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 ABSTRACT 

 A substantial proportion of acute SARS-CoV2 infection cases exhibit gastrointestinal 

 symptoms, yet the genetic determinants of these extrapulmonary manifestations are 

 poorly understood. Using survey data from 239,866 individuals who tested positively for 

 SARS-CoV2, we conducted a multi-ancestry GWAS of 80,289 cases of diarrhea 

 occurring during acute COVID-19 infection (33.5%). Six loci (  CYP7A1, LZFTL1- - 

 CCR9, TEME182, NALCN, LFNG, GCKR  ) met genome-wide  significance in a 

 trans-ancestral analysis. The top significant GWAS hit mapped to the  CYP7A1  locus, 

 which plays an etiologic role in bile acid metabolism and is in high LD (r  2  = 0.93) with the 

 SDCBP  gene, which was previously implicated in antigen  processing and presentation 

 in the COVID-19 context. Another association was observed with variants in the 

 LZTFL1–CCR9  region, which is a known locus for COVID-19  susceptibility and severity. 

 PheWAS showed a shared association across three of the six SNPs with irritable bowel 

 syndrome (IBS) and its subtypes. Mendelian randomization showed that genetic liability 

 to IBS-diarrhea increased (OR=1.40,95%,CI[1.33-1.47]), and liability to IBS-constipation 

 decreased (OR=0.86, 95%CI[0.79-0.94]) the relative odds of experiencing COVID-19+ 

 diarrhea. Our genetic findings provide etiological insights into the extrapulmonary 

 manifestations of acute SARS-CoV2 infection. 
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 INTRODUCTION 

 Diarrhea is a common extrapulmonary gastrointestinal (GI) symptom of acute 

 COVID-19. Retrospective studies estimate that the prevalence of COVID-19 related 

 diarrhea (defined herein as COVID-19+ diarrhea) varies between 7% and 18% for 

 population based and hospital based cohorts, respectively  1–3  . There is growing 

 evidence that SARS-CoV2 tropism (the ability of a virus to infect multiple cell types) in 

 gastrointestinal tissues may lead to alteration of gut microbiota  4,5  and persistence of 

 virus in the gastrointestinal system, which is associated with a higher risk of post-acute 

 sequelae such as long COVID  6  . SARS-CoV2 RNA can be  detected in fecal samples of 

 COVID-19+ patients up to 4 months after acute infection, with fecal viral RNA detectable 

 for longer durations among individuals with COVID-19+ diarrhea as compared to those 

 without diarrhea  7  . Yet, the gastrointestinal symptoms  of SARS-CoV2 positive individuals 

 have not been studied in GWAS. 

 The SARS-CoV virus enters the body via angiotensin-converting enzyme 2 

 (ACE2) and co-receptor transmembrane protease serine 2 (TMPRSS2)  8  receptors that 

 are predominantly expressed in the lung. ACE2 and TMPRSS2 receptors are also 

 expressed in gastric mucosal cells, enterocytes, and colonocytes  9  , making the GI tract a 

 potential extrapulmonary site of SARS-CoV2 infection. SARS-CoV2 RNA and viral 

 proteins were detected in epithelial cells from intestinal biopsies of COVID-19 patients 

 with acute infection  10  . In postmortem data from 13  patients, SARS-CoV2 subgenomic 

 RNA was detected in the small intestinal tissues from eight patients, indicative of viral 

 replication  11  . It is not clear whether GI symptoms  are the direct consequence of 

 SARS-CoV2 infection of intestinal cells or due to a systemic immune-inflammatory 
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 response.  GWAS can provide insights into the genetic architecture of disease and shed 

 light on potential etiological mechanisms. To date, no GWAS studies of COVID-19+ 

 diarrhea have been conducted. We sought to bridge this gap by conducting a GWAS of 

 self-reported diarrhea symptoms among 239,866 COVID-19 test positive 23ndMe 

 research participants. 

 RESULTS 

 Of the individuals who self-reported testing positive for SARS-CoV2, 33% 

 reported diarrhea as a symptom (N=80,289 cases of COVID-19+ diarrhea / 239,866 

 acute COVID-19 cases who tested positive). Among 80,289 COVID-19+ diarrhea cases, 

 the vast majority reported diarrhea symptoms at baseline (N=79,361 cases) with a few 

 individuals reporting diarrhea at 1 month (N=313 cases), 2 months (N=346 cases),or 3 

 months of follow up (N=269 cases). Women accounted for the majority of the survey 

 participants (71.1%  of COVID-19+ diarrhea cases and 65.4% of controls), and were 

 more likely to experience COVID-19+ diarrhea than men (adjusted OR[95%CI] 

 =1.29[1.27,1.31]). Compared to those with COVID-19+ who didn’t experience diarrhea, 

 individuals with COVID-19+ diarrhea were younger, more likely to be of non-European 

 ancestry, and to have diabetes, depression, and high triglyceride levels (  Table 1  ). 

 Individuals of East Asian (adjusted OR[95%CI]=0.85[0.79,0.94]) or African American 

 (adjusted OR [95%CI]=0.92[0.88,96]) ancestry had lower relative odds of reporting 

 diarrhea compared to those of European ancestry, whereas Latinx individuals were at 

 higher relative odds of reporting diarrhea (adjusted OR[95%CI]=1.21[1.09,1.14]).  Those 

 reporting COVID-19+ diarrhea were more than twice as likely to be hospitalized during 
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 the acute infection (6.6% in COVID-19+ diarrhea cases vs 3.0% in COVID-19+ controls; 

 corresponding to an adjusted relative odds of 2.56; 95%CI: 2.46, 2.57) and were more 

 likely to have severe respiratory disease (10.2% in COVID-19+ diarrhea cases vs 4.8% 

 in COVID-19+ diarrhea controls; adjusted relative odds of 2.38; 95%CI: 2.30, 2.46) after 

 adjusting for age, sex, and ancestry. Furthermore, those with COVID-19+ diarrhea had 

 twice the odds of subsequently experiencing long COVID (43% in COVID-19+ diarrhea 

 cases vs 23% in COVID-19+ diarrhea controls; adjusted relative odds of 2.53; 95%CI: 

 2.46, 2.61) and of long COVID impacting daily living activities (16% of COVID-19+ 

 diarrhea cases vs 9.6% of COVID-19+ diarrhea controls; adjusted relative odds of 2.27; 

 95%CI: 2.21, 2.34). 

 GWAS  : We conducted GWAS within each of European, African  American, Latinx, 

 East Asian, and South Asian ancestry groups, and then meta-analyzed across 

 ancestries using fixed effect modeling. Individuals of European ancestry contributed 

 75% of the sample size to multi-ancestry analysis, with African-Americans contributing 

 4%, Latinx 18%, East Asians 2%, and South Asians 1%. We identified six distinct loci 

 associated with COVID-19+ diarrhea in multi-ancestry analysis (  Table 2  ,  Figure 1  ). The 

 associations of index variants were statistically significant at baseline but not at the 

 following time points (1 and 3 months after onset of acute infection) likely owing to lack 

 of statistical power (  Supplementary Table 1  ). The  top statistically significant index 

 variant at chr8q12.1 (rs10504255) is situated in the intergenic region of genes  UBXN2B 

 and  CYP7A1,  located 4kb upstream of the  CYP7A1  gene.  rs10504255 (A/G with G 

 being the effect allele) was associated with COVID-19+ diarrhea with OR[95% CI] = 
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 0.94[0.92,0.95], p= 2.6x10  -16  . The credible set from multi-ancestry analysis contained 16 

 variants covering a 100.4-kilobase(kb) region (  Supplementary  Figure 1  ). The 

 association was primarily driven by individuals of European ancestry (p = 1.08 X 10  -14  ) 

 as compared to other ancestries (  Supplementary Table  2  ). In the analysis of 

 expression quantitative trait loci (eQTL), rs10504255 was found to be in high LD with a 

 variant (rs9297994) associated with  CYP7A1  expression  in the thyroid gland (p = 

 8.1X10  -9  ) and a variant (rs8192870) associated with  expression of a nearby gene 

 (  SDCBP  , r  2  =0.94, p=9.9X10  -10  ) in left ventricular  myocardium (  Supplementary Table 

 3  )  12  . Previous studies have shown  SDCBP  expression  to correlate with  HLA-DPB1 

 expression in normal lung tissue  13  .  The variant  rs35044562 (alleles A/G with G being 

 the effect allele) on chr3p21.31  lies in the intergenic region of  LZTFL1  and  CCR9 

 (  Supplementary Figure 2  ).  LZTFL1  is widely expressed  in ciliated epithelial cells in 

 lungs  14  . Additional genes in this regulatory locus  include  CCR9,  primarily expressed in 

 immune cells, and  SLC6A20  in the gastrointestinal  tract. 

 The variants, rs75683620, at chr2q12.1 (  TMEM182,  alleles  A/G with G being the 

 effect allele  ,  p=5.0 X 10  -09  ,  Supplementary Figure  3  ),  rs536843010 at chr13q33.1 

 (  NALCN,  alleles A/C with C being the effect allele,  p=9.8X10  -09  ,  Supplementary Figure 

 4  ), and rs13245319  at  chr7p22.3 (  GRIFIN--[]-LFNG  ,  alleles C/T with T being the effect 

 allele, p = 1.79X10  -08  ,  Supplementary Figure 5  )  were not associated with functional 

 effects in eQTL or pQTL analysis. These variants are relatively rare in the studied 

 populations, except for rs75683620 (MAF= 0.042) among individuals of African 
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 American ancestry. These variants were monomorphic among East and South Asians, 

 meaning that data from these populations did not contribute to the meta-analysis. 

 We also identified an association at chr2p23.3 (  GCKR  ,  rs1260326, alleles C/T 

 with T being the effect allele,  Supplementary Figure  6  ) that was genome-wide 

 significant in the meta-analysis (p = 1.98X10  -08  )  and in the European population (p = 

 2.0X10  -08  ). rs1260326 is a missense variant that is  also in high LD with eQTLs for other 

 nearby genes across multiple tissues, including kidney tubules (eQTL gene =  NRBP1  , 

 p=5.3X10  -07  ), CD4+ T cells (eQTL gene=  NRBP1  , p=2.8X10  -07  ),  and liver (eQTL 

 gene=  C2orf16  , p=4.9X10  -23  ) (  Supplementary Table 3d  )  15–18  .  rs1260326 is also located 

 within 500kb with  r  2  > 0.8 of multiple pQTLs based  on data from blood plasma 

 (  Supplementary Table 3b  )  19,20  . As previously reported,  rs1260326 is a pleiotropic 

 variant associated with multiple traits  21  .  Similarly  to other variants, most of the support 

 for this association also comes from the European population. 

 Association with COVID-19 measures  : To explore the  specificity of these 

 genetic variants with COVID-19+ diarrhea vs COVID-19 severity, we examined the 

 association of the lead variants with COVID-19 susceptibility and COVID-19 severity 

 measures. The variant, rs3504462 (A/G with G as the risk allele), on chr3p21.31 was 

 associated with COVID-19 test positivity (p = 1.1X 10  -05  ) and acute COVID-19 infection 

 leading to hospitalization (p = 1.1X10  -56  ) or severe  respiratory disease (p = 7.1X10  -69  ). In 

 contrast, the other variants were not associated with any of these COVID-19 measures 

 (  Supplementary Table 4  ). Thus, with the exception  of the chr3p21.31 locus, the 
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 genetic signals of COVID-19+ diarrhea are likely to drive their effects through 

 mechanisms unrelated to COVID-19 severity. 

 PheWAS  : To characterize these loci, we performed a  phenome-wide association 

 study (PheWAS) across 1,482 phenotypes available in the 23andMe, Inc. database in 

 the population of European ancestry. PheWAS results for variants are presented in 

 Supplementary Table 5  . Among phenotypes associated  with rs10504255, the 

 strongest associations were with high cholesterol (p = 7.53 X 10  -172  ) and IBS-D (p = 5.31 

 X 10  -134  ). Other associated phenotypes were cardiometabolic  traits such as type 2 

 diabetes, high blood pressure and statin use (  Supplementary  Table 5a  ). In addition to 

 the measures of COVID-19 susceptibility and severity, the rs35044562 variant was also 

 associated with autoimmune conditions (Hashimoto’s disease, celiac disease) 

 (  Supplementary Table 5b  ). PheWAS for rs1260326 identified  associations with lipid 

 profile, allergic conditions, and blood glucose levels (  Supplementary Table 5c  ). The 

 main associations for rs1324319 were IBS, kidney stones, and obesity (  Supplementary 

 Table 5d  ). No traits were associated with rs75683620  or rs536843010 at the 

 Bonferroni-corrected p-value threshold. 

 Focusing specifically on gastrointestinal disorders among outcomes constituting 

 the PheWAS analysis, and orienting effect alleles to a higher risk of COVID-19+ 

 diarrhea, four SNPs (rs10504255, rs1260326, rs35044562 and rs13245319) 

 demonstrated associations with GI traits in addition to COVID19+ diarrhea (  Figure 2  ), 

 including IBD (both ulcerative colitis and Crohn’s disease), celiac disease, lactose 
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 intolerance and IBS. Directionally consistent associations with higher risks of IBS (for 

 rs10504255, rs1260326 and rs13245319) and IBS-D (rs10504255, rs1260326) were 

 identified whereas a directionally opposite association between COVID-19+ diarrhea 

 and IBS-C (rs10504255) was found (  Supplementary Figure  7  ). 

 Mendelian randomization  : Given that a common association  on PheWAS 

 across three of the six lead variants was an association with IBS and IBS subtypes, and 

 to more fully characterize the translational relevance, we investigated the potential 

 causal relationship between genetic liability to IBS-C and IBS-D and COVID-19+ 

 diarrhea through Mendelian randomization (MR). Using a genetic instrument consisting 

 of 180 SNPs for IBS-D, we identified strong evidence of a potential causal effect of 

 liability to IBS-D and risk of COVID-19+ diarrhea (OR=1.40,95%,CI[1.33-1.47] from 

 random-effects IVW modeling). Steiger filtering removed three SNPs with minimal 

 impact to the IVW MR estimate (OR=1.39,95% CI[1.32-1.46]). These causal estimates 

 persisted or strengthened on robust MR approaches: weighted median provided 

 findings that were largely similar to IVW MR (OR=1.37,95%,CI[1.28-1.47]), with the 

 estimate from MR Egger yielding a stronger predicted causal effect 

 (OR=2.02,95%,CI[1.76-2.32]) (  Figure 3  ,  Supplementary Figure 8  ). The intercept from 

 MR Egger regression was statistically significantly different from zero [β(SE) = 

 -0.121(0.002); p= 1.74 X 10  -07  ], indicating presence  of directional pleiotropy 

 (  Supplementary Table 6  ). 

 The MR estimates for IBS-C were directionally opposite (0.86, 95%CI[0.79-0.94]; 

 IVW modeling) to those of IBS-D. MR estimates remained unchanged after removing 
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 one SNP following Steiger filtering (OR=0.89,95% CI[0.82-0.96]). Robust MR analyses 

 provided consistent findings although the magnitude of the predicted causal estimate 

 was further from the null on MR-Egger; the intercept from MR Egger was β(SE) = 

 0.008(0.008) with a p-value of 0.31. 

 Given partial overlap of individuals contributing to GWAS (  Supplementary 

 Figure 9  ), we conducted a sensitivity analysis using  non-overlapping samples which 

 yielded nearly identical findings (  Supplementary Table  7  ). 

 DISCUSSION 

 In this era of widespread documentation of SARS-CoV2 effects on human health, 

 there is an important gap in understanding extrapulmonary symptoms. In this study, we 

 address this gap by utilizing a direct-to-consumer research platform contributing data on 

 80,289 cases of diarrhea during acute SARS-CoV2 infection. We identified three loci 

 (  CYP7A1  ,  LZTFL1–CCR9  , and  GCKR  ) that have plausible  biological mechanisms of 

 action. Except for  LZTFL1-CCR9  , none of these genetic  signals was associated with 

 COVID-19 severity, indicating the role of distinct biological pathways. We further 

 observed a consistent association of top variants at the  CYP7A1  ,  GCKR  , and  LFNG  loci 

 with IBS and IBS sub-types. Genetic liability towards IBS-D increased the risk of having 

 COVID-19+ diarrhea, while genetic liability for IBS-C reduced this risk. These results 

 highlight the role of genetic predisposition to preexisting comorbidities in the 

 extrapulmonary manifestations of SARS-CoV2 infection. 
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 The top significant locus in our study, mapped to  CYP7A1  , encodes a member of 

 the cytochrome p450 enzyme family, which has an important role in the bile acid 

 synthesis pathway  22  . Polymorphisms at this locus  are associated with defects in bile 

 acid synthesis, affecting enzymatic activity of cholesterol 7-alpha hydroxylase and 

 resulting in bile acid diarrhea. On eQTL analysis, we observed rs10504255 to be in high 

 LD with a variant (rs8192870) associated with expression of a nearby gene (  SDCBP  , 

 r2=0.93,p=9.9X10-10) in the left ventricular myocardium  12  .  SDCBP  is also expressed in 

 the intestine, as well as in lung cancers including adenocarcinoma and small cell 

 carcinoma  12  . A recent single-cell RNA sequencing study  observed that  SDCBP  likely 

 plays a role in antigen processing and presentation in bronchial epithelial cells from 

 COVID-19 patients,  13  with  SDCBP  expression correlating  with  HLA-DPB1  expression in 

 normal lung tissues  13  .  HLA-DPB1  represents a critical  immune mechanism as it is 

 expressed on antigen presenting cells that participate in eliciting an immune response 

 to foreign viral peptides. Overall, these findings suggest a possible role of bile acid 

 synthesis pathways and/or the immune system in COVID-19+ diarrhea. 

 LZTFL1  ,  SLC6A20  and  CCR9  are part of the chemokine  receptor gene cluster at 

 chr3p21, previously identified as COVID-19 susceptibility and severity loci  23–26  .  LZTFL1 

 at this locus likely regulates viral response pathways by inhibiting the transcription 

 factors that reduce levels of ACE2 and TMPRSS  14  .  SLC6A20  is extensively expressed 

 in the gastrointestinal tract, where it forms a complex with ACE2 receptors, facilitating 

 viral entry  24  .  CCR9  is expressed in T-lymphocytes  of the small intestine and colon, 

 where it regulates chemokines and eosinophil recruitment  23,27  . Collectively, these 
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 mechanisms may contribute to pathophysiology of diarrheal disease during acute 

 SARS-CoV2 infection. 

 PheWAS characterization of top GWAS loci identified directionally opposite 

 signals with IBS subtypes. Genetic liability to IBS-D increased, and liability to IBS-C 

 decreased the probability of experiencing diarrhea during the acute phase of 

 SARS-CoV2 infection. These effects could be driven by genetic liability to frequency of 

 bowel motions, modifying the manifestation of diarrhea in the context of an acute 

 infection affecting the GI tract. An alternative explanation might be that individuals at 

 greater liability to IBS-D have altered bowel characteristics that make them more 

 susceptible to GI infection and diarrhea in the context of acute COVID-19 infection. For 

 example, studies have demonstrated that individuals with IBS-D have an altered gut 

 microbiome which could play a role in susceptibility to COVID-19+ diarrhea  28,29  . 

 The remaining significantly associated genetic loci do not have direct evidence of 

 involvement in the gastrointestinal tract or SARS-CoV2 infection.  GCKR  is a pleiotropic 

 locus associated with C-reactive protein, fasting plasma glucose levels, and blood cell 

 traits  21,30  .  GCKR  -mediated effects are driven via  regulation of glucokinase enzymes that 

 control the first step of glycolysis. The gene  TMEM182  (rs75683620) at chr2q12.1 has 

 been associated with central obesity and systolic blood pressure in Asian populations 

 31,32  . The gene is expressed in heart tissue and regulates  its effects via tumor necrosis 

 factor-alpha  32  . The  NALCN  gene (rs536843010) at chr13q33.1  contributes to 

 physiological processes in the neuromuscular junctions by maintaining resting 
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 membrane potential via voltage independent, nonselective cation channels  33  . It 

 accordingly is involved in control of muscular activity, respiration, and circadian rhythms 

 33,34  . The function of the LFNG gene (rs13245319)  is regulated via the notch signaling 

 pathway  35  . The notch pathway maintains the homeostasis  of multiple tissues and thus 

 plays a role in cancerous growth, including colorectal adenocarcinoma  36,37  . These 

 associations require independent validation and additional functional investigations to 

 identify any biological relevance to acute COVID-19+ diarrhea. 

 Our study has several limitations. European participants contributed 75% of our 

 sample size, so the statistical power to detect genetic associations was driven largely by 

 this group. While the large sample size is an important strength for our study, replication 

 of the GWAS and MR findings by other studies would establish reproducibility and 

 strengthen the findings. Diarrhea cases reported 2 to 3 months after acute infection 

 might be misattributed to COVID-19 as opposed to another source. However, the vast 

 majority (99%) of our cases of COVID-19+ diarrhea occurred at the same time as the 

 diagnosis of COVID-19.   Furthermore, individuals with genetic liability to IBS-D may 

 have misattributed diarrhea at the time of acute COVID-19 to the infection as opposed 

 to their underlying IBS-D. Refuting this hypothesis is our observation that individuals 

 with IBS-C had a lower relative odds of experiencing COVID-19+ diarrhea, which 

 collectively may be indicative of an acute infection operating on top of a background 

 genetic liability to IBS-D or IBS-C, with liability to either IBS-D or IBS-C influencing the 

 probability of experiencing COVID-19+ diarrhea in a potentially etiological way. Finally, 

 the MR-Egger intercept for IBS-D indicated evidence of directional pleiotropy. However, 
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 the pleiotropy-corrected point estimate from MR-Egger was larger (OR=2.02) than that 

 derived from IVW (OR=1.40), making the latter a conservative estimate. 

 In conclusion, the first GWAS of COVID-19+ diarrhea in an ancestrally diverse, 

 large-scale population-based cohort identifies biologically relevant signals associated 

 with bile acid synthesis and immune function, including antigen presenting and cytokine 

 signaling. By virtue of limiting our study to COVID-19+ individuals, we infer and 

 substantiate empirically that all but one of the identified loci are specific to COVID-19+ 

 diarrhea rather than markers of susceptibility to SARS-CoV2 infection. Finally, we 

 provide causal evidence in support of the etiological role of liability to chronic intestinal 

 disorders and gastrointestinal symptoms during acute infection. 

 METHODS 

 Study Population 

 Participants older than 18 years old were recruited for 23andMe COVID-19 study 

 from April 2020 using email-based surveys. The surveys were distributed to 6.7 million 

 individuals who provided informed consent and volunteered to participate in the 

 research online, under a protocol approved by the external AAHRPP-accredited IRB, 

 Ethical & Independent (E&I) Review Services. As of 2022, E&I Review Services is part 

 of Salus IRB. Recruitment was initially geo-targeted to capture cases as the outbreak 

 spread across the U.S and was continued later on to recruit additional participants. We 

 included only those participants who had responded to COVID-19 survey and provided 

 symptom information by August, 2023 for this study. Details on diagnosis, testing, and 
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 symptoms of COVID-19, as well as markers of severity and relevant comorbid 

 conditions were collected via one baseline and three follow-up surveys administered 

 three months apart. Full details of the data collection procedures for this study have 

 been described previously  38  . 

 Phenotype 

 Using the survey information, we defined the diarrhea outcome among 

 individuals who self-reported testing positive for COVID-19. Participants were asked the 

 question whether they experienced any of the following symptoms to which they could 

 select as many as needed from the following list of responses: ‘muscle or body aches/ 

 fatigue/ dry cough/ sore throat/ coughing up of sputum or phlegm (productive cough)/ 

 loss of smell or taste/ chills/ difficulty breathing or shortness of breath/ pressure or 

 tightness in upper chest/ diarrhea/ nausea or vomiting/ sneezing/ loss of appetite/ runny 

 nose/ headache/ intensely red or watery eyes’. Participants who reported experiencing 

 diarrhea symptoms at baseline or follow-up surveys were identified as cases and those 

 who did not experience diarrhea were controls. The analytical dataset included 

 unrelated individuals with non-missing information on COVID-19+ diarrhea and 

 covariates included in GWAS analyses (N=239,866). 

 Genotyping 

 DNA extraction and genotyping were performed on saliva samples by Clinical 

 Laboratory Improvement Amendments-certified and College of American 

 Pathologists-accredited clinical laboratories of Laboratory Corporation of America. 
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 Samples were genotyped across the five genotyping platforms and imputed using three 

 combined independent reference panels: the publicly available Human Reference 

 Consortium (HRC), and UK BioBank (UKBB) 200K Whole Exome Sequencing (WES) 

 reference panels and the 23andMe reference panel, which was built by 23andMe using 

 internal and external cohorts. Each genotyping platform was imputed and phased 

 separately. The final genotyped variants included 1,469,237 variants and the final 

 imputation panel included a total of 99,675,338 variants (90,582,19 SNPs and 

 9,093,144 indels). The variant quality control statistics were computed independently 

 with each phasing panel and genotyping platform. We removed variants with low 

 imputation quality (r2 < 0.5 averaged across batches or a minimum r2 < 0.3) or 

 evidence of differences in effects across batches. For genotyped variants, we removed 

 variants only present on our V1 or V2 arrays (due to small sample size) that failed a 

 Mendelian transmission test in trios (P < 10  −20  ),  failed a Hardy–Weinberg test in 

 individuals of European ancestry (P < 10  −20  ), failed  a batch effect test (ANOVA P < 10  −50  ) 

 or had a call rate <90%. For imputed variants in HRC panel, following filters were used: 

 singletons were excluded, multi-allelics were split into bi-allelic variants (with bcftools), 

 variants with >20% missingness were removed, variants with minor allele count == 0 

 were removed, and variants with inbreeding coefficient < -0.3 (high heterozygosity) were 

 removed. 

 Ancestry Classification 

 Ancestries in the 23andMe database are determined using a classifier algorithm based 

 on analysis of local ancestry  39  . Phased genotyped  data were first partitioned into 
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 windows of about 300 SNPs and a support vector machine (SVM) approach was 

 applied within each window to classify individual haplotypes into one of 45 worldwide 

 reference populations. The SVM classifications are then fed into a hidden Markov model 

 (HMM) that accounts for switch errors and incorrect assignments, and gives 

 probabilities for each reference population in each window. Finally, we used simulated 

 admixed individuals to recalibrate the HMM probabilities so that the reported 

 assignments are consistent with the simulated admixture proportions. We aggregated 

 the probabilities of the 45 reference populations into six main ancestries (European, 

 African-American, Latinx, East Asian, South Asian, Middle Eastern) using a 

 predetermined threshold  39  . African Americans and  Latinx were admixed with broadly 

 varying contributions from Europe, Africa and the Americas. No single threshold of 

 genome-wide ancestry could effectively discriminate between African Americans and 

 Latinx. However, the distributions of the length of segments of European, African and 

 American ancestry are very different between African Americans and Latinx, because of 

 distinct admixture timing between the three ancestral populations in the two ethnic 

 groups. Therefore, we trained a logistic classifier that took the participant’s length 

 histogram of segments of African, European and American ancestry, and predicted 

 whether the customer is likely African American or Latinx. 

 GWAS Analysis 

 To obtain unrelated participants for our GWAS analyses, individuals were 

 included such that no two individuals shared more than 700 cM of DNA identical by 
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 descent. We excluded approximately 1.80% of the sample to obtain such a set of 

 unrelated individuals. If a case and control were identified as having at least 700cM of 

 DNA IBD, we retained the case from the sample. We conducted association analysis 

 using logistic regression, assuming additive allelic effects and adjusting for age, 

 age-squared, sex, sex-age interaction, genotyping platform variables and ten principal 

 components to account for residual population structure. We combined the GWAS 

 summary statistics from both genotyped and imputed data. When choosing between 

 imputed and genotyped GWAS results, we favored the imputed result, unless the 

 imputed variant was unavailable or failed quality control. The summary statistics were 

 adjusted for inflation using genomic control when the inflation factor was estimated to be 

 greater than one (λ = 1.029, 1.037, 1.024, 1.042 and 1.071 within the European, Latinx, 

 African American, East Asian and South Asian ancestry GWAS, respectively). We 

 defined the region boundaries by identifying all SNPs with P < 10  −5  within the vicinity of a 

 genome-wide significance association and then grouping these regions into intervals so 

 that no two regions were separated by less than 250 kb. We considered the SNP with 

 the smallest P value within each interval to be the  index variant.  Within each region, 

 we calculated a credible set of variants using the method of Maller et al 2021  40  . 

 We conducted the GWAS analysis separately in five population cohorts 

 (European, Latinx, African-Americans, East Asian, and South Asian ancestry). We then 

 meta-analyzed the GWAS summary statistics of these populations using an inverse 

 variance fixed effect model. For this approach, we included variants that had at least 1% 

 minor allele frequency in the pooled sample and minor allele count > 30 within each 
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 subpopulation. The resulting meta-analyses were also adjusted for inflation (λ = 1.001) 

 using genomic control. 

 PheWAS Analysis 

 We conducted phenome-wide associations (PheWAS)  on the index variants from loci 

 that were statistically significant on multi-ancestry analysis. The PheWAS analysis was 

 limited to data from participants of European ancestry. We used data on 1,482 

 phenotypes that were available in the 23andMe research database. Data on these 

 phenotypes were collected using online survey-based questionnaires completed by the 

 participants at the time of recruitment in 23andMe genetic database. PheWAS analysis 

 was performed, adjusting the association between each phenotype and variant of 

 interest for age, sex, and the first five principal components of ancestry. We reported the 

 associations that met the statistical threshold of significance after correcting for multiple 

 testing (p < 0.05 / (1,482*6)= 5.62 X 10  -06  ). 

 Mendelian Randomization 

 Because PheWAS highlighted a shared association with irritable bowel syndrome 

 (IBS) and IBS subtypes, we explored whether there was a potential causal role of 

 genetic liability to IBS subtypes and COVID-19+ diarrhea by conducting two-sample 

 Mendelian randomization (MR)  using the  twosampleMR  R package  41  . The initial MR 

 analysis included overlapping samples of IBS subtypes and COVID-19+ diarrhea in the 

 European population. We focused on the IBS subtypes of diarrhea (IBS-D) and 

 constipation (IBS-C). We first obtained separate genetic instruments for IBS-C and 
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 IBS-D  from genome-wide significant SNPs for the relevant endpoint that had a minor 

 allele frequency of more than 0.01. We then identified variants with the smallest p-value 

 (index variants) by defining the regions of significant association based on genome-wide 

 significant SNPs as described above. These index variants were included in the genetic 

 instrument of the relevant phenotype (IBS-C or IBS-D). The genetic instrument for 

 IBS-D included 180 SNPs (mean F-statistic per SNP=50.2) and for IBS-C included 52 

 SNPs (mean F-statistic per SNP=43.6). Using the summary statistics of SNPs with 

 IBS-D and IBS-C adjusted for age, sex, and principal components of ancestral structure 

 in the European population, we then fitted random effects inverse variance weighted 

 (IVW) models and obtained MR estimates of IBS subtypes on COVID-19+ diarrhea. To 

 test the veracity of the findings, we used Steiger filtering and robust MR approaches 

 including weighted median, and MR-Egger method  41–43  .  As a sensitivity analysis, we 

 repeated MR analysis between IBS subtypes and COVID-19+ diarrhea after excluding 

 the overlapping samples between them. 

 Functional Annotation of GWAS Index Variants 

 To perform variant-to-gene mapping, hypotheses of functionally relevant genes 

 are generated by annotating the strongest associations (index variants) with nearby 

 functional variants. The mapping is computed by searching functional variants within 

 500 kb of the index variant with a filter of linkage disequilibrium r2 > 0.8. Functional 

 variants for mapping include coding variants (annotated by the Ensembl Variant Effect 

 Predictor (VEP) v109  44  ), eQTLs, and pQTLs. The eQTL  annotation resources consist of 

 a comprehensive collection of standardized variants impacting gene expression in 

 various tissues obtained from publicly available datasets  12,15–18,45–48  and datasets 
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 processed by the 23andMe eQTL pipeline . The pQTL annotation resources similarly 

 include a collection of curated protein QTLs from relevant public datasets  19,20  . 

 eQTL discovery  . eQTL calling was performed with one  of two versions of 23andMe 

 pipelines, depending on the dataset in question (  Supplementary  File  ). The first pipeline 

 used FastQTL  49  in permutation mode, restricting all  tests to variants within a window 

 defined to be 1Mbp up- or downstream of a given gene’s transcription start site (TSS) 

 (  Supplementary File Table 1  ). Variants tested were  single nucleotide polymorphisms 

 with an in-sample MAF ≥ 1%, to avoid errors in detection or mapping of larger genetic 

 variants in cross-ancestry comparisons, and models were adjusted for age (if available), 

 sex, probabilistic estimation of expression residuals (PEER) factors  50  , genetic PCs, and 

 per-dataset covariates. For each gene, the index variant was identified by the minimal 

 permutation p-value. eQTLs were called then on lead variants if they passed a 5% FDR 

 filter using Storey’s q-value  51  methodology. Conditional  eQTLs were identified via 

 FastQTL’s permutation mode, by using each eQTL as an additional covariate in the 

 model for a given gene. The lead conditional eQTL for all genes were again FDR 

 controlled at 5%, and a maximum of 10 conditional steps were run. Finally, for a set of 

 conditional eQTLs for a given gene, a joint model was fit, and the final eQTL callset 

 consisted of those eQTLs whose joint model test passed a 5% FDR filter. eQTLs were 

 only called for genes classified as one of 'protein_coding', 'miRNA', 'IG_C_gene', 

 'IG_D_gene', 'IG_J_gene', 'IG_V_gene','TR_C_gene', 'TR_D_gene', 'TR_J_gene', 

 'TR_V_gene' as defined in GENCODE  52  . 

 The second version of the 23andMe pipeline uses strand-aware RNA-seq 

 quantification, and the eQTLs were called using SusieR package  53  instead of FastQTL, 
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 with expression PCs (selected with the elbow method) replacing PEER factors in the 

 modeling, and using the GENCODE v43 gene model (  Supplementary  File Table 2  ). 

 The pipeline natively generated credible sets with a set probability to contain a SNP 

 tagging the causal variant. 

 DATA AVAILABILITY 

 The full set of GWAS summary statistics can be made available to qualified 

 investigators upon request and signing agreement with 23andMe to protect participant 

 confidentiality. The information can be accessed at 

 https://research.23andme.com/covid19-dataset-access/ 
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 FIGURE LEGENDS 

 Figure 1 : Manhattan plot of COVID-19+ diarrhea among 23andMe participants 
 who tested positive for SARS-CoV2 
 Manhattan plot depicts findings from meta-analysis of five ancestral groups (European, 
 African, Latinx, East Asian, and South Asian). X-axis represents chromosomal position 
 for each SNP. Y-axis represents negative log p values based on logistic regression 
 model under the additive model. Statistically significant variants are highlighted in red. 
 The regions of associations are annotated with index variants. 
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 Figure 2  :  Phenome-wide association of GWAS significant hits of COVID-19+ 
 diarrhea in 23andMe participants of European ancestry 
 Forest plot represents statistically significant findings from PheWAS analysis of four loci. 
 The results are presented as odds ratio and 95% confidence intervals under additive 
 model for allele of each loci to represent increased odds of having COVID-19+ diarrhea. 
 X-axis shows estimates on log scale. Y-axis shows phenotypes studied. We have 
 included gastrointestinal phenotypes from PheWAS analysis that met the statistically 
 significant threshold of 5.62 X 10  -06  . A complete  list of phenotypes that met statistical 
 threshold are included in Supplementary Table 5. 
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 Figure 3: Forest plot representing genetically predicted effects of irritable bowel 
 syndrome subtypes on COVID-19+ diarrhea using Mendelian randomization 
 The estimates in the plot depict odds ratio and 95% confidence intervals. IBS-C = 
 Irritable bowel syndrome subtype constipation, IBS-D = Irritable bowel syndrome 
 subtype diarrhea, IVW = Inverse variance weighted. The genetic instrument for IBS-C is 
 derived using information from 50 SNPs (meanF statistic = 44.1) and genetic instrument 
 for IBS-D is derived using information from 213 SNPs (meanF statistic = 49.5). 
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 Table 1. Characteristics of 239,866 research participants in 23andMe COVID-19+ study 

 Characteristics 
 COVID-19+ 

 diarrhea 
 COVID-19+ 

 without diarrhea 

 No  80,289  159,577 

 Demographics 

 Age mean (SD)  43.23 (14.12)  44.11 (15.10) 

 Female  N (%)  57,065 ( 71.1)  104,329 (65.4) 

 Education in years mean (SD)  15.06 (2.37)  15.34 (2.47) 

 Ancestry N (%) 

 African American  3297 (  4.1)  7179 ( 4.5) 

 East Asian  1282 (  1.6)  3047 ( 1.9) 

 European  59821 ( 74.5)  120470 (75.5) 

 Latinx  15508 ( 19.3)  27656 (17.3) 

 South Asian  381 (  0.5)  1225 ( 0.8) 

 BMI mean (SD)  30.05 (7.55)  28.55 (6.82) 

 Tobacco Use N (%)  30,091 ( 38.5)  53,654 (34.5) 

 Two or more alcohol drinks per week  – 
 current N  (%) 

 6,398(23.0)  33,544(23.2) 

 Health Comorbidities 

 High blood pressure N (%)  20,363 ( 25.8)  34,836 (22.2) 

 Depression N (%)  32,418 ( 44.5)  50,773 (34.9) 

 Diabetes N  (%)  10,477 ( 14.1)  16,083 (10.9) 

 High total cholesterol N (%)  5679 ( 19.1)  10371 (16.8) 

 High triglycerides N (%)  4277 ( 26.3)  7194 (21.1) 

 COVID-19+ related characteristics 

 COVID-19+ and hospitalized N (%)  5,111 (  6.6)  4,570 ( 3.0) 
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 Table 1. Characteristics of 239,866 research participants in 23andMe COVID-19+ study 

 Characteristics 
 COVID-19+ 

 diarrhea 
 COVID-19+ 

 without diarrhea 

 COVID-19+ and severe respiratory disease 
 N (%) 

 8,170 ( 10.2)  7,702 ( 4.8) 

 SD=standard deviation, IQR=Interquartile-range, COPD=Chronic Obstructive Pulmonary Disease, 
 BMI=Body-Mass Index, Severe respiratory disease= pneumonia, difficulty breathing that may have 
 required supplementary oxygen, or ventilatory support 
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 Table 2: Statistically significant genetic variants associated with COVID-19+ diarrhea on meta-analysis 
 SNP  Chr  Position  Alleles  Gene  Effect allele  EAF  OR(95%CI)  P value 

 rs10504255  chr8  58485902  A/G  UBXN2B--[]-CYP7A1  G  0.344  0.94(0.92,0.95)  2.56X10  -16 

 rs35044562  chr3  45867532  A/G  LZTFL1--[]--CCR9  G  0.078  1.10(1.07,1.13)  4.88X10  -13 

 rs75683620  chr2  103792340  A/G  TMEM182---[]  G  0.9991  0.67(0.59,0.77)  5.04X10  -09 

 rs536843010  chr13  101100662  A/C  [NALCN]  C  0.991  0.81(0.75,0.87)  9.82X10  -09 

 rs13245319  chr7  2514631  C/T  GRIFIN--[]-LFNG  T  0.021  1.16(1.10,1.22)  1.79X10  -08 

 rs1260326  chr2  27508073  C/T  [GCKR]  T  0.416  1.04(1.03,1.05)  1.98X10  -08 

 Chr = chromosome, EAF = Effect allele frequency, OR = Odds ratio, CI = Confidence Interval 
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