a, BrCas12b, and Cas12i1. Figure showing the trans-cleavage activity of Cas12a, Cas12b, and Cas12i with target concentration varying from 1,000 to 0 pM. Here Cas12a is labeled red, Cas12b is labeled blue, and Cas12i is labeled green. Error bars represent Mean \pm SD (n=3).

Fig. S10: Heat map represents the fold change of trans-cleavage of 15-nt truncated crRNAs containing A, U, G, or C bases at the first position, tested for the detection of targets containing T, A, C, or G base in a combinatorial fashion (n=3). The fold change is normalized to the activity of the canonical crRNA-target combination.

Fig. S11: Heat map represents the fold change of trans-cleavage of 15-nt truncated crRNAs containing A, U, G, or C bases at the first position, tested for the detection of targets containing T, A, C, or G base in a combinatorial fashion (n=3). The fold change is normalized to the activity of the canonical crRNA-target combination.

Fig. S12: Plot representing the intensity of the fluorescence obtained in RFU for the detection of 48 HCV-1a patient samples with a PICNIC-based test designed to genotype using specific crRNAs named HCV-1a guide RNA (red) and HCV-1b guide RNA (orange). The HCV-1a samples only show strong fluorescence in the presence of HCV-1a guide but not the HCV-1b guide.

Fig. S12 continued

Fig. S12 continued

Fig. S12 continued

Fig. S13: Plot representing the intensity of the fluorescence obtained in RFU for the detection of 40 HCV-1b patient samples with a PICNIC-based test designed to genotype using specific crRNAs named HCV-1a guide RNA (red) and HCV-1b guide RNA (orange). The HCV-1b samples only show strong fluorescence in the presence of HCV-1b guide but not the HCV-1a guide.

Fig. S13 continued

Fig. S13 continued

Fig. S13 continued